Young Basalts of the Central Washington Cascades, ¯Ux Melting of the Mantle, and Trace Element Signatures of Primary Arc Magmas

Total Page:16

File Type:pdf, Size:1020Kb

Young Basalts of the Central Washington Cascades, ¯Ux Melting of the Mantle, and Trace Element Signatures of Primary Arc Magmas Contrib Mineral Petrol (2000) 138: 249±264 Ó Springer-Verlag 2000 Peter W. Reiners á Paul E. Hammond Juliet M. McKenna á Robert A. Duncan Young basalts of the central Washington Cascades, ¯ux melting of the mantle, and trace element signatures of primary arc magmas Received: 2 March 1999 / Accepted: 18 August 1999 Abstract Basaltic lavas from the Three Sisters and correlated with the amount of SC added to it. Distinctive Dalles Lakes were erupted from two isolated vents in the CAB and OIB-like trace element compositions are best central Washington Cascades at 370±400 ka and explained by a ¯ux-melting model in which dF/dSC 2.2 Ma, respectively, and have distinct trace element decreases with increasing F, consistent with isenthalpic compositions that exemplify an important and poorly (heat-balanced) melting. In the context of this model, understood feature of arc basalts. The Three Sisters la- CAB trace element signatures simply re¯ect large de- vas are calc-alkaline basalts (CAB) with trace element grees of melting of strongly SC-¯uxed peridotite along compositions typical of most arc magmas: high ratios of relatively low dF/dSC melting trends, consistent with large-ion-lithophile to high-®eld-strength elements derivation from relatively cold mantle. Under other (LILE/HFSE), and strong negative Nb and Ta anoma- conditions (i.e., small degrees of melting or large degrees lies. In contrast, the Dalles Lakes lavas have relatively of melting of weakly SC-¯uxed peridotite [high dF/ low LILE/HFSE and no Nb or Ta anomalies, similar to dSC]), either OIB- or MORB (mid-ocean ridge basalt)- ocean-island basalts (OIB). Nearly all Washington like compositions are produced. Trace element and iso- Cascade basalts with high to moderate incompatible topic compositions of Washington Cascade basalts are element concentrations show this CAB or OIB-like easily modeled by a correlation between SC and F across compositional distinction, and there is pronounced a range of mantle temperatures. This implies that the divergence between the two magma types with a large dominant cause of arc magmatism in this region is ¯ux compositional gap between them. We show that this melting of the mantle wedge. trace element distinction can be easily explained by a simple model of ¯ux-melting of the mantle wedge by a ¯uid-rich subduction component (SC), in which the degree of melting (F) of the peridotite source is Introduction Arc basalts are typically enriched in LILE and other ¯uid P.W. Reiners (&)1 mobile elements (e.g., Cs, Rb, Ba, Sr, K, U, Th, LREE) Division of Geological and Planetary Sciences, relative to most HFSE (especially Nb and Ta, and to MS 100-23, California Institute of Technology, Pasadena, CA 91125, USA lesser degrees Hf, Zr, and Ti). This characteristic is gen- e-mail: [email protected] erally thought to be caused by addition of a LILE-rich ¯uid or melt derived from a subducted slab to a mantle P.E. Hammond Department of Geology, Portland State University, wedge source (e.g., Gill 1981; Tatsumi et al. 1986; Portland, OR 97207, USA Hawkesworth et al. 1993, 1994; Stolper and Newman J.M. McKenna 1994). Basalts displaying such trace element features are Montgomery Watson Americas, Inc., Pasadena, CA 91101, USA commonly termed CAB (e.g., Leeman et al. 1990; Conrey R.A. Duncan et al. 1997; Bacon et al. 1997). Many arc basalts, how- College of Oceanic and Atmospheric Sciences, ever, especially in the Cascades, have relatively high in- Oregon State University, Corvallis, compatible element concentrations but do not have high OR 97331, USA LILE/HFSE or negative Nb and Ta anomalies. Because Present address: these trace element characteristics are common to many 1 Department of Geology, Washington State University, Pullman, ocean-island basalts, these have been termed intraplate-, WA 99164, USA or OIB-like basalts (e.g., Luhr et al. 1989, Luhr 1997; Editorial responsibility: T.L. Grove Leeman et al. 1990; Conrey et al. 1997; Bacon et al. 1997; 250 Ma rquez et al. 1999), even though the arc in which they 116 49N are found may have no obvious connection to intraplate- Mt. Baker ° W or plume-related tectonic settings or processes. Glacier Peak Here we report age and chemical results from young N lavas of two small basaltic ®elds in the central Wash- 0 km 200 Mt. Rainier ington Cascades that clearly exemplify the CAB-OIB Mt. St. Goat Rocks compositional distinction. We show that this distinction Helens Mt. Adams 46N Simcoe cannot be explained simply by dierent amounts of Boring Indian Heaven ¯uid-rich subduction component (SC) from the sub- Lavas Mt. Hood ducting slab in each mantle source. However, the