Respiratory Distress in the Newborn with Primary Ciliary Dyskinesia

Total Page:16

File Type:pdf, Size:1020Kb

Respiratory Distress in the Newborn with Primary Ciliary Dyskinesia children Review Respiratory Distress in the Newborn with Primary Ciliary Dyskinesia Evans Machogu * and Benjamin Gaston Section of Pediatric Pulmonology, Allergy and Sleep Medicine, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN 46202, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-317-948-7208; Fax: +1-317-944-7247 Abstract: Primary ciliary dyskinesia (PCD) is inherited in a predominantly autosomal recessive manner with over 45 currently identified causative genes. It is a clinically heterogeneous disorder that results in a chronic wet cough and drainage from the paranasal sinuses, chronic otitis media with hearing impairment as well as male infertility. Approximately 50% of patients have situs inversus totalis. Prior to the development of chronic oto-sino-pulmonary symptoms, neonatal respiratory distress occurs in more than 80% of patients as a result of impaired mucociliary clearance and mucus impaction causing atelectasis and lobar collapse. Diagnosis is often delayed due to overlapping symptoms with other causes of neonatal respiratory distress. A work up for PCD should be initiated in the newborn with compatible clinical features, especially those with respiratory distress, consistent radiographic findings or persistent oxygen requirement and/or organ laterality defects Keywords: primary ciliary dyskinesia; neonatal respiratory distress Citation: Machogu, E.; Gaston, B. 1. Neonatal Respiratory Distress Respiratory Distress in the Newborn Respiratory distress develops in about 7% of all newborn infant deliveries [1]. Respi- with Primary Ciliary Dyskinesia. ratory distress syndrome (RDS) develops in 1% of all newborn infant deliveries primarily Children 2021, 8, 153. https://doi. in premature babies due to surfactant deficiency, and its prevalence is inversely associated org/10.3390/children8020153 with gestational age. More than 50% of infants born at <28 weeks’ gestation develop RDS Academic Editors: Roberto W. Dal compared to <5% of those greater than 37 weeks gestation. In 2014, nearly 10 of every 100 Negro and Rita Marie Ryan infants were delivered at <37 completed weeks’ gestation. Neonatal RDS contributes to significant morbidity and mortality and is ranked in the top 10 leading causes of infant Received: 29 December 2020 mortality. It is the leading cause of mortality in premature infants and contributes to 2% of Accepted: 10 February 2021 all causes of infant deaths [2]. Published: 18 February 2021 Clinical symptoms of respiratory distress in neonates include tachypnea, nasal flaring, grunting, retractions and cyanosis. The differential diagnosis for neonatal respiratory Publisher’s Note: MDPI stays neutral distress is broad and includes RDS, transient tachypnoea of the newborn (TTN), neonatal with regard to jurisdictional claims in pneumonia, pulmonary air leak such as pneumothorax and pneumomediastinum, pul- published maps and institutional affil- monary arterial hypertension, congenital heart disease, interstitial lung diseases such as iations. those due to surfactant protein deficiencies and other non-pulmonary systemic disorders such as neonatal sepsis, hypothermia and metabolic acidosis. Primary ciliary dyskinesia (PCD) presents with neonatal respiratory distress in majority of patients and should be considered in the differential diagnosis, especially in term infants with respiratory distress. Copyright: © 2021 by the authors. Given the long-term complications related to chronic airway inflammation and infection, Licensee MDPI, Basel, Switzerland. making the diagnosis in the neonatal period is critical. This article is an open access article distributed under the terms and 2. The Motile Cilia conditions of the Creative Commons Primary ciliary dyskinesia is characterized by impaired function of motile cilia that Attribution (CC BY) license (https:// leads to chronic inflammation and infection in the middle ear, sinuses and lungs among creativecommons.org/licenses/by/ other clinical manifestations. Motile cilia are highly specialized organelles that exist in 4.0/). Children 2021, 8, 153. https://doi.org/10.3390/children8020153 https://www.mdpi.com/journal/children Children 2021, 8, x FOR PEER REVIEW 10 of 12 2. The Motile Cilia Primary ciliary