Russula Ryukokuensis Sp. Nov., an Outstanding Species of the Genus Russula (Russulaceae) Having Minute Basidiomata from Japan

Total Page:16

File Type:pdf, Size:1020Kb

Russula Ryukokuensis Sp. Nov., an Outstanding Species of the Genus Russula (Russulaceae) Having Minute Basidiomata from Japan Bull. Natl. Mus. Nat. Sci., Ser. B, 47(1), pp. 1–12, February 22, 2021 Russula ryukokuensis sp. nov., an Outstanding Species of the Genus Russula (Russulaceae) Having Minute Basidiomata from Japan Yoshito Shimono1*,2, Taiga Kasuya3*,** and Kentaro Hosaka4 1 Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-machi, Tsu, Mie 514–8507, Japan 2 Osaka Museum of Nature History, 1–23 Nagai-koen, Sumiyoshi-ku, Osaka, Osaka 546–0034, Japan 3 Department of Biology, Keio University, 4–1–1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223–8521, Japan 4 Department of Botany, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan *Both authors contributed equally to this work. **E-mail: [email protected] (Received 23 September 2020; accepted 23 December 2020) Abstract. Russula ryukokuensis, a new species of Russula is described from mixed broad-leaved trees and coniferous forests in Japan based on macro- and microscopic features with molecular data. Russula ryukokuensis is characterized by small-sized, orange to reddish basidiomata, convex to plano-convex pileus with shallowly tuberculate to sulcate margin, and whitish to slightly light orange lamellae with strongly acrid taste. Detailed macro- and micro-morphological descriptions of R. ryukokuensis are given, and its taxonomic and phylogenetic positions were confirmed using DNA sequences. Morphological observations and molecular phylogenetic analysis revealed that this species belongs to the subsection Emeticinae of the section Russula in the subgenus Russula. Keywords : Agaricomycetes, ITS and LSU sequences, mycobiota, phylogeny, Russulales, taxon- omy. Introduction (Atri et al., 1993, 1997; Buyck and Horak, 1999; Miller and Buyck, 2002; Chou and Wang, 2005; Species of the genus Russula Pers. are widely Das and Sharma, 2005; Buyck et al., 2008, 2018; distributed in diverse forests from the tropical to Das et al., 2010, 2013a, 2013b, 2014, 2017; the frigid zones of all continents except Antarc- Shin, 2010; Dutta et al., 2015; Li et al., 2015; tica and are well-known as ectomycorrhizal fungi Ghosh et al., 2016, 2017; Melera et al., 2016; (Kirk et al., 2008). Currently, ca. 100 species of Jabeen et al., 2017). However, species diversity the genus Russula are recorded in Japan (Imazeki of Japanese Russula inferred from molecular and Hongo, 1989; Ikeda, 2013). Recently, num- phylogeny is still not comprehensively studied. bers of molecular studies have been conducted During recent taxonomic and phylogenetic stud- using internal transcribed spacer (ITS) region ies on Japanese Russula (Shimono et al., 2004, and nuclear large subunit (LSU) gene of ribo- 2014, 2018), we collected remarkably small somal DNA sequences to determine taxonomic (4–10 mm across), orange to reddish basidiomata and phylogenetic positions of Russula species with strongly acrid taste of the genus in central to western parts of Honshu. © 2021 National Museum of Nature and Science The aim of this study was to clarify the taxo- 2 Yoshito Shimono et al. nomic and phylogenetic positions of this out- cation of Russula followed Romagnesi (1985, standing Russula species having minute basidi- 1987), with some references to Bon (1987, omata. In this paper, we describe this Russula 1988), Singer (1986), Sarnari (1998, 2005) and species as a new to science based on morphologi- Buyck et al. (2018). Color annotations of fresh cal observations and molecular phylogenetic materials were determined based on Kornerup analysis using rDNA ITS and LSU sequences. and Wanscher (1978). Fresh basidiomata of each specimen were dried using a food dehydrator (Snackmaster Express FD-61, Nesco/American Materials and Methods Harvest, WI, USA) under 46°C. Preparation of specimens We