dis- Lahars of Mt. Rainier Basalt of Three Sisters tinct and divergent CAB-OIB array is easily modeled as and Dalles Lakes ¯ux-melting of the mantle, involving a correlation be- Kent Mt. Rainier basaltic andesite tween the amount of SC added to the mantle source and Mt. Rainier andesite the degree of melting of the source. One important im- and dacite plication of this modeling is that OIB-like arc basalts can Tertiary intrusive be produced by the same melting process and from the rocks 47°15' same mantle source as CAB melts, simply by relatively Puyallup Enumclaw low-degrees of melting of a mantle region that has had a comparatively small amount of slab component added to it. Thus, OIB-like trace element compositions do not Orting Dalles necessarily indicate the presence of plume material or Three Sisters Lakes ocean-island-like melting processes under arcs. 47°00' Samples and methods The Three Sisters (TS) and Dalles Lakes (DL) basalts were erupted from relatively small and presumably short-lived vents about 30 km north of Mt. Rainier Mt. Rainier (Fig. 1). Our mapping, as well as earlier work (Fischer 46°45' 1970; Hartman 1973; Hammond 1980), indicates that 0510 15 20 the TS and DL basalts were erupted subaerially through km after Luedke & Smith (1982) older andesitic porphyry and volcaniclastic deposits. 122°15' 122°00' 121°45' 121°30' Each vent produced approximately 4±10 lava ¯ows with a similar phenocryst content of olivine, and rare pla- Fig. 1 Generalized geologic map of the central Washington Cascades near Mt. Rainier (after Luedke and Smith 1982; gioclase and/or clinopyroxene. The TS and DL basalts Hammond 1998) showing the locations and approximate areal are the only known volcanic rocks of the High Cascades distribution of the Three Sisters and Dalles Lakes basalts. Shown in (late Cenozoic to recent) between Mt. Rainier and the inset are the locations of other Washington and northern Glacier Peak (Hammond 1980; Luedke and Smith 1982), Oregon volcanoes (triangles) and selected volcanic ®elds discussed in this paper (squares). The Three Sisters and Dalles Lakes basalts a distance of nearly 150 km. Their apparently primitive were originally described by Fischer (1970) and Hartman (1973), compositions provide insights into primary magma who named them the Basalts of Canyon Creek and Dalles Ridge, compositions and mantle-melting processes in this part respectively. For stratigraphic clarity (because of the abundance of of the Cascade arc. ``Canyon Creek'' names in the Cascades, and because we reserve the name ``Dalles Ridge'' for one of the thick, older volcanic units We collected and analyzed 7 TS and 11 DL samples that composes most of the ridges in the area) we suggest the new for major- and trace-element compositions (Table 1). names Analyses were performed at Washington State Univer- sity and CHEMEX Labs (Vancouver, B.C.) using standard XRF methods for major elements and ICP-MS than the Three Sisters basalt (Table 1). Single-step fusion for trace elements. Three (including two ¯ows and one ages for two samples (365 50 and 385 71 ka) and dike) TS samples and one DL ¯ow sample were dated by plateau and isochron ages of one sample (398 15 and whole-rock, single-step, total-fusion 40Ar/39Ar methods, 377 42 ka, respectively) indicate an age of about 370± and one TS sample was also dated by incremental 400 ka for the Three Sisters (Table 1). The single-step heating 40Ar/39Ar methods, at Oregon State University. fusion procedure of 96PRTS6 produced a very low ra- diogenic Ar yield and large analytical uncertainty that precludes con®dent age assignment, but it is concordant Results with the results of the other samples. High MgO (8±10 wt%), Mg#(60±70), and compatible 40Ar/39Ar ages indicate that the Dalles Lakes basalt was trace element contents indicate that the DL and TS lavas erupted at 2.2 0.05 (1r) Ma, and is signi®cantly older are primitive basalts that have experienced little 251 Table 1 40Ar/39Ar ages (Ma) of samples of the Dalles Lakes 96PRDR2 96PRTS1 96PRTS6 96PRTS11 and Three Sisters basalts, cen- tral Washington Cascades. Single-step, total fusion age 2.18 0.05 0.385 0.071 0.271 0.174 0.365 0.050 are 1r Radiogenic Ar 89.1% 38.3% 1.30% 74.1% Plateau (2 steps, 80% of gas) 0.398 0.015 Isochron (5 steps) 0.377 0.042 fractional crystallization (Tables 2, 3). In many other (>52.5%) TS samples show slightly dierent trace respects, however, major- and trace-element composi- element trends than the rest of the TS suite, with higher tions of DL and TS lavas are distinct: DL lavas are Ni and incompatible element concentrations. DL lavas alkalic basalt whereas TS lavas are subalkalic basalts also show interesting intrasuite trends, particularly and basaltic andesites (Fig. 2). DL lavas also have high correlations between Ni and incompatible elements such TiO2 and Fe2O3, and low SiO2 relative to the TS lavas as Ba, La, and Sr (Tables 2, 3).