dyskinesia is characterized by impaired function of motile cilia that leads to chronic inflammation and infection in the middle ear, sinuses and lungs among other clinical manifestations. Motile cilia are highly specialized organelles that exist in select cells in the upper and lower respiratory epithelium, the ependymal cells in the cer- ebral ventricles, in the female reproductive tract and in spermatozoa. Each motile cilium consists of a cytoskeleton referred to as an axoneme that is com- posed of nine longitudinal microtubule doublets that surround a central pair of single microtubules in a 9+2 axonemal conformation. The outer microtubules are linked to each Children other2021, 8, 153 through nexin links and have two attachments, the inner and outer dynein2 ofarms 12 (IDA and ODA). The dynein arms are anchored to the central microtubules via radial spokes [3]. The cilium is attached to the cell via a basal body and, in the airway lumen, extends through aselect periciliary cells in theliquid upper (PCL and lower) layer respiratory with the epithelium, tip reaching the ependymal a mucus cellslayer. in theEach ciliated cell in thecerebral respiratory ventricles, epithelium in the female has reproductive approximately tract and in 200 spermatozoa. cilia that beat at a fre- Each motile cilium consists of a cytoskeleton referred to as an axoneme that is com- quency of 5–20 hzposed. The ofcoordinated nine longitudinal and microtubule synchronized doublets bending that surround of the a cilia central produces pair of single wave like movements thatmicrotubules function in to a 9+2 propel axonemal bacteria conformation. and trapped The outer particles microtubules on arethe linked mucus to each layer of the airway surfaceother [4] through. Nodal nexin cilia links are and also have motile two attachments, cilia that theonly inner exist and in outer embryogenesis. dynein arms (IDA and ODA). The dynein arms are anchored to the central microtubules via radial Nodal cilia lack radialspokes spokes [3]. The and cilium central is attached microtubules to the cell via and a basal therefore body and, have in the a airway9+0 axonemal lumen, conformation. Theextends outer through microtubules a periciliary are liquid linked (PCL) to layer each with other the tip and reaching do have a mucus dynein layer. Each arms. These cilia have a ciliatedrotary cellmotion in the that respiratory through epithelium chemical has approximatelygradients help 200 ciliaguide that organ beat at growth a fre- quency of 5–20 hz. The coordinated and synchronized bending of the cilia produces wave and laterality. like movements that function to propel bacteria and trapped particles on the mucus layer Approximatelyof the 70% airway of patients surface [4]. with Nodal PCD cilia are have also motilebiallelic cilia thatmutations only exist in in embryogenesis.a known gene associated with theNodal disease. cilia lack Mutations radial spokes in and the centralse genes microtubules that code and thereforefor the haveproteins a 9+0 axonemalthat make conformation. The outer microtubules are linked to each other and do have dynein arms. up the ciliary axonemeThese ciliaresult have in a rotaryultrastructural motion that through and/or chemical functional gradients abnormalities help guide organ of growth the mo- tile cilia resulting andin the laterality. PCD disorder [5]. However, many of the disease-causing genes do not result from genesApproximately encoding 70% ciliary of patients ultrastructure: with PCD have biallelicadditional mutations genes in a are known involved gene associated with the disease. Mutations in these genes that code for the proteins that make with ciliagenesis, uptrafficking the ciliary of axoneme ciliary result proteins in ultrastructural, ciliary function and/or functional and other abnormalities cellular ofmecha- the nisms not evidentmotile by electron cilia resulting microscopy in the PCD. disorderThese ultrastructural [5]. However, many defects of the disease-causing can be visualized genes on transmission electrondo not result microscopy from genes encoding (TEM) ciliaryand include ultrastructure: ODA additional defects, genes OD areA+ involvedIDA defects, with ciliagenesis, trafficking of ciliary proteins, ciliary function and other cellular mechanisms IDA with microtubularnot evident disorganization by electron microscopy. (MTD) These, radial ultrastructural spoke defects defects