collected Russula specimens having Micro-morphological observations orange to reddish, minute basidiomata with acrid Microscopic features of specimens were taste in Shiga, Mie, Hyogo and Hiroshima Pre- observed from dried material mounted in 10% fectures, central to western Honshu of Japan dur- KOH and Melzer’s reagent, using an Olympus ing our fieldwork from 2009 to 2020. Addition- BX-53 light microscope (Olympus, Tokyo, ally, for molecular phylogenetic analysis, Japan) under Nomarski interference contrast. specimens of R. decolorans (Fr.) Fr., R. kan- More than 20 randomly selected basidiospores saiensis Hongo and R. omiensis Hongo collected were measured under a light microscope at from our fieldwork in Japan were also investi- 1000× magnification. For basidiospores, the gated (Table 1). Specimens examined in this factor Q (mean of quotient of length and width in study were deposited at the herbaria of the any one spore) was also calculated to indicate National Museum of Nature and Science (TNS), spore shape. In addition, the surface features of Tsukuba, Japan and the Osaka Museum of Natu- basidiospores were observed by scanning elec- ral History (OSA), Osaka, Japan. tron microscopy (SEM). For SEM, a small por- tion from pileus was put onto double-sided adhe- Macro-morphological Observations sive tape on a specimen holder and coated with Each specimen of Russula was photographed, platinum-palladium using a JFC-1600 Ion Sput- and macroscopic observation was conducted in ter Coater (JEOL, Tokyo, Japan). Specimens fresh state. Morphologies of the fruiting bodies were examined with a JSM-6480LV SEM were recorded according to Ikeda (2013), Ima- (JEOL) operating at 20 kV. zeki and Hongo (1989) and Shimono et al. (2014, 2018). In this paper, infrageneric classifi- Table 1. List of sequences newly generated from Japanese specimens of Russula Sampling Voucher GenBank accession number* Species Collector Locality date number ITS LSU Russula decolorans 2002 Aug. 24 Y. Goto Japan: Yamanashi OSA-MY-9216 Not obtained LC269001 R. kansaiensis 2011 Nov. 9 T. Kasuya Japan: Ibaraki TNS-F-43739 MN989318 MN989319 R. omiensis 1996 Apr. 20 Y. Shimono Japan: Kyoto OSA-MY-1763 LC269002 LC269002 R. omiensis 2013 Mar. 24 Y. Shimono Japan: Kyoto OSA-MY-9217 LC269003 LC269003 R. omiensis 2013 Mar. 24 Y. Shimono Japan: Kyoto OSA-MY-9218 LC269004 LC269004 R. omiensis 2013 Mar. 24 Y. Shimono Japan: Kyoto OSA-MY-9219 LC269005 LC269005 R. ryukokuensis 2009 Oct. 11 Y. Kotera Japan: Shiga OSA-MY-9225 LC269011 LC269011 R. ryukokuensis 2013 Jul. 20 T. Ueda Japan: Shiga TNS-F-70424 MH037291 MH037293 R. ryukokuensis 2016 Sep. 19 T. Kasuya Japan: Shiga TNS-F-70425** MH037292 MH037294 *Identical accession numbers for ITS and LSU indicate a single rDNA sequence containing both regions. ** Holotype Russula ryukokuensis sp. nov. from Japan 3 DNA extraction, PCR, and sequencing ITS and LSU datasets. Phylogenetic analysis was DNA extraction, PCR and DNA sequencing performed in MEGA 7 software (Kumar et al., were carried out according to the methods intro- 2016) with the maximum likelihood (ML) duced by Shimono et al. (2004, 2007, 2014, method. For the ML analysis, clade robustness 2018). Briefly, fungal DNA was extracted from was assessed using a bootstrap analysis with the lamellae of fresh basidiomata using Indicat- 1000 replicates (Felsenstein, 1985). Sequences of ing FTA Cards (Whatman International Ltd, R. decolorans and R. lilacea Quél. which were Maidstone, UK) based on the manufacturer’s pro- strongly supported as the sister to the subgenus tocol. PCR amplifications of the ITS (ITS1-5.8S- Russula Pers. emend. Romagn. in previous stud- ITS2) region and the LSU gene of rDNA were ies (Shimono et al., 2004, 2018), were selected carried out using one prepared FTA disc 2 mm for outgroups. The final alignment is available diam., according to the manufacturer’s instruc- from TreeBASE (http://www.treebase.org/) as a tion. The ITS1F/ITS4B (Gardes and Bruns, NEXUS file under the accession number 25896. 