Scholarly Studies Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phrantela Iredale, 1943
Phrantela Iredale, 1943 Diagnostic features Shell pupiform to conic to trochiform, small to medium size for family (between about 1.7 and 7.0 mm in maximum dimension). Periostracum thin to well developed, colourless to dark brown. Teleoconch sculpture usually of faint, prosocline growth lines, weak spiral threads sometimes present; periphery of last whorl usually evenly rounded, sometimes subangled, rarely sharply angled. Aperture ovate, inner lip thin and narrow, columellar swelling typically absent (weakly developed in one taxon). Outer lip thin, slightly opisthocline to prosocline. Umbilicus wide to small, or closed and represented by chink. Operculum oval, thin, transparent pale yellow, simple, with eccentric nucleus. Bursa copulatrix in the female genital system reaches to the posterior pallial wall [or (rarely) almost reaches it or extends into the pallial roof] and has the duct emerging from the ventro-posterior comer. This is one of the main anatomical features that distinguishes this taxon from Beddomeia. The pallial genital ducts in both males and females are thinner in section than in Beddomeia and the female genital opening is typically slit-like, rather than a short, pore-like opening. Generally a posterior pallial tentacle is present. Classification Class Gastropoda Infraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Tateidae Genus Phrantela redale, 1943 Type species: Potamopyrgus (?) marginata Petterd, 1889 by original designation. Original reference: redale, T. (1943). A basic list of the fresh water Mollusca of Australia. The Australian Zoologist 10: 188ĕ230. Type locality: A small trickling stream near Heazlewood River, Tasmania Biology and ecology n rivers, streams and seeps, and under small waterfalls. -
North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886
THE NAUTILUS 101(1):25-32, 1987 Page 25 . North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886 Robert Hershler Fred G. Thompson Department of Invertebrate Zoology Florida State Museum National Museum of Natural History University of Florida Smithsonian Institution Gainesville, FL 32611, USA Washington, DC 20560, USA ABSTRACT scribed) in the Southwest. Taylor (1966) placed Tryonia in the Littoridininae Taylor, 1966 on the basis of its Anatomical details are provided for the type species of Tryonia turreted shell and glandular penial lobes. It is clear from Stimpson, 1865, Pyrgulopsis Call and Pilsbry, 1886, Fonteli- cella Gregg and Taylor, 1965, and Microamnicola Gregg and the initial descriptions and subsequent studies illustrat- Taylor, 1965, in an effort to resolve the systematic relationships ing the penis (Russell, 1971: fig. 4; Taylor, 1983:16-25) of these taxa, which represent most of the generic-level groups that Fontelicella and its subgenera, Natricola Gregg and of Hydrobiidae in southwestern North America. Based on these Taylor, 1965 and Microamnicola Gregg and Taylor, 1965 and other data presented either herein or in the literature, belong to the Nymphophilinae Taylor, 1966 (see Hyalopyrgus Thompson, 1968 is assigned to Tryonia; and Thompson, 1979). While the type species of Pyrgulop- Fontelicella, Microamnicola, Nat ricola Gregg and Taylor, 1965, sis, P. nevadensis (Stearns, 1883), has not received an- Marstonia F. C. Baker, 1926, and Mexistiobia Hershler, 1985 atomical study, the penes of several eastern species have are allocated to Pyrgulopsis. been examined by Thompson (1977), who suggested that The ranges of both Tryonia and Pyrgulopsis include parts the genus may be a nymphophiline. -
Beddomeia Trochiformis Ponder & Clark, 1993