or can central be visualized apparatus on defects (Figure 1).transmission However, electron not all microscopy gene mutations (TEM) and result include in ODA obvious defects, ultrastructural ODA+IDA defects, de- fects on TEM. In fact,IDA approximately with microtubular disorganizationa third do not. (MTD), For example, radial spoke normal defects or ciliary central apparatusultrastruc- defects (Figure1). However, not all gene mutations result in obvious ultrastructural defects ture is found in mutationson TEM. In fact,of the approximately CCDC65 a thirdprotein do not. [6] For while example, mutations normal ciliary in genes ultrastructure such as GAS8 result in veryis found subtle in mutations changes of that the CCDC65 are not protein easily [6 ]recognizable while mutations on in genes TEM such [7] as. Further, GAS8 because of chronicresult inflammation
Recommended publications
  • ERS and ATS Diagnostic Guidelines for Primary Ciliary Dyskinesia: Similarities and Differences in Approach to Diagnosis
    EDITORIAL | PRIMARY CILIARY DYSKINESIA ERS and ATS diagnostic guidelines for primary ciliary dyskinesia: similarities and differences in approach to diagnosis Amelia Shoemark 1,2, Sharon Dell3, Adam Shapiro4 and Jane S. Lucas 5,6 Affiliations: 1Dept of Molecular and Cellular Medicine, University of Dundee, Dundee, UK. 2Dept of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Trust, London, UK. 3Division of Respiratory Medicine, Dept of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada. 4McGill University Health Centre Research Institute, Montreal Children’s Hospital, Montreal, QC, Canada. 5Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK. 6University of Southampton Faculty of Medicine, Academic Unit of Clinical and Experimental Medicine, Southampton, UK. Correspondence: Amelia Shoemark, Dept of Molecular and Cellular Medicine, University of Dundee, Dundee, UK. E-mail: [email protected] @ERSpublications ERS and ATS guidelines for PCD diagnosis present different recommendations. Authors from both guidelines clarify similarities, differences and steps required to develop an internationally agreed pathway. TEM or genotyping confirm a diagnosis of PCD. http://bit.ly/2SR7GWm Cite this article as: Shoemark A, Dell S, Shapiro A, et al. ERS and ATS diagnostic guidelines for primary ciliary dyskinesia: similarities and differences in approach to diagnosis. Eur Respir J 2019; 54: 1901066 [https://doi.org/10.1183/13993003.01066-2019]. Introduction Primary ciliary dyskinesia (PCD) is a genetically and clinically heterogeneous disease, usually inherited in an autosomal recessive pattern. Patients with PCD develop recurrent and chronic infections of upper and lower airways, invariably leading to bronchiectasis and impaired lung function.
    [Show full text]
  • Synergistic Genetic Interactions Between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models
    BASIC RESEARCH www.jasn.org Synergistic Genetic Interactions between Pkhd1 and Pkd1 Result in an ARPKD-Like Phenotype in Murine Models Rory J. Olson,1 Katharina Hopp ,2 Harrison Wells,3 Jessica M. Smith,3 Jessica Furtado,1,4 Megan M. Constans,3 Diana L. Escobar,3 Aron M. Geurts,5 Vicente E. Torres,3 and Peter C. Harris 1,3 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD) are genetically distinct, with ADPKD usually caused by the genes PKD1 or PKD2 (encoding polycystin-1 and polycystin-2, respectively) and ARPKD caused by PKHD1 (encoding fibrocys- tin/polyductin [FPC]). Primary cilia have been considered central to PKD pathogenesis due to protein localization and common cystic phenotypes in syndromic ciliopathies, but their relevance is questioned in the simple PKDs. ARPKD’s mild phenotype in murine models versus in humans has hampered investi- gating its pathogenesis. Methods To study the interaction between Pkhd1 and Pkd1, including dosage effects on the phenotype, we generated digenic mouse and rat models and characterized and compared digenic, monogenic, and wild-type phenotypes. Results The genetic interaction was synergistic in both species, with digenic animals exhibiting pheno- types of rapidly progressive PKD and early lethality resembling classic ARPKD. Genetic interaction be- tween Pkhd1 and Pkd1 depended on dosage in the digenic murine models, with no significant enhancement of the monogenic phenotype until a threshold of reduced expression at the second locus was breached.