1993) and the ITS1/ITS4 (White et al., 1990) primer pairs for the rDNA ITS region, and the Results and Discussion BN1/TW14 (Shimono et al., 2004) and the NL1/ NL4 (Mori et al., 2000) primer pairs for the Phylogenetic analyses rDNA LSU gene were used for amplification and Among Japanese Russula specimens having sequencing. PCR reactions were performed using orange to reddish, minute basidiomata with acrid KOD FX Neo DNA polymerase (Toyobo, Tokyo, taste, ITS and LSU sequences of three samples Japan) in 25 mL reaction volumes containing 5 μl collected from Ryukoku University Forest in of 0.2 mM dNTP, 12.5 μl of PCR buffer, and 0.5 Shiga Prefecture were successfully generated U KOD FX Neo. PCR conditions were 94°C for (Table 1). The ITS dataset had an aligned length 2 min, followed by 40 cycles at 98°C for 10 s, of 769 characters including gaps consisting of 49 55°C for 30 s, 68°C for 1 min, and a final 6 min at ingroups and three outgroups. The maximum 68°C. The DNA sequencing was performed at likelihood analysis of the ITS dataset resulted in SolGent Co. Ltd. (Daejeon, South Korea) using one ML tree with the highest log likelihood an ABI 3700 automated DNA Sequencer (-4258.54). The resulting ML topology is (Applied Biosystems Inc., Foster City, CA, shown in Fig. 1. From the ML analysis of the USA). ITS dataset, 49 sequences of Russula were divided into two major clades A and B (Fig. 1). Phylogenetic analyses Species included in the major clade A are mem- A total of eight ITS and nine LSU sequences bers of the section Russula Pers. of the subgenus were newly generated from our specimens (Table Russula, while the major clade B contains spe- 1). Additional 44 ITS and 25 LSU sequences cies belonging to the subgenus Tenellula were retrieved from the GenBank and UNITE Romagn. (Romagnesi, 1985). Major clade A cor- databases for phylogenetic analysis (Table 2). responded with Clade 5 of Miller and Buyck DNA sequences were initially aligned using (2002), Clade A of Li et al. (2015) and Clade VII Muscle v.3.6 (Edgar, 2004a, 2004b), followed by of Buyck et al. (2018). The LSU dataset had an manual alignment in the data editor of BioEdit aligned length of 610 characters including gaps ver.
Recommended publications
  • Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: a Review
    viruses Review Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: A Review Dong Joo Seo 1 and Changsun Choi 2,* 1 Department of Food Science and Nutrition, College of Health and Welfare and Education, Gwangju University 277 Hyodeok-ro, Nam-gu, Gwangju 61743, Korea; [email protected] 2 Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daeduck-myun, Anseong-si, Gyeonggi-do 17546, Korea * Correspondence: [email protected]; Tel.: +82-31-670-4589; Fax: +82-31-676-8741 Abstract: Mushrooms are used in their natural form as a food supplement and food additive. In addition, several bioactive compounds beneficial for human health have been derived from mushrooms. Among them, polysaccharides, carbohydrate-binding protein, peptides, proteins, enzymes, polyphenols, triterpenes, triterpenoids, and several other compounds exert antiviral activity against DNA and RNA viruses. Their antiviral targets were mostly virus entry, viral genome replication, viral proteins, and cellular proteins and influenced immune modulation, which was evaluated through pre-, simultaneous-, co-, and post-treatment in vitro and in vivo studies. In particular, they treated and relieved the viral diseases caused by herpes simplex virus, influenza virus, and human immunodeficiency virus (HIV). Some mushroom compounds that act against HIV, influenza A virus, and hepatitis C virus showed antiviral effects comparable to those of antiviral drugs. Therefore, bioactive compounds from mushrooms could be candidates for treating viral infections. Citation: Seo, D.J.; Choi, C. Antiviral Bioactive Compounds of Mushrooms Keywords: mushroom; bioactive compound; virus; infection; antiviral mechanism and Their Antiviral Mechanisms: A Review.