Beddomeia trochiformis Ponder & Clark, 1993 Diagnostic features Species in the B. tasmanica group have small shells (length 1.2-2.8 mm) with a depressed spire and open umbilicus. The penis is simple. Beddomeia trochiformis (adult size 2.2-2.7 mm) Distribution of Beddomeia trochiformis. This species differs from other members of the group in possessing a radula with a moderately indented dorsal edge of the central teeth, the latter also with teeth steeper outer edges (40°, compared with 45°) and ratio of lateral teeth cutting edge to shaft 0.5 (~0.43 in other taxa); mantle cavity with fewer ctenidial filaments (15-19); female genital system with initial U-bend of coiled oviduct orientated obliquely backwards (not dorso-ventral). Classification Beddomeia trochiformis Ponder & Clark, 1993 Class Gastropoda I nfraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Tateidae Genus Beddomeia Petterd, 1889 Original name: Beddomeia trochiformis Ponder & Clark, 1993 in Ponder, W.F., Clark, G.A., Miller, A.C. & Toluzzi, A. (1993). On a major radiation of freshwater snails in Tasmania and eastern Victoria: a preliminary overview of the Beddomeia group (Mollusca: Gastropoda: Hydrobiidae). I nvertebrate Taxonomy 7: 501-750. Type locality: Bowry Creek, tributary of Savage River, side road off Corinna Road, Tasmania. Biology and ecology Under stones in streams. The white egg capsules are laid on the undersides of stones and are like those of other species of Beddomeia - dome-shaped, with broad attachment base, covered with minute, mainly white sand grains and other fragments and containing a single egg. Development direct. Distribution This species and B. -
Molecular Phylogeny and Biogeography of Spring-Associated Hydrobiid Snails of the Great Artesian Basin, Australia
Molecular Phylogenetics and Evolution 34 (2005) 545–556 www.elsevier.com/locate/ympev Molecular phylogeny and biogeography of spring-associated hydrobiid snails of the Great Artesian Basin, Australia Kathryn E. Pereza,¤, Winston F. Ponderb, Donald J. Colganb, Stephanie A. Clarkc,1, Charles Lydearda a Department of Biological Sciences, Biodiversity and Systematics, University of Alabama, Box 870345, Tuscaloosa, AL 35487-0345, USA b Australian Museum, Sydney, NSW 2010, Australia c Centre for Biostructural and Biomolecular Research, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797 Penrith South DC, NSW 1797, Australia Received 6 July 2004; revised 15 November 2004 Available online 6 January 2005 Abstract The Great Artesian Basin (GAB) of Australia underlies some of the driest parts of South Australia and Queensland and feeds numerous freshwater springs. Prominent and endangered components of the GAB spring community are snails of the family Hydro- biidae. This paper examines the evolutionary relationships of the entire hydrobiid fauna associated with the GAB, and includes appropriate non-GAB species to place the GAB fauna in a broader phylogenetic context. The Queensland genus Jardinella is a focus of this paper, providing a Wne scale examination of relationships between spring supergroups in the northeastern regions of the GAB. Maximum parsimony and Bayesian analyses performed on 16S, CO1, and combined sequence data from 40 hydrobiid taxa found four major clades of Australian taxa. The analysis revealed that at least three separate colonization events of the GAB spring fauna have occurred. Two of these are represented by considerable radiations, (1) Jardinella to the north and east and (2) Caldicochlea, Fonscochlea, and possibly Trochidrobia in South Australia. -
Phrantela Marginata (Petterd, 1889)
Phrantela marginata (Petterd, 1889) Diagnostic features The shell of P. marginata is narrower than nearly all other species and has a relativelysmaller last whorl than any other species.This species is generally similar to P. annamurrayae and P. conica [1] [2] which all have a long, narrow penis with a narrow base and an undulating penial duct. Phrantela marginata (adult size 3.2-4 mm) Distribution of Phrantela marginata. Classification Phrantela marginata (Petterd, 1889) Class Gastropoda I nfraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Tateidae Genus Phrantela redale, 1943 Original name: Potamopyrgus (?) marginata Petterd, 1889. Petterd, W. F. (1889). Contributions for a systematic catalogue of the aquatic shells of Tasmania. Papers and Proceedings of the Royal Society of Tasmania 1888, 60-83. Type locality: A small stream near Heazlewood River, Tasmania. Biology and ecology This species lives mainly amongst aquatic vegetation, it is also found in root mats in the bed of a small trickle. Egg capsules unknown but probably like those of another species of Phrantela; small, with single embryo, and covered in coarse sand grains. Development direct. Distribution This species is known from a few localities in a small area along Thirteen Mile Creek, a tributary of the Heazlewood River, northwest Tasmania. Notes This species is on the Tasmanian Threatened species list of nvertebrate Animals as Rare (small population at risk). Further reading Petterd, W. F. (1889). Contributions for a systematic catalogue of the aquatic shells of Tasmania. Papers and Proceedings of the Royal Society of Tasmania 1888: 60-83. Ponder, W. F., Clark, G. A., Miller, A. -