    [Show full text]
  • Laparoscopic Cholecystectomy in Situs Inversus Totalis: Case Report with Review of Techniques
    CASE REPORT – OPEN ACCESS International Journal of Surgery Case Reports 59 (2019) 208–212 Contents lists available at ScienceDirect International Journal of Surgery Case Reports j ournal homepage: www.casereports.com Laparoscopic cholecystectomy in situs inversus totalis: Case report with review of techniques ∗ Omar AlKhlaiwy, Ahmed Mohammed AlMuhsin , Eman Zakarneh, Mohamed Yassin Taha Department of General Surgery, King Fahd Military Medical Complex, Dhahran, Saudi Arabia a r t i c l e i n f o a b s t r a c t Article history: INTRODUCTION: Situs inversus totalis (SIT) is a congenital disorder in which the visceral organs are mir- Received 18 January 2019 rored from their normal anatomical position. Diagnosis and management of cholelithiasis in patient with Received in revised form 21 March 2019 SIT poses a challenge due to the underlying anatomical variation. Accepted 23 May 2019 PRESENTATION OF CASE: We report a case of a 40-year-old male patient who presented with an intermit- Available online 31 May 2019 tent history of epigastric and left upper quadrant pain for one month. Clinical assessment and radiological investigations confirmed the presence of cholelithiasis with evidence of SIT. The patient underwent elec- Keywords: tive laparoscopic cholecystectomy with no complication and he had an uneventful recovery. Various Situs inversus totalis intraoperative modification has been made to overcome the technical difficulties encountered due to the Laparoscopic cholecystectomy underlying anatomical variation. Case report DISCUSSION: Since the first successful laparoscopic cholecystectomy in patient with SIT performed in 1991, 85 cases have been reporsted in the literature. Surgeons managed to overcome the technical dif- ficulties by adopting various modification in the techniques compared to the conventional laparoscopic cholecystectomy.
    [Show full text]
  • Ciliopathies Gene Panel
    Ciliopathies Gene Panel Contact details Introduction Regional Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Levels 4-6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling analysis of genetically Samples required heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 1:2,000 5ml venous blood in plastic EDTA births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases.
    [Show full text]
  • Systematic Detection of Divergent Brain Protein-Coding Genes in Human Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/658658; this version posted January 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Title: Systematic detection of divergent brain protein-coding genes in human evolution 2 and their roles in cognition 3 Short title: Divergent brain protein-coding genes in human evolution 4 5 Guillaume Dumasa, Simon Malesysa and Thomas Bourgerona 6 a Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris, 7 (75015) France 8 9 10 Corresponding author: 11 Guillaume Dumas 12 Human Genetics and Cognitive Functions 13 Institut Pasteur 14 75015 Paris, France 15 Phone: +33 6 28 25 56 65 16 [email protected] Dumas, Malesys and Bourgeron 1 of 37 bioRxiv preprint doi: https://doi.org/10.1101/658658; this version posted January 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 17 Abstract 18 The human brain differs from that of other primates, but the genetic basis of these differences 19 remains unclear. We investigated the evolutionary pressures acting on almost all human 20 protein-coding genes (N=11,667; 1:1 orthologs in primates) on the basis of their divergence 21 from those of early hominins, such as Neanderthals, and non-human primates.
    [Show full text]
  • Sputum Collection Instructions Step 1 Step 2 Step 3
    Sputum Collection Instructions Sputum is mucus or phlegm coughed up from your lungs (not spit, saliva, or nasopharyngeal discharge). Sputum samples are used to diagnose active tuberculosis (TB) and to monitor the effectiveness of TB treatment. Step 1 • Drink plenty of water the night before collection. Best time of day to collect sputum is when you first wake. • Do not eat, drink or smoke before coughing up sputum from the lungs. • Rinse (do not swallow) the mouth with water before sputum is collected to minimize residual food particles, mouthwash, or oral drugs that might contaminate the specimen. Step 2 • Go away from other people either outside or beside an open window before collecting the specimen. This helps protect other people from TB germs when you cough. • Take the plastic tube with you. The collection tube is very clean. Do not open it until you are ready to use it. Carefully open the plastic tube. Step 3 • Take several deep breaths. • Cough hard from deep inside the chest three times to bring sputum up from your lungs. • Spit the sputum into the tube carefully. Try not to touch the rim of the container. • Repeat until you have 1 – 2 tablespoons of sputum in the tube. • Replace the cap tightly on the plastic tube. • Wash and dry the outside of the tube. • Write date of collection in the proper box on the lab slip. Step 4 • Place the primary specimen container (usually a conical centrifuge tube) in the clear plastic baggie that has the biohazard symbol imprint. • Place the white absorbent sheet in the plastic baggie.