Recommended publications
  • Primordial Hydrogen-Helium Degassing, an Overlooked Major Energy Source for Internal Terrestrial Processes
    HAIT Journal of Science and Engineering B, Volume 2, Issues 1-2, pp. 125-167 Copyright C 2005 Holon Academic Institute of Technology ° Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes 1, 2 Arie Gilat ∗ and Alexander Vol 1Geological Survey of Israel (ret.), 8 Yehoash St., Jerusalem 93152, Israel 2Enlightment Ltd. 33 David Pinsky St., Haifa 34454, Israel ∗Corresponding author: [email protected] Received 20 July 2004, revised 3 February 2005, accepted 16 February 2005 Abstract The currently accepted theories concerning terrestrial processes are lacking in accounting for a source of internal energy which: (a) are quickly focused, e.g. earthquakes and volcanic eruptions; (b) are of very high density; (c) provide very high velocities of energy re- lease; (d) have very high density of the energy transport and relatively small losses during transportation over long distances; (e) are quasi- constantly released and practically limitless. This energy release is always accompanied by H- and He-degassing. Solid solutions of H and He, and compounds of He with H, O, Si and metals were discovered in laboratory experiments of ultra-high PT-conditions; He-S, He-Cl, He- C, He-N structures can be deduced from their atomic structure and compositions of natural He-reach gases. Ultra-high PT-conditions ex- ist in the Earth’s interior; hence it seems most likely that some “exotic” compounds are present in the Earth’s core and mantle. During Earth’s accretion, primordial hydrogen and helium were trapped and stored in the planet interior as H- and He- solutions and compounds, stable only under ultrahigh PT-conditions that were dis- covered in recent experiments.
    [Show full text]
  • Snowmobiles in the Wilderness
    Snowmobiles in the Wilderness: You can help W a s h i n g t o n S t a t e P a r k s A necessary prohibition Join us in safeguarding winter recreation: Each year, more and more people are riding snowmobiles • When riding in a new area, obtain a map. into designated Wilderness areas, which is a concern for • Familiarize yourself with Wilderness land managers, the public and many snowmobile groups. boundaries, and don’t cross them. This may be happening for a variety of reasons: many • Carry the message to clubs, groups and friends. snowmobilers may not know where the Wilderness boundaries are or may not realize the area is closed. For more information about snowmobiling opportunities or Wilderness areas, please contact: Wilderness…a special place Washington State Parks and Recreation Commission (360) 902-8500 Established by Congress through the Wilderness Washington State Snowmobile Association (800) 784-9772 Act of 1964, “Wilderness” is a special land designation North Cascades National Park (360) 854-7245 within national forests and certain other federal lands. Colville National Forest (509) 684-7000 These areas were designated so that an untouched Gifford Pinchot National Forest (360) 891-5000 area of our wild lands could be maintained in a natural Mt. Baker-Snoqualmie National Forest (425) 783-6000 state. Also, they were set aside as places where people Mt. Rainier National Park (877) 270-7155 could get away from the sights and sounds of modern Okanogan-Wenatchee National Forest (509) 664-9200 civilization and where elements of our cultural history Olympic National Forest (360) 956-2402 could be preserved.