    [Show full text]
  • Gymnomyces Xerophilus Sp. Nov. (Sequestrate Russulaceae), an Ectomycorrhizal Associate of Quercus in California
    MYCOLOGICAL RESEARCH I I0 (2006) 57 5-582 Gymnomyces xerophilus sp. nov. (sequestrate Russulaceae), an ectomycorrhizal associate of Quercus in California Matthew E. SMITHa1*,James M. TRAPPE~,Dauid M. RIZZOa, Steven I. MILLERC 'Department of Plant Pathology, University of California at Davis, Davis CA 95616, USA b~epartmentof Forest Science, Oregon State University, Camallis, OR 97331-5752, USA CDeparhnentof Botany, University of Wyoming, Laramie, WY 82071, USA ARTICLE INFO ABSTRACT Article history: Gymnomyces xerophilus sp. nov., a sequestrate species in the Russulaceae, is characterized Received 30 August 2005 and descn'bed morphologically as a new species from Quercus-dominated woodlands in Accepted 14 February 2006 California. ITS sequences recovered from healthy, ectomycorrhizal roots of Quercus dougla- Corresponding Editor: Michael Weiss sii and Q. wislizeni matched those of G. xerophfius basidiomata, confirming the ectomycor- -- rhizal status of this fungus. Phylogenetic analysis of the ITS region places G. xerophilus in Keywords: a clade with both agaricoid (Russula in the section Polychromae) and sequestrate (Gymno- Basidiomycota myces, Cystangium) relatives. We include a dichotomous key to the species of Gymnomyces Hypogeous fungi associated with Quercus. ITS O 2006 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Molecular phylogeny Russula Introduction mycelium, potentially reducing drought stress (Duddridge et al. 1980; Parke et al. 1983). Quercus-dominated ecosystems cover about one third of dali- Although the EM fungi associated with Quercus in California fornia's 404,000bm2(Pavlik et al. 1991). Quercus spp. are well have not been studied extensively, Thiers (1984) and Trappe adapted to the state's extensive areas of dry, Mediterranean and Claridge (2005) suggest that seasonally dry climates exert climate, with at least 7 species considered endemic (Nixon a selection pressure towards a sequestrate fruiting habit in 2002).
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Elias Fries – En Produktiv Vetenskapsman Redan Som Tonåring Började Fries Att Skriva Uppsatser Om Naturen
    Elias Fries – en produktiv vetenskapsman Redan som tonåring började Fries att skriva uppsatser om naturen. År 1811, då han fyllt 17 år, fick han sina första alster publi- cerade. Samma år påbörjade han universitetsstudier i Lund och tre år senare var han klar med sin magisterexamen. Därefter Elias Fries – ein produktiver Wissenschaftler följde inte mindre än 64 aktiva år som mykolog, botanist, filosof, lärare, riksdagsman och akademiledamot. Han var oerhört produktiv och författade inte bara stora och betydande böcker i mykologi och botanik utan också hundratals mindre artiklar och uppsatser. Dessutom ledde han ett omfattande arbete med att avbilda svampar. Dessa målningar utgavs som planscher och Bereits als Teenager begann Fries Aufsätze dem schrieb er Tagebücher und die „Tidningar i Na- Die Zeit in Uppsala – weitere 40 Jahre im das führte zu sehr erfolgreichen Ausgaben seiner und schrieb: „In Gleichheit mit allem dem das sich aus Auch der Sohn Elias Petrus, geboren im Jahre 1834, und Seth Lundell (Sammlungen in Uppsala), Fredrik über die Natur zu schreiben. Im Jahre 1811, turalhistorien“ (Neuigkeiten in der Naturalgeschich- Dienste der Mykologie Werke. Das erste, „Sveriges ätliga och giftiga svam- edlen Naturtrieben entwickelt, erfordert das Entstehen war ein begeisterter Botaniker und Mykologe. Leider Hård av Segerstad (publizierte 1924 eine Überarbei- te) mit Artikeln über beispielsweise seltene Pilze, Auch nach seinem Umzug nach Uppsala im Jahre par“ (Schwedens essbare und giftige Pilze), war ein dieser Liebe zur Natur ernste Bemühungen, aber es verstarb er schon in jungen Jahren. Ein dritter Sohn, tung von Fries’ Aufzeichnungen), Meinhard Moser bidrog till att kunskap om svamp spreds. Efter honom har givetvis det vetenskapliga arbetet utvecklats vidare men än idag an- in seinem 18.