    [Show full text]
  • Perinatal/Neonatal Case Presentation
    Perinatal/Neonatal Case Presentation &&&&&&&&&&&&&& Urinary Tract Infection With Trichomonas vaginalis in a Premature Newborn Infant and the Development of Chronic Lung Disease David J. Hoffman, MD vaginal bleeding with suspected abruption resulted in delivery of Gerard D. Brown, DO the infant by Cesarean section. The Apgar scores were 1, 5, and 9 Frederick H. Wirth, MD at 1, 5, and 10 minutes of life, respectively. Betsy S. Gebert, CRNP After delivery, the infant was managed with mechanical Cathy L. Bailey, MS, CRNP ventilation with pressure support and volume guarantee for Endla K. Anday, MD respiratory distress syndrome. She received exogenous surfactant We report a case of a low-birth-weight infant with an infection of the urinary tract with Trichomonas vaginalis, who later developed cystic chronic lung disease suggestive of Wilson-Mikity syndrome. Although she had mild respiratory distress syndrome at birth, the extent of the chronic lung disease was out of proportion to the initial illness. We speculate that maternal infection with this organism may have resulted in an inflammatory response that led to its development. Journal of Perinatology (2003) 23, 59 – 61 doi:10.1038/sj.jp.7210819 CASE PRESENTATION A 956-g, appropriate-for-gestational-age, African–American female was delivered by Cesarean section following 27 5/7 weeks of gestation in breech presentation after a period of advanced cervical dilatation and uterine contractions. Her mother was a 20-year-old gravida 5, para 2022 woman whose prenatal laboratory data were significant for vaginal colonization with Streptococcus agalactiae, treatment for Chlamydia trachomatis, and a history of cocaine and marijuana usage confirmed by urine toxicology.
    [Show full text]
  • Isolated Levocardia with Situs Inversus Without Cardiac Abnormality in Fetus: Prenatal Diagnosis and Management
    A L J O A T U N R I N R A E L P Case Report P L E R A Perinatal Journal 2020;28(1):48–51 I N N R A U T A L J O ©2020 Perinatal Medicine Foundation Isolated levocardia with situs inversus without cardiac abnormality in fetus: prenatal diagnosis and management Mucize Eriç ÖzdemirİD , Oya Demirci İD Department of Perinatology, Zeynep Kamil Maternity and Children’s Diseases Training and Research Hospital., Health Sciences University, Istanbul, Turkey Abstract Özet: Kardiyak anomalisi olmayan fetüste situs inversuslu izole levokardi: Prenatal tan› ve yönetim Objective: Isolated levocardia is a situs abnormality that the heart is Amaç: ‹zole levokardi, kalbin normal levo pozisyonunda oldu¤u in the normal levo position, but the abdominal viscera are in dextro fakat abdominal iç organlar›n dekstro pozisyonunda oldu¤u bir si- position. Most cases are accompanied by structural heart anomalies. tus anomalisidir. Ço¤u olguda yap›sal kalp anomalileri de efllik et- In this case, we aimed to present a fetus with isolated levocardia with- mektedir. Çal›flmam›zda, kardiyak anomalisi olmayan izole levo- out cardiac abnormality. kardili bir fetüsü sunmay› amaçlad›k. Case: The mother was referred to our clinic with a suspicion of fetal Olgu: Olgumuz, 22. gebelik haftas›nda fetal dekstrokardi flüphe- dextrocardia at 22 weeks of gestation. When detailed examination was siyle klini¤imize sevk edildi. Planlanan detayl› ultrason muayene- planned by ultrasonography isolated levocardia was detected in fetus. sinde, fetüste izole levokardi tespit edildi. Fetal ekokardiyografide There were no cardiac abnormalities in fetal echocardiography. Fetus hiçbir kardiyak anomali görülmedi.
    [Show full text]
  • Coronary Angiography in a Patient with Situs Inversus and Dextrocardia
    Case Reports Olgu Sunumlar› 455 Coronary angiography in a patient with situs inversus and dextrocardia Situs inversuslu¸ ve dekstrokardili bir hastada koroner anjiyografi Mehmet Çilingiro¤lu, Mohammad-Abdul Waheed, Nuri Akkufl Department of Interventional Cardiology, Faculty of Medicine, University of Cincinnati, Cincinnati, Ohio, USA Introduction Dextrocardia occurs rarely, with a frequency estimated at 1:10,000 (1). There is scant information available to the angiographer faced with performing catheterization in a patient with dextrocardia. We report successful coronary angiography in a patient with dextrocardia associated with situs inversus totalis. Catheterization in our patient was performed without difficulty using standard techniques. Case Report A 50-year old white male with known dextrocardia presented with severe substernal chest pains. His symptoms were reproducible with mild to moderate exertion. Physical examination was unremarkable except for findings consistent with dextrocardia. Chest X ray was remarkable for dextrocardia and right-sided stomach bubble. Electrocardiogram, with the properly reversed leads for dextrocardia, showed left ventricular hypertrophy. Two-dimensional echocardiogram Figure 1. Left ventricular angiogram taken in LAO view showed a left-sided liver and dextrocardia without other abnormalities. LAO-left anterior oblique Exercise testing using modified Bruce protocol reproduced his symptoms within the first stage of the test. Cardiac catheterization was performed from the right femoral artery. Catheters were passed using mirror-image angiographic angles. A 6-French angulated pigtail catheter was passed into left ventricle and a left ventriculogram was obtained using 30-degree left anterior oblique imaging (Fig. 1). Selective coronary angiogram was performed using left and right 6-French 4 cm Judkins diagnostic catheters (400 right anterior oblique) (Fig.