    [Show full text]
  • 1922 Elizabeth T
    co.rYRIG HT, 192' The Moootainetro !scot1oror,d The MOUNTAINEER VOLUME FIFTEEN Number One D EC E M BER 15, 1 9 2 2 ffiount Adams, ffiount St. Helens and the (!oat Rocks I ncoq)Ora,tecl 1913 Organized 190!i EDITORlAL ST AitF 1922 Elizabeth T. Kirk,vood, Eclttor Margaret W. Hazard, Associate Editor· Fairman B. L�e, Publication Manager Arthur L. Loveless Effie L. Chapman Subsc1·iption Price. $2.00 per year. Annual ·(onl�') Se,·ent�·-Five Cents. Published by The Mountaineers lncorJ,orated Seattle, Washington Enlerecl as second-class matter December 15, 19t0. at the Post Office . at . eattle, "\Yash., under the .-\0t of March 3. 1879. .... I MOUNT ADAMS lllobcl Furrs AND REFLEC'rION POOL .. <§rtttings from Aristibes (. Jhoutribes Author of "ll3ith the <6obs on lltount ®l!!mµus" �. • � J� �·,,. ., .. e,..:,L....._d.L.. F_,,,.... cL.. ��-_, _..__ f.. pt",- 1-� r�._ '-';a_ ..ll.-�· t'� 1- tt.. �ti.. ..._.._....L- -.L.--e-- a';. ��c..L. 41- �. C4v(, � � �·,,-- �JL.,�f w/U. J/,--«---fi:( -A- -tr·�� �, : 'JJ! -, Y .,..._, e� .,...,____,� � � t-..__., ,..._ -u..,·,- .,..,_, ;-:.. � --r J /-e,-i L,J i-.,( '"'; 1..........,.- e..r- ,';z__ /-t.-.--,r� ;.,-.,.....__ � � ..-...,.,-<. ,.,.f--· :tL. ��- ''F.....- ,',L � .,.__ � 'f- f-� --"- ��7 � �. � �;')'... f ><- -a.c__ c/ � r v-f'.fl,'7'71.. I /!,,-e..-,K-// ,l...,"4/YL... t:l,._ c.J.� J..,_-...A 'f ',y-r/� �- lL.. ��•-/IC,/ ,V l j I '/ ;· , CONTENTS i Page Greetings .......................................................................tlristicles }!}, Phoiitricles ........ r The Mount Adams, Mount St. Helens, and the Goat Rocks Outing .......................................... B1/.ith Page Bennett 9 1 Selected References from Preceding Mount Adams and Mount St.
    [Show full text]
  • Geologic Influences on Apache Trout Habitat in the White Mountains of Arizona
    GEOLOGIC INFLUENCES ON APACHE TROUT HABITAT IN THE WHITE MOUNTAINS OF ARIZONA JONATHAN W. LONG, ALVIN L. MEDINA, Rocky Mountain Research Station, U.S. Forest Service, 2500 S. Pine Knoll Dr, Flagstaff, AZ 86001; and AREGAI TECLE, Northern Arizona University, PO Box 15108, Flagstaff, AZ 86011 ABSTRACT Geologic variation has important influences on habitat quality for species of concern, but it can be difficult to evaluate due to subtle variations, complex terminology, and inadequate maps. To better understand habitat of the Apache trout (Onchorhynchus apache or O. gilae apache Miller), a threatened endemic species of the White Mountains of east- central Arizona, we reviewed existing geologic research to prepare composite geologic maps of the region at intermediate and fine scales. We projected these maps onto digital elevation models to visualize combinations of lithology and topog- raphy, or lithotopo types, in three-dimensions. Then we examined habitat studies of the Apache trout to evaluate how intermediate-scale geologic variation could influence habitat quality for the species. Analysis of data from six stream gages in the White Mountains indicates that base flows are sustained better in streams draining Mount Baldy. Felsic parent material and extensive epiclastic deposits account for greater abundance of gravels and boulders in Mount Baldy streams relative to those on adjacent mafic plateaus. Other important factors that are likely to differ between these lithotopo types include temperature, large woody debris, and water chemistry. Habitat analyses and conservation plans that do not account for geologic variation could mislead conservation efforts for the Apache trout by failing to recognize inherent differences in habitat quality and potential.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Arxiv:1906.03473V2 [Physics.Geo-Ph] 30 Dec 2019 Double the Carbon Solubility in fluids Co-Existing with Sediments Subducted Along Cool Geotherms
    Devolatilization of Subducting Slabs, Part II: Volatile Fluxes and Storage Meng Tian,1, ∗ Richard F. Katz,1 David W. Rees Jones,1, 2, 3 and Dave A. May1 1Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK. 2Department of Earth Sciences, Bullard Laboratories, University of Cambridge, Madingley Road, Cambridge, CB3 0EZ, UK. 3School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK Subduction is a crucial part of the long-term water and carbon cycling between Earth's exo- sphere and interior. However, there is broad disagreement over how much water and carbon is liberated from subducting slabs to the mantle wedge and transported to island-arc volcanoes. In the companion paper Part I, we