Isatin Inhibits the Invasion of Human Neuroblastoma SH‑SY5Y Cells, Based on Microarray Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EGFR and Mtor As Therapeutic Targets in Glioblastoma
www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 46), pp: 4721-4723 Editorial EGFR and mTOR as therapeutic targets in glioblastoma Michael W. Ronellenfitsch, Anna-Luisa Luger and Joachim P. Steinbach The quest for new and improved therapies for mammalian target of rapamycin complex 1 (mTORC1) glioblastoma (GB) has been mostly unsuccessful in signaling were found in the majority of GBs [3]. more than a decade despite significant efforts. The few Therefore, many hopes have rested on targeted therapies. exceptions include the optimization of classical alkylating However, the results from clinical trials have been largely chemotherapy by including lomustine in the first line disappointing [4]. Nevertheless, unplanned retrospective regimen for GB with a methylated MGMT promoter and subgroup analyses of the patient cohorts of negative tumor treating fields [1, 2]. The GB signaling network has clinical trials indicated that dysregulation or activation been well-characterized and genetic alterations resulting of signaling could be a predictive factor for susceptibility in activation of receptor tyrosine kinases and especially to pathway inhibition: Tumors with enhanced levels of epidermal growth factor receptor (EGFR) and downstream mTORC1 activation markers, including phosphorylated Figure 1: Scheme of EGFR signaling and DDIT4-mediated adaptive processes. Conditions of the glioblastoma microenvironment including hypoxia, alkylating therapy or irradiation trigger induction of DDIT4 which activates TSC1/2 to inhibit mTORC1 and can counteract epidermal growth factor receptor (EGFR)-mediated TSC1/2 inhibition. Inhibition of mTORC1 ultimately induces adaptive processes to cope with external stressors. www.oncotarget.com 4721 Oncotarget ribosomal protein S6 and phosphorylated mTOR itself, of effects. Depending on the half life and pharmacokinetics appeared to respond to pathway inhibition by the EGFR of the drugs, stepwise treatment algorithms could be an antibody nimotuzumab or the mTORC1 inhibitor option to prevent antagonistic effects. -
Effects of Rapamycin on Social Interaction Deficits and Gene
Kotajima-Murakami et al. Molecular Brain (2019) 12:3 https://doi.org/10.1186/s13041-018-0423-2 RESEARCH Open Access Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero Hiroko Kotajima-Murakami1,2, Toshiyuki Kobayashi3, Hirofumi Kashii1,4, Atsushi Sato1,5, Yoko Hagino1, Miho Tanaka1,6, Yasumasa Nishito7, Yukio Takamatsu7, Shigeo Uchino1,2 and Kazutaka Ikeda1* Abstract The mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in cell metabolism, growth, and proliferation. The overactivation of mTOR has been implicated in the pathogenesis of syndromic autism spectrum disorder (ASD), such as tuberous sclerosis complex (TSC). Treatment with the mTOR inhibitor rapamycin improved social interaction deficits in mouse models of TSC. Prenatal exposure to valproic acid (VPA) increases the incidence of ASD. Rodent pups that are exposed to VPA in utero have been used as an animal model of ASD. Activation of the mTOR signaling pathway was recently observed in rodents that were exposed to VPA in utero, and rapamycin ameliorated social interaction deficits. The present study investigated the effect of rapamycin on social interaction deficits in both adolescence and adulthood, and gene expressions in mice that were exposed to VPA in utero. We subcutaneously injected 600 mg/kg VPA in pregnant mice on gestational day 12.5 and used the pups as a model of ASD. The pups were intraperitoneally injected with rapamycin or an equal volume of vehicle once daily for 2 consecutive days. The social interaction test was conducted in the offspring after the last rapamycin administration at 5–6 weeks of ages (adolescence) or 10–11 weeks of age (adulthood). -
Accumulation of Dephosphorylated 4EBP After Mtor Inhibition with Rapamycin Is Sufficient to Disrupt Paracrine Transformation By