    [Show full text]
  • Cldn19 Clic2 Clmp Cln3
    NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9
    [Show full text]
  • Chest Pain in Pediatrics
    PEDIATRIC CARDIOLOGY 0031-3955/99 $8.00 + .OO CHEST PAIN IN PEDIATRICS Keith C. Kocis, MD, MS Chest pain is an alarming complaint in children, leading an often frightened and concerned family to a pediatrician or emergency room and commonly to a subsequent referral to a pediatric cardiologist. Because of the well-known associ- ation of chest pain with significant cardiovascular disease and sudden death in adult patients, medical personnel commonly share heightened concerns over pediatric patients presenting with chest pain. Although the differential diagnosis of chest pain is exhaustive, chest pain in children is least likely to be cardiac in origin. Organ systems responsible for causing chest pain in children include*: Idiopathic (12%-85%) Musculoskeletal (15%-31%) Pulmonary (12%-21%) Other (4%-21%) Psychiatric (5%-17%) Gastrointestinal (4'/0-7%) Cardiac (4%4%) Furthermore, chest pain in the pediatric population is rareZy associated with life-threatening disease; however, when present, prompt recognition, diagnostic evaluation, and intervention are necessary to prevent an adverse outcome. This article presents a comprehensive list of differential diagnostic possibilities of chest pain in pediatric patients, discusses the common causes in further detail, and outlines a rational diagnostic evaluation and treatment plan. Chest pain, a common complaint of pediatric patients, is often idiopathic in etiology and commonly chronic in nature. In one study,67 chest pain accounted for 6 in 1000 visits to an urban pediatric emergency room. In addition, chest pain is the second most common reason for referral to pediatric cardiologist^.^, 23, 78 Chest pain is found equally in male and female patients, with an average *References 13, 17, 23, 27, 32, 35, 44, 48, 49, 63-67, 74, and 78.
    [Show full text]
  • TCTE1 Is a Conserved Component of the Dynein Regulatory Complex and Is Required for Motility and Metabolism in Mouse Spermatozoa
    TCTE1 is a conserved component of the dynein PNAS PLUS regulatory complex and is required for motility and metabolism in mouse spermatozoa Julio M. Castanedaa,b,1, Rong Huac,d,1, Haruhiko Miyatab, Asami Ojib,e, Yueshuai Guoc,d, Yiwei Chengc,d, Tao Zhouc,d, Xuejiang Guoc,d, Yiqiang Cuic,d, Bin Shenc, Zibin Wangc, Zhibin Huc,f, Zuomin Zhouc,d, Jiahao Shac,d, Renata Prunskaite-Hyyrylainena,g,h, Zhifeng Yua,i, Ramiro Ramirez-Solisj, Masahito Ikawab,e,k,2, Martin M. Matzuka,g,i,l,m,n,2, and Mingxi Liuc,d,2 aDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; bResearch Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871, Japan; cState Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, People’s Republic of China; dDepartment of Histology and Embryology, Nanjing Medical University, Nanjing 210029, People’s Republic of China; eGraduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871, Japan; fAnimal Core Facility of Nanjing Medical University, Nanjing 210029, People’s Republic of China; gCenter for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; hFaculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; iCenter for Drug Discovery, Baylor College of Medicine, Houston, TX 77030; jWellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom; kThe Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 1088639, Japan; lDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; mDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; and nDepartment of Pharmacology, Baylor College of Medicine, Houston, TX 77030 Contributed by Martin M.
    [Show full text]