parameterize the metamorphic reactions involving H2O and CO2 for representative subducting lithologies. On this basis, a two-dimensional reactive transport model is constructed in this Part II. We assess the various controlling factors of CO2 and H2O release from subducting slabs. Model results show that up-slab fluid flow directions produce a flux peak of CO2 and H2O at subarc depths. Moreover, infiltration of H2O-rich fluids sourced from hydrated slab mantle enhances decarbonation or carbonation at lithological interfaces, increases slab surface fluxes, and redistributes CO2 from basalt and gabbro layers to the overlying sedimentary layer. As a result, removal of the cap sediments (by diapirism or off-scraping) leads to elevated slab surface CO2 and H2O fluxes. The modelled subduction efficiency (the percentage of initially subducted volatiles retained until ∼200 km deep) of H2O and CO2 is increased by open-system effects due to fractionation within the interior of lithological layers.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • GEOLOGIC MAP of the MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE of SOUTHERN WASHINGTON by Wes Hildreth and Judy Fierstein
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-2460 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE OF SOUTHERN WASHINGTON By Wes Hildreth and Judy Fierstein When I climbed Mount Adams {17-18 August 1945] about 1950 m (6400') most of the landscape is mantled I think I found the answer to the question of why men by dense forests and huckleberry thickets. Ten radial stake everything to reach these peaks, yet obtain no glaciers and the summit icecap today cover only about visible reward for their exhaustion... Man's greatest 2.5 percent (16 km2) of the cone, but in latest Pleis­ experience-the one that brings supreme exultation­ tocene time (25-11 ka) as much as 80 percent of Mount is spiritual, not physical. It is the catching of some Adams was under ice. The volcano is drained radially vision of the universe and translating it into a poem by numerous tributaries of the Klickitat, White Salmon, or work of art ... Lewis, and Cis pus Rivers (figs. 1, 2), all of which ulti­ William 0. Douglas mately flow into the Columbia. Most of Mount Adams and a vast area west of it are Of Men and Mountains administered by the U.S. Forest Service, which has long had the dual charge of protecting the Wilderness Area and of providing a network of logging roads almost INTRODUCTION everywhere else. The northeast quadrant of the moun­ One of the dominating peaks of the Pacific North­ tain, however, lies within a part of the Yakima Indian west, Mount Adams, stands astride the Cascade crest, Reservation that is open solely to enrolled members of towering 3 km above the surrounding valleys.
    [Show full text]
  • Wilderness Camping & Campfire Restrictions
    0 R D E R GOAT ROCKS WILDERNESS, WILLIAM 0. DOUGLAS WILDERNESS, TRAPPER CREEK WILDERNESS, INDIAN HEAVEN WILDERNESS MT. ADAMS WILDERNESS, TATOOSH WILDERNESS, AND GLACIER VIEW WILDERNESS Gifford Pinchot and Wenatchee National Forests In order to protect the vegetation around lakes, streams, and meadows, to reduce soil compaction and erosion in heavily used areas and to enharice the Wilderness character and resource, the following acts, pursuant to 36 CFR 261.50 (a), are prohibited within Goat Rocks Wilderness, William 0. Douglas Wilderness, Trapper Creek Wilderness, Indian Heaven Wilderness, Mt. Adams Wilderness, Tatoosh Wilderness, and Glacier View Wilderness located within the Snoqualmie National Forest and the Gifford Pinchot National Forest and administered by the Wenatchee National Forest, until further notice. I Camping within 100 feet slope distance from the shoreline of any lake and/or the Pacific Crest National Scenic Trail, EXCEPT at Dana Yelverton Shelter within Goat Rocks Wilderness, 36 CFR 261.58e. II Building, maintaining, or using a campfire, 36 CFR 261.52a. A. Within Goat Rocks Wilderness: within Shoe Lake Basin, at Dana Yelverton Shelter or within 1/4 mile of the shoreline of Goat Lake. B. Within Mt. Adams Wilderness: (1) Above the Round-The-Mountain Trail #9 from the Gifford Pinchot National Forest Boundary west to Pacific Crest Trail #2000 and (2) Above Pacific Crest Trail #2000 north to the intersection of Highline Trail #114 and (3) Above trail #114 north and east to the Gifford Pinchot Forest Boundary. C. Within Tatoosh Wilderness within Tatoosh Lakes Basin. D. Within William 0. Douglas Wilderness within 1/4 mile of the shoreline of Dewey Lakes.