    [Show full text]
  • An Antiproliferative Ribonuclease from Fruiting Bodies of the Wild Mushroom Russula Delica
    J. Microbiol. Biotechnol. (2010), 20(4), 693–699 doi: 10.4014/jmb.0911.11022 First published online 30 January 2010 An Antiproliferative Ribonuclease from Fruiting Bodies of the Wild Mushroom Russula delica Zhao, Shuang1,2, Yong Chang Zhao3, Shu Hong Li3, Guo Qing Zhang1, He Xiang Wang1*, and Tzi Bun Ng4* 1State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China 2Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China 3Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science, Kunming 650223, China 4School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Received: November 20, 2009 / Revised: December 21, 2009 / Accepted: December 25, 2009 An antiproliferative ribonuclease with a new N-terminal The mushroom family Russulaceae is composed of two sequence was purified from fruiting bodies of the edible genera, Russula and Lactarius, the former being the wild mushroom Russula delica in this study. This novel majority. To date, only a ribonuclease [34] and a protein ribonuclease was unadsorbed on DEAE-cellulose, but with anti-HIV-1 reverse transcriptase activity [38] have absorbed on SP-Sepharose and Q-Sepharose. It had a been isolated from mushrooms of the genus Russula. Only molecular mass of 14 kDa, as judged by fast protein liquid four reports on Lactarius lectin [6, 10, 24, 26] and one chromatography on Superdex 75 and SDS-polyacrylamide report on a Lactarius enzyme [17] are available. Russula gel electrophoresis. Its optimal pH and optimal temperature delica is a wild mushroom on which few literatures have were pH 5 and 60oC, respectively.
    [Show full text]
  • One Step Closer to Unravelling the Origin of Russula: Subgenus Glutinosae Subg
    Mycosphere 11(1): 285–304 (2020) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/11/1/6 One step closer to unravelling the origin of Russula: subgenus Glutinosae subg. nov. Buyck B1*, Wang X-H2, Adamčíková K3, Caboň M4, Jančovičová S5, 6 4 Hofstetter V and Adamčík S 1Institut pour la Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Case Postale 39 Muséum national d’histoire naturelle, Sorbonne Université, CNRS, 12 Rue Buffon, F-75005 Paris, France 2CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China 3Department of Plant Pathology and Mycology, Institute of Forest Ecology, Slovak Academy of Sciences Zvolen, Akademická 2, SK-949 01 Nitra, Slovakia 4Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia 5Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Révová 39, SK-811 02 Bratislava, Slovakia 6Agroscope Research Station, Department of plant protection, Rte de Duiller 60, 1260 Nyon 1, Switzerland Buyck B, Wang X-H, Adamčíková K, Caboň M, Jančovičová S, Hofstetter V, Adamčík S 2020 – One step closer to unravelling the origin of Russula: subgenus Glutinosae subg. nov. Mycosphere 11(1), 285–304, Doi 10.5943/mycosphere/11/1/6 Abstract This study reports on the discovery of a new subgenus, Russula subg. Glutinosae, having an Eastern North American – East Asian distribution. A multigene phylogeny places this new subgenus sister with strong support to a well-supported clade composed of subgenera Compactae and Archaeae.
    [Show full text]
  • Toxic Fungi of Western North America
    Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms .....................................................................................
    [Show full text]
  • Phd. Thesis Sana Jabeen.Pdf
    ECTOMYCORRHIZAL FUNGAL COMMUNITIES ASSOCIATED WITH HIMALAYAN CEDAR FROM PAKISTAN A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BOTANY by SANA JABEEN DEPARTMENT OF BOTANY UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN JUNE 2016 TABLE OF CONTENTS CONTENTS PAGE NO. Summary i Dedication iii Acknowledgements iv CHAPTER 1 Introduction 1 CHAPTER 2 Literature review 5 Aims and objectives 11 CHAPTER 3 Materials and methods 12 3.1. Sampling site description 12 3.2. Sampling strategy 14 3.3. Sampling of sporocarps 14 3.4. Sampling and preservation of fruit bodies 14 3.5. Morphological studies of fruit bodies 14 3.6. Sampling of morphotypes 15 3.7. Soil sampling and analysis 15 3.8. Cleaning, morphotyping and storage of ectomycorrhizae 15 3.9. Morphological studies of ectomycorrhizae 16 3.10. Molecular studies 16 3.10.1. DNA extraction 16 3.10.2. Polymerase chain reaction (PCR) 17 3.10.3. Sequence assembly and data mining 18 3.10.4. Multiple alignments and phylogenetic analysis 18 3.11. Climatic data collection 19 3.12. Statistical analysis 19 CHAPTER 4 Results 22 4.1. Characterization of above ground ectomycorrhizal fungi 22 4.2. Identification of ectomycorrhizal host 184 4.3. Characterization of non ectomycorrhizal fruit bodies 186 4.4. Characterization of saprobic fungi found from fruit bodies 188 4.5. Characterization of below ground ectomycorrhizal fungi 189 4.6. Characterization of below ground non ectomycorrhizal fungi 193 4.7. Identification of host taxa from ectomycorrhizal morphotypes 195 4.8.
    [Show full text]
  • Redalyc.LACTIFLUUS AURANTIORUGOSUS
    Darwiniana ISSN: 0011-6793 [email protected] Instituto de Botánica Darwinion Argentina Sá, Mariana C. A.; Wartchow, Felipe LACTIFLUUS AURANTIORUGOSUS (RUSSULACEAE), A NEW SPECIES FROM SOUTHERN BRAZIL Darwiniana, vol. 1, núm. 1, enero-junio, 2013, pp. 54-60 Instituto de Botánica Darwinion Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=66928887003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative DARWINIANA, nueva serie 1(1): 54-60. 2013 Versión final, efectivamente publicada el 31 de julio de 2013 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea LACTIFLUUS AURANTIORUGOSUS (RUSSULACEAE), A NEW SPECIES FROM SOUTHERN BRAZIL Mariana C. A. Sá1 & Felipe Wartchow2 1 Universidade Federal do Rio Grande do Norte, Programa de Pós-Graduação em Sistemática e Evolução, Campus Universitário, Lagoa Nova, CEP 59072-970 Natal, Rio Grande do Norte, Brazil; [email protected] (author for correspondence). 2 Universidade Federal da Paraíba, Programa de Pós-Graduação em Sistemática e Evolução, CEP 58051-970 João Pessoa, Paraíba, Brazil. Abstract. Sá, M. C. A. & F. Wartchow. 2013. Lactifluus aurantiorugosus (Russulaceae), a new species from sou- thern Brazil. Darwiniana, nueva serie 1(1): 54-60. Lactifluus aurantiorugosus is proposed as a new species from southern Brazil. It is characterized by the small-sized basidiomata, pileus orange, glabrous and wrinkled when fresh, distant lamellae, ellip- soid and verrucose basidiospores with warts up to 0.7 µm, interconnected with incomplete reticules, a trichopalisade as pileipellis-structure, and the context of lamella and pileus with abundant sphaerocysts.
    [Show full text]
  • Sp. Nov. from Northeast China
    ISSN (print) 0093-4666 © 2013. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/124.269 Volume 124, pp. 269–278 April–June 2013 Russula changbaiensis sp. nov. from northeast China Guo-Jie Li1,2, Dong Zhao1, Sai-Fei Li1, Huai-Jun Yang3, Hua-An Wen1a*& Xing-Zhong Liu1b* 1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 1st Beichen West Road, Chaoyang District, Beijing 100101, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3 Shanxi Institute of Medicine and Life Science, No 61 Pingyang Road, Xiaodian District, Taiyuan 030006, China Correspondence to *: [email protected], [email protected] Abstract —Russula changbaiensis (subg. Tenellula sect. Rhodellinae) from the Changbai Mountains, northeast China, is described as a new species. It is characterized by the red tinged pileus, slightly yellowing context, small basidia, short pleurocystidia, septate dermatocystidia with crystal contents, and a coniferous habitat. The phylogenetic trees based on ITS1-5.8S- ITS2 rDNA sequences fully support the establishment of the new species. Key words —Russulales, Russulaceae, taxonomy, morphology, Basidiomycota Introduction The worldwide genus ofRussula Pers. (Russulaceae, Russulales) is characterized by colorful fragile pileus, amyloid warty spores, abundant sphaerocysts in a heteromerous trama, and absence of latex (Romagnesi 1967, 1985; Singer 1986; Sarnari 1998, 2005). As a group of ectomycorrhizal fungi, it includes a large number of edible and medicinal species (Li et al. 2010). The genus has been extensively investigated with a long, rich and intensive taxonomic history in Europe (Miller & Buyck 2002). Although Russula species have been consumed in China as edible and medicinal use for a long time, their taxonomy has been overlooked (Li & Wen 2009, Li 2013).