A Review of Natural Values Within the 2013 Extension to the Tasmanian Wilderness World Heritage Area
A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area Nature Conservation Report 2017/6 Department of Primary Industries, Parks, Water and Environment Hobart A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area Jayne Balmer, Jason Bradbury, Karen Richards, Tim Rudman, Micah Visoiu, Shannon Troy and Naomi Lawrence. Department of Primary Industries, Parks, Water and Environment Nature Conservation Report 2017/6, September 2017 This report was prepared under the direction of the Department of Primary Industries, Parks, Water and Environment (World Heritage Program). Australian Government funds were contributed to the project through the World Heritage Area program. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Tasmanian or Australian Governments. ISSN 1441-0680 Copyright 2017 Crown in right of State of Tasmania Apart from fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright act, no part may be reproduced by any means without permission from the Department of Primary Industries, Parks, Water and Environment. Published by Natural Values Conservation Branch Department of Primary Industries, Parks, Water and Environment GPO Box 44 Hobart, Tasmania, 7001 Front Cover Photograph of Eucalyptus regnans tall forest in the Styx Valley: Rob Blakers Cite as: Balmer, J., Bradbury, J., Richards, K., Rudman, T., Visoiu, M., Troy, S. and Lawrence, N. 2017. A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area. Nature Conservation Report 2017/6, Department of Primary Industries, Parks, Water and Environment, Hobart. -
Malacologica
FOLIA Folia Malacol. 24(3): 111–177 MALACOLOGICA ISSN 1506-7629 The Association of Polish Malacologists Faculty of Biology, Adam Mickiewicz University Bogucki Wydawnictwo Naukowe Poznań, September 2016 http://dx.doi.org/10.12657/folmal.024.008 PATTERNS OF SPATIO-TEMPORAL VARIATION IN LAND SNAILS: A MULTI-SCALE APPROACH SERGEY S. KRAMARENKO Mykolaiv National Agrarian University, Paryzka Komuna St. 9, Mykolaiv, 54020, Ukraine (e-mail: [email protected]) ABSTRACT: Mechanisms which govern patterns of intra-specific vatiation in land snails were traced within areas of different size, using Brephulopsis cylindrica (Menke), Chondrula tridens (O. F. Müller), Xeropicta derbentina (Krynicki), X. krynickii (Krynicki), Cepaea vindobonensis (Férussac) and Helix albescens Rossmässler as examples. Morphometric shell variation, colour and banding pattern polymorphism as well as genetic polymorphism (allozymes and RAPD markers) were studied. The results and literature data were analysed in an attempt to link patterns to processes, with the following conclusions. Formation of patterns of intra- specific variation (initial processes of microevolution) takes different course at three different spatial scales. At micro-geographical scale the dominant role is played by eco-demographic characteristics of the species in the context of fluctuating environmental factors. At meso-geographical scale a special part is played by stochastic population-genetic processes. At macro-geographical scale more or less distinct clinal patterns are associated with basic macroclimatic -
The Freshwater Snails (Mollusca: Gastropoda) of Mexico: Updated Checklist, Endemicity Hotspots, Threats and Conservation Status
Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 91 (2020): e912909 Taxonomy and systematics The freshwater snails (Mollusca: Gastropoda) of Mexico: updated checklist, endemicity hotspots, threats and conservation status Los caracoles dulceacuícolas (Mollusca: Gastropoda) de México: listado actualizado, hotspots de endemicidad, amenazas y estado de conservación Alexander Czaja a, *, Iris Gabriela Meza-Sánchez a, José Luis Estrada-Rodríguez a, Ulises Romero-Méndez a, Jorge Sáenz-Mata a, Verónica Ávila-Rodríguez a, Jorge Luis Becerra-López a, Josué Raymundo Estrada-Arellano a, Gabriel Fernando Cardoza-Martínez a, David Ramiro Aguillón-Gutiérrez a, Diana Gabriela Cordero-Torres a, Alan P. Covich b a Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av.Universidad s/n, Fraccionamiento Filadelfia, 35010 Gómez Palacio, Durango, Mexico b Institute of Ecology, Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602-2202, USA *Corresponding author: [email protected] (A. Czaja) Received: 14 April 2019; accepted: 6 November 2019 Abstract We present an updated checklist of native Mexican freshwater gastropods with data on their general distribution, hotspots of endemicity, threats, and for the first time, their estimated conservation status. The list contains 193 species, representing 13 families and 61 genera. Of these, 103 species (53.4%) and 12 genera are endemic to Mexico, and 75 species are considered local endemics because of their restricted distribution to very small areas. Using NatureServe Ranking, 9 species (4.7%) are considered possibly or presumably extinct, 40 (20.7%) are critically imperiled, 30 (15.5%) are imperiled, 15 (7.8%) are vulnerable and only 64 (33.2%) are currently stable. -
Phrantela Kutikina Ponder & Clark, 1993
Phrantela kutikina Ponder & Clark, 1993 Diagnostic features This conical species contrasts anatomically with P. daveyensis, the same differences also applying for P. richardsoni except that the bursa in P. richardsoni extends to the posterior pallial wall. Phrantela kutikina (adult size 2.5-3.2 mm) Distribution of Phrantela kutikina. Classification Phrantela kutikina Ponder & Clark, 1993 Class Gastropoda I nfraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Tateidae Genus Phrantela redale, 1943 Original name: Phrantela kutikina Ponder & Clark, 1993 in Ponder, W. F., Clark, G. A., Miller, A. C & Toluzzi, A. (1993). On a major radiation of freshwater snails in Tasmania and eastern Victoria - a preliminary overview of the Beddomeia group (Mollusca: Gastropoda: Hydrobiidae). I nvertebrate Taxonomy, 7: 501- 750. Type locality: Small creek immediately upstream from Kutikina Cave, Franklin River, Tasmania (42°31'42" S, 145°46' E). Biology and ecology n leaf litter and silt. Egg capsules unknown but probably like those of another species of Phrantela; small, with single embryo, and covered in coarse sand grains. Development direct. Distribution The type of this species was found in a stream close to Kutikina Cave and in the stream flowing from the cave in western Tasmania. t occurred with Phrantela umbilicata in the type locality. P. kutikina occurs in various streams flowing into the Gordon and Franklin Rivers. Further reading Ponder, W. F., Clark, G. A., Miller, A. C. & Toluzzi, A. (1993). On a major radiation of freshwater snails in Tasmania and eastern Victoria: a preliminary overview of the Beddomeia group (Mollusca: Gastropoda: Hydrobiidae). I nvertebrate Taxonomy 7: 501-750. -
Copyright by Laura Elizabeth Dugan 2014
Copyright by Laura Elizabeth Dugan 2014 The Dissertation Committee for Laura Elizabeth Dugan Certifies that this is the approved version of the following dissertation: Invasion Risk and Impacts of a Popular Aquarium Trade Fish and the Implications for Policy and Conservation Management Committee: Dean Hendrickson, Supervisor Camille Parmesan, Co-Supervisor Hans Hofmann Mathew Leibold Mary Poteet Invasion Risk and Impacts of a Popular Aquarium Trade Fish and the Implications for Policy and Conservation Management by Laura Elizabeth Dugan, B.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May 2014 Dedication This dissertation is dedicated to my family, fellow pursuers of knowledge, who have always encouraged, motivated and supported me and my academic interests. I could not have come this far without you. "The idea of wilderness needs no defense. It only needs more defenders." Edward Abbey Acknowledgements I would like to thank my advisor Dean Hendrickson for the opportunity to work on this interesting topic in such a beautiful place. I would also like to thank my advisors Dean Hendrickson and Camille Parmesan, my committee members Hans Hofmann, Mathew Leibold and Mary Poteet and the Parmesan lab members for all their support and invaluable input on this work. In addition, without the assistance of my colleagues in Cuatro Ciénegas as well as several undergraduate students -