    [Show full text]
  • The Boring Volcanic Field of the Portland-Vancouver Area, Oregon and Washington: Tectonically Anomalous Forearc Volcanism in an Urban Setting
    Downloaded from fieldguides.gsapubs.org on April 29, 2010 The Geological Society of America Field Guide 15 2009 The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: Tectonically anomalous forearc volcanism in an urban setting Russell C. Evarts U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA Richard M. Conrey GeoAnalytical Laboratory, School of Earth and Environmental Sciences, Washington State University, Pullman, Washington 99164, USA Robert J. Fleck Jonathan T. Hagstrum U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA ABSTRACT More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These vol- canoes constitute the Boring Volcanic Field, which is centered in the Neogene Port- land Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many mono- genetic volcanic fi elds, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic fi eld have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag- netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr.
    [Show full text]
  • The Transition-Zone Water Filter Model for Global Material Circulation: Where Do We Stand?
    The Transition-Zone Water Filter Model for Global Material Circulation: Where Do We Stand? Shun-ichiro Karato, David Bercovici, Garrett Leahy, Guillaume Richard and Zhicheng Jing Yale University, Department of Geology and Geophysics, New Haven, CT 06520 Materials circulation in Earth’s mantle will be modified if partial melting occurs in the transition zone. Melting in the transition zone is plausible if a significant amount of incompatible components is present in Earth’s mantle. We review the experimental data on melting and melt density and conclude that melting is likely under a broad range of conditions, although conditions for dense melt are more limited. Current geochemical models of Earth suggest the presence of relatively dense incompatible components such as K2O and we conclude that a dense melt is likely formed when the fraction of water is small. Models have been developed to understand the structure of a melt layer and the circulation of melt and vola- tiles. The model suggests a relatively thin melt-rich layer that can be entrained by downwelling current to maintain “steady-state” structure. If deep mantle melting occurs with a small melt fraction, highly incompatible elements including hydro- gen, helium and argon are sequestered without much effect on more compatible elements. This provides a natural explanation for many paradoxes including (i) the apparent discrepancy between whole mantle convection suggested from geophysical observations and the presence of long-lived large reservoirs suggested by geochemical observations, (ii) the helium/heat flow paradox and (iii) the argon paradox. Geophysical observations are reviewed including electrical conductivity and anomalies in seismic wave velocities to test the model and some future direc- tions to refine the model are discussed.
    [Show full text]
  • End of Chapter Question Answers Chapter 4 Review Questions 1
    End of Chapter Question Answers Chapter 4 Review Questions 1. Describe the three processes that are responsible for the formation of magma. Answer: Magmas form from melting within the Earth. There are three types of melting: decompression melting, where magmas form when hot rock from deep in the mantle rises to shallower depths without undergoing cooling (the decrease in pressure facilitates the melting process); flux melting, where melting occurs due to the addition of volatiles such as CO2 and H2O; and heat transfer melting, where melting results from the transfer of heat from a hotter material to a cooler one. 2. Why are there so many different compositions of magma? Does partial melting produce magma with the same composition as the magma source from which it was derived? Answer: Magmas are formed from many different chemical constituents. Partial melting of rock yields magma that is more felsic (silicic) than the magma source because a higher proportion of chemicals needed to form felsic minerals diffuse into the melt at lower temperatures. Magma may incorporate chemicals dissolved from the solid rock through which it rises or from blocks of rock that fall into the magma. This process is called assimilation. Finally, fractional crystallization can modify magma composition as minerals crystallize out of a melt during the cooling process, causing the residual liquid to become progressively more felsic. 3. Why does magma rise from depth to the surface of the Earth? Answer: Magma rises toward the surface of the Earth because it is less dense than solid rock and buoyant relative to its surroundings.
    [Show full text]