    [Show full text]
  • Researches on Russulaceous Mushrooms-An Appraisal Reported to Provide Some Non-Nutritional Benefits to Tree 1932, 1940) and Beardslee (1918)
    63 KAVAKA47 : 63 - 82 (2016) Researches on Russulaceous Mushrooms-AnAppraisal N.S.Atri,Samidha Sharma* , Munruchi Kaur Sainiand Kanad Das ** Department of Botany, PunjabiUniversity, Patiala 147002, Punjab, India. *Department of Botany, Arya College, Ludhiana 141001, Punjab, India. **Botanical Survey of India, Cryptogamic Unit, P.O. BotanicGarden, Howrah 711103, India Corresponding author email: [email protected] (Submitted onAugust 10, 2016 ;Accepted on October 2, 2016) ABSTRACT Russulaceae is one among the large families of the basidiomycetous fungi. Some significant studies during the last decade on their systematics and molecularphylogenyresulted in splittingof well knownmilkcapgenusLactarius s.l.andinclusionof number of gastroid and resupinate members under its circumscription. Presently, there are seven genera (including agaricoid, gasteroid and resupinate members) in this family viz. RussulaPers. , Lactarius Pers. , Lactifluus (Pers.) Roussel, Cystangium Singer & A.H. Smith , Multifurca Buyck & Hofst., Boidinia Stalper & HjortstamandPseudoxenasma K.H.Larss.&Hjortstamspreadover 1248+ recognisedspeciestheworldover.Outof atotalofabout 259 + species/taxaofRussulacousmushrooms,146taxaofRussula ,83taxaof Lactarius ,27taxaof Lactifluus ,2speciesof Boidinia and1speciesof Multifurca are documented from India. In this manuscript an appraisal of the work done on various aspects of the members of the family Russulaceae including their taxonomic, molecular,phylogenetic, scanning electron microscopic, ectomycorrhizal, nutritional and nutraceutical aspects has been attempted. Keywords: Russulaceae, taxonomy, phylogeny, SEM, ECM, nutritional, nutraceutical, review INTRODUCTION taxa ofRussula and 83 taxa of Lactarius, 27 taxa of Lactifluus (Pers.) Roussel are known. (Atri et al ., 1994; Das and Sharma, The familyRussulaceae Lotsy is one of the 12 families under 2005; Bhattet al ., 2007; Das 2009; Das et al ., 2010, 2013, orderRussulales Krisel ex P.M. Kirk, P.F. Cannon & J.C. 2015; Das and Verbeken, 2011, 2012; Lathaet al ., 2016; David (Kirket al ., 2008).
    [Show full text]
  • Independent, Specialized Invasions of Ectomycorrhizal Mutualism by Two Nonphotosynthetic Orchids (Mycorrhiza͞ecology͞symbiosis͞specificity͞ribosomal DNA Sequences)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 4510–4515, April 1997 Evolution Independent, specialized invasions of ectomycorrhizal mutualism by two nonphotosynthetic orchids (mycorrhizayecologyysymbiosisyspecificityyribosomal DNA sequences) D. LEE TAYLOR* AND THOMAS D. BRUNS Division of Plant and Microbial Biology, University of California, Berkeley, CA 94720 Communicated by Pamela A. Matson, University of California, Berkeley, CA, February 24, 1997 (received for review September 10, 1996) ABSTRACT We have investigated the mycorrhizal asso- Mycorrhizae are intimate symbioses between fungi and the ciations of two nonphotosynthetic orchids from distant tribes underground organs of plants; the mutualism is based on the within the Orchidaceae. The two orchids were found to provisioning of minerals, and perhaps water, to the plant by the associate exclusively with two distinct clades of ectomycorrhi- fungus in return for fixed carbon from the plant (11). Ecto- zal basidiomycetous fungi over wide geographic ranges. Yet mycorrhizae (ECM) are the dominant mycorrhizal type both orchids retained the internal mycorrhizal structure formed by forest trees in temperate regions (12), and they are typical of photosynthetic orchids that do not associate with critical to nutrient cycling and to structuring of plant commu- ectomycorrhizal fungi. Restriction fragment length polymor- nities in these regions (13). phism and sequence analysis of two ribosomal regions along There are several indications that the ECM mutualism is not with fungal isolation provided congruent, independent evi- immune to cheating. For example, the fungus Entoloma sae- dence for the identities of the fungal symbionts. All 14 fungal piens forms an apparent ECM structure (mantle) on Rosa and entities that were associated with the orchid Cephalanthera Prunus roots but destroys the root epidermal cells (14).
    [Show full text]