Oncogene (2014) 33, 2405–2412 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc SHORT COMMUNICATION Accumulation of dephosphorylated 4EBP after mTOR inhibition with rapamycin is sufficient to disrupt paracrine transformation by the KSHV vGPCR oncogene D Martin, Q Nguyen, A Molinolo and JS Gutkind Dysregulation of the PI3K/Akt/mTOR pathway is one of the most frequent events in human cancer. However, the clinical benefits of PI3K/Akt/mTOR inhibitors have not yet achieved their predicted potential in many of the most prevalent human cancers. Of interest, treatment of Kaposi’s sarcoma (KS) patients with rapamycin provided the first evidence of the antineoplastic activity of mTOR inhibitors in humans, becoming the standard of care for KS arising in renal transplant patients. Thus, the study of KS may provide a unique opportunity to dissect the contribution of specific mTOR downstream targets to cancer development. The KS- associated herpesvirus (KSHV) is the etiological agent for KS, and the KSHV-encoded oncogene viral-G protein-coupled receptor (vGPCR) promotes the potent activation of the PI3K-Akt-mTOR pathway by both direct and paracrine mechanisms. We focused on a direct target of mTOR, EIF4EBP1/2/3 (4EBP), which inhibits the translation of eukaryotic initiation factor 4E (eiF4E)-bound mRNAs. 4EBP phosphorylation by mTOR relieves its inhibitory activity, hence resulting in increased eiF4E-dependent mRNA translation. We developed a paracrine transformation model, recapitulating the cellular composition of KS lesions, in which vGPCR-expressing cells promote the rapid proliferation of endothelial cells, thus expressing KSHV-latent genes by the release of growth factors. -
Adaptive Capabilities of the Pi3k/Akt/Mtor Pathway in Acute Myeloid Leukemia Revealed by the Use of Selective Inhibitors
Alma Mater Studiorum – Università di Bologna SCIENZE BIOMEDICHE: PROGETTO 5 “SCIENZE MORFOLOGICHE UMANE E MOLECOLARI” Ciclo XXV SSD : BIO 16, SETTORE CONCORSUALE :05H1 ADAPTIVE CAPABILITIES OF THE PI3K/AKT/MTOR PATHWAY IN ACUTE MYELOID LEUKEMIA REVEALED BY THE USE OF SELECTIVE INHIBITORS Presentata da Jessika Bertacchini Relatori Prof.ssa Lucia Manzoli Prof.ssa Sandra Marmiroli Coordinatore Chiar. mo Prof. Lucio Cocco TABLE OF CONTENTS o ABSTRACT o INTRODUCTION o ACUTE MYELOID LEUKEMIA o PROGNOSIS AND GENETICS o DEREGULATED SIGNAL TRANSDUCTION PATHWAYS IN ACUTE MYELOID LEUKEMIA o PI3K/AKT/MTOR SIGNAL TRANSDUCTION PATHWAY IN ACUTE MYELOID LEUKEMIA o PI3K o AKT/PKB o Mtor o NEGATIVE REGULATION OF PI3K/AKT/mTOR PATHWAY o PI3K/AKT/mTOR PATHWAY AND SURVIVAL o PI3K/AKT/mTOR PATHWAY AND CELL CYCLE o PI3K/AKT/mTOR PATHWAY AND METABOLISM o PI3K/AKT/mTOR INHIBITORS o PI3K INHIBITORS o AKT INHIBITORS o mTOR INHIBITORS o TYROSINE KINASE RECEPTOR o TYROSINE KINASE RECEPTOR IN ACUTE MYELOID LEUKEMIA o AIMS o MATERIALS AND METHODS o PATIENTS DEMOGRAPHICS o CELL CULTURE AND DRUG TREATMENTS o ARRAY ASSEMBLY o RESULTS o RESULTS o DISCUSSION o BIBLIOGRA 1.ABSTRACT The objective of the study was to investigate the sensitivity of primary blasts from AML patients to PI3K/Akt/mTor inhibitors through reverse-phase protein microarray. Reverse-phase microarray assays using phosphospecific antibodies (RPPA) can directly measure levels of phosphorylated protein isoforms. Mapping of deregulated kinases and protein signaling networks within tumors can provide a means to stratify patients with shared biological characteristics to the most optimal treatment, and identify drug targets. In particular, the PI3K/AKT/mTOR signaling pathways are frequently activated in blast cells from patients with acute myelogenous leukemia (AML), a neoplastic disorder characterized by the accumulation of genetically altered myelogenous cells displaying deregulated intracellular signalling pathways and aggressive clinical behavior with poor prognosis. -
Transcriptional Changes in Huntington Disease Identified Using Genome
Human Molecular Genetics, 2010, Vol. 19, No. 8 1438–1452 doi:10.1093/hmg/ddq018 Advance Access published on January 20, 2010 Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis Kristina Becanovic1, Mahmoud A. Pouladi1, Raymond S. Lim2, Alexandre Kuhn3, Paul Pavlidis2, Ruth Luthi-Carter3, Michael R. Hayden1 and Blair R. Leavitt1,Ã 1Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4 2Centre for High-throughput Biology and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 and 3Brain Mind Institute, E´ cole Polytechnique Fe´de´rale de Lausanne (EPFL), Station 15, CH1015 Lausanne, Switzerland Received September 10, 2009; Revised and Accepted January 18, 2010 Evaluation of transcriptional changes in the striatum may be an effective approach to understanding the natural history of changes in expression contributing to the pathogenesis of Huntington disease (HD). We have performed genome-wide expression profiling of the YAC128 transgenic mouse model of HD at 12 and 24 months of age using two platforms in parallel: Affymetrix and Illumina. The data from these two powerful platforms were integrated to create a combined rank list, thereby revealing the identity of additional genes that proved to be differentially expressed between YAC128 and control mice. Using this approach, we ident- ified 13 genes to be differentially expressed between YAC128 and controls which were validated by quanti- tative real-time PCR in independent cohorts of animals. In addition, we analyzed additional time points relevant to disease pathology: 3, 6 and 9 months of age. -