Threatened Species Protection Act 1995
Contents (1995 - 83) Threatened Species Protection Act 1995 Long Title Part 1 - Preliminary 1. Short title 2. Commencement 3. Interpretation 4. Objectives to be furthered 5. Administration of public authorities 6. Crown to be bound Part 2 - Administration 7. Functions of Secretary 8. Scientific Advisory Committee 9. Community Review Committee Part 3 - Conservation of Threatened Species Division 1 - Threatened species strategy 10. Threatened species strategy 11. Procedure for making strategy 12. Amendment and revocation of strategy Division 2 - Listing of threatened flora and fauna 13. Lists of threatened flora and fauna 14. Notification by Minister and right of appeal 15. Eligibility for listing 16. Nomination for listing 17. Consideration of nomination by SAC 18. Preliminary recommendation by SAC 19. Final recommendation by SAC 20. CRC to be advised of public notification 21. Minister's decision Division 3 - Listing statements 22. Listing statements Division 4 - Critical habitats 23. Determination of critical habitats 24. Amendment and revocation of determinations Division 5 - Recovery plans for threatened species 25. Recovery plans 26. Amendment and revocation of recovery plans Division 6 - Threat abatement plans 27. Threat abatement plans 28. Amendment and revocation of threat abatement plans Division 7 - Land management plans and agreements 29. Land management plans 30. Agreements arising from land management plans 31. Public authority management agreements Part 4 - Interim Protection Orders 32. Power of Minister to make interim protection orders 33. Terms of interim protection orders 34. Notice of order to landholder 35. Recommendation by Resource Planning and Development Commission 36. Notice to comply 37. Notification to other Ministers 38. Limitation of licences, permits, &c., issued under other Acts 39. -
Assembly of a Micro-Hotspot of Caenogastropod Endemism in the Southern Nevada Desert, with a Description of a New Species of Tryonia (Truncatelloidea, Cochliopidae)
A peer-reviewed open-access journal ZooKeys Assembly492: 107–122 of (2015)a micro-hotspot of caenogastropod endemism in the southern Nevada desert... 107 doi: 10.3897/zookeys.492.9246 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Assembly of a micro-hotspot of caenogastropod endemism in the southern Nevada desert, with a description of a new species of Tryonia (Truncatelloidea, Cochliopidae) Robert Hershler1, Hsiu-Ping Liu2, Jeffrey S. Simpson2 1 Department of Invertebrate Zoology, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013- 7012, USA 2 Department of Biology, Metropolitan State University of Denver, Denver, CO 80217, USA Corresponding author: Robert Hershler ([email protected]) Academic editor: T. Backeljau | Received 13 January 2015 | Accepted 16 March 2015 | Published 30 March 2015 http://zoobank.org/8C3C5DD3-7424-49EC-9444-E07917D82DBE Citation: Hershler R, Liu H-P, Simpson JS (2015) Assembly of a micro-hotspot of caenogastropod endemism in the southern Nevada desert, with a description of a new species of Tryonia (Truncatelloidea, Cochliopidae). ZooKeys 492: 107–122. doi: 10.3897/zookeys.492.9246 Abstract Newly obtained and previously published sequences of the cytochrome c oxidase subunit I (COI) gene were analyzed to examine the biogeographic assembly of the caenogastropod fauna (belonging to the fami- lies Assimineidae, Cochliopidae, and Hydrobiidae) of an isolated spring along the lower Colorado River in southern Nevada (Blue Point Spring). Based on available COI clock calibrations, the three lineages that comprise this fauna are 2.78–1.42 million years old, which is roughly coeval or slightly younger than the age of Blue Point Spring (inferred from local fossil spring deposits).