Comparative Mapping of Bovine Chromosome 27 with Human Chromosome 8 Near a Dairy Form QTL in Cattle
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2006 Comparative mapping of bovine chromosome 27 with human chromosome 8 near a dairy form QTL in cattle E. E. Connor USDA-ARS M. S. Ashwell North Carolina State University at Raleigh R. Schnabel University of Missouri-Columbia J. L. Williams Roslin Institute (Edinburgh) Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agricultural Science Commons Connor, E. E.; Ashwell, M. S.; Schnabel, R.; and Williams, J. L., "Comparative mapping of bovine chromosome 27 with human chromosome 8 near a dairy form QTL in cattle" (2006). Publications from USDA-ARS / UNL Faculty. 698. https://digitalcommons.unl.edu/usdaarsfacpub/698 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Original Article Cytogenet Genome Res 112:98–102 (2006) DOI: 10.1159/000087519 Comparative mapping of bovine chromosome 27 with human chromosome 8 near a dairy form QTL in cattle E.E. Connor,a M.S. Ashwell,a,b R. Schnabel,c J.L. Williamsd a Beltsville Agricultural Research Center, ARS, USDA, Beltsville, MD; b North Carolina State University, Department of Animal Science, Raleigh, NC; c University of Missouri-Columbia, Animal Sciences Unit, Columbia, MO (USA); d Roslin Institute (Edinburgh), Roslin, Midlothian, Scotland (UK) Manuscript received 30 December 2004; accepted in revised form for publication by T. -
An Integrative Transcriptome Study Reveals Ddit4/Redd1 As a Key Regulator of Cancer Cachexia in Rodent Models
www.nature.com/cddis ARTICLE OPEN An integrative transcriptome study reveals Ddit4/Redd1 as a key regulator of cancer cachexia in rodent models 1,2,4 1,2,4 3 1,2 1,2 1,2 2 1,2 Mengyuan Niu ,LiLi , Zhonglan✉ Su , Lulu Wei✉ , Wenyuan Pu , Chen Zhao✉ , Yibing Ding , Junaid Wazir , Wangsen Cao 2, Shiyu Song 1,2 , Qian Gao 2 and Hongwei Wang 1,2 © The Author(s) 2021 Cancer cachexia is a multifactorial metabolic syndrome that causes up to 20% of cancer-related deaths. Muscle atrophy, the hallmark of cancer cachexia, strongly impairs the quality of life of cancer patients; however, the underlying pathological process is still poorly understood. Investigation of the disease pathogenesis largely relies on cachectic mouse models. In our study, the transcriptome of the cachectic gastrocnemius muscle in the C26 xenograft model was integrated and compared with that of 5 more different datasets. The bioinformatic analysis revealed pivotal gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the disease, and the key genes were validated. Construction of the protein-protein interaction network and the comparison of pathways enriched in cancer cachexia with 5 other muscle atrophy models revealed Ddit4 (DNA damage-inducible transcript 4), as a key protein in cancer cachexia. The higher expression of Ddit4 in cachectic muscle was further validated in animal models and cachectic cancer patients. Further study revealed that p38 induced the expression of Ddit4, which in turn inhibited the mTOR pathway in atrophic cells. Cell Death and Disease (2021)12:652 ; https://doi.org/10.1038/s41419-021-03932-0 INTRODUCTION the overall transcription profile between cancer or noncancer- Cancer cachexia is a multifactorial metabolic syndrome that affects induced muscle atrophy will be greatly helpful in revealing the approximately 50–80% of cancer patients, especially in the uniqueness of the disease. -
DDIT4 Antibody (N-Term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP6268A
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 DDIT4 Antibody (N-term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP6268A Specification DDIT4 Antibody (N-term) - Product Information Application WB, IHC-P,E Primary Accession Q9NX09 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Antigen Region 20-49 DDIT4 Antibody (N-term) - Additional Information Gene ID 54541 Other Names DNA damage-inducible transcript 4 protein, HIF-1 responsive protein RTP801, Protein regulated in development and DNA damage Anti-DDIT4 Antibody (N-term) at 1:2000 response 1, REDD-1, DDIT4, REDD1, dilution + Hela whole cell lysate RTP801 Lysates/proteins at 20 µg per lane. Secondary Goat Anti-Rabbit IgG, (H+L), Target/Specificity Peroxidase conjugated at 1/10000 dilution. This DDIT4 antibody is generated from Predicted band size : 25 kDa rabbits immunized with a KLH conjugated Blocking/Dilution buffer: 5% NFDM/TBST. synthetic peptide between 20-49 amino acids from the N-terminal region of human DDIT4. Dilution WB~~1:2000 IHC-P~~1:25 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. Storage Maintain refrigerated at 2-8°C for up to 2 weeks. For long term storage store at -20°C in small aliquots to prevent freeze-thaw cycles. AP6268a staining DDIT4 in human kidney tissue sections by Immunohistochemistry Precautions (IHC-P - paraformaldehyde-fixed, DDIT4 Antibody (N-term) is for research use paraffin-embedded sections). Tissue was Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 only and not for use in diagnostic or fixed with formaldehyde and blocked with 3% therapeutic procedures. -
Downloaded from the UCSC PRO-Seq Library Preparation and Sequencing
ARTICLE https://doi.org/10.1038/s41467-021-21687-2 OPEN Multi-omics analysis reveals contextual tumor suppressive and oncogenic gene modules within the acute hypoxic response ✉ ✉ Zdenek Andrysik1,2, Heather Bender1,2, Matthew D. Galbraith 1,2 & Joaquin M. Espinosa 1,2,3 Cellular adaptation to hypoxia is a hallmark of cancer, but the relative contribution of hypoxia- inducible factors (HIFs) versus other oxygen sensors to tumorigenesis is unclear. We employ 1234567890():,; a multi-omics pipeline including measurements of nascent RNA to characterize transcrip- tional changes upon acute hypoxia. We identify an immediate early transcriptional response that is strongly dependent on HIF1A and the kinase activity of its cofactor CDK8, includes indirect repression of MYC targets, and is highly conserved across cancer types. HIF1A drives this acute response via conserved high-occupancy enhancers. Genetic screen data indicates that, in normoxia, HIF1A displays strong cell-autonomous tumor suppressive effects through a gene module mediating mTOR inhibition. Conversely, in advanced malignancies, expression of a module of HIF1A targets involved in collagen remodeling is associated with poor prog- nosis across diverse cancer types. In this work, we provide a valuable resource for investi- gating context-dependent roles of HIF1A and its targets in cancer biology. 1 Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 2 Linda Crnic Institute for Down Syndrome, School of Medicine, University -
Human 4E-BP1 / EIF4EBP1 Protein (His Tag)
Human 4E-BP1 / EIF4EBP1 Protein (His Tag) Catalog Number: 10022-H07E General Information SDS-PAGE: Gene Name Synonym: 4E-BP1; 4EBP1; BP-1; PHAS-I Protein Construction: A DNA sequence encoding the human 4EBP1 (NP_004086.1) (Ser 2-Ile 118) with a N-terminal polyhistidine tag was expressed. Source: Human Expression Host: E. coli QC Testing Purity: > 90 % as determined by SDS-PAGE Endotoxin: Protein Description Please contact us for more information. The translational suppressor eIF4E binding protein-1, 4E-BP1 functions as Stability: a key regulator in cellular growth, differentiation, apoptosis and survival. The Eif4ebp1 gene, encoding 4E-BP1, is a direct target of a transcription Samples are stable for up to twelve months from date of receipt at -70 ℃ factor activating transcription factor-4 (ATF4), a master regulator of gene expression in stress responses. 4E-BP1 is characterized by its capacity to Predicted N terminal: Met bind specifically to eIF4E and inhibit its interaction with eIF4G. Molecular Mass: Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap- dependent translation, in cell stress. Binding of eIF4E to eIF4G is inhibited The secreted recombinant human 4EBP1 comprises 124 amino acids with in a competitive manner by 4E-BP1. Phosphorylation of 4E-BP1 decreases a predicted molecular mass of 13.4 kDa. It migrates as an approximately the affinity of this protein for eIF4E, thus favouring the binding of eIF4G 19 kDa band in SDS-PAGE under reducing conditions. and enhancing translation. 4E-BP1 is important for beta-cell survival under endoplasmic reticulum (ER) stress. 4E-BP1 mediates the regulation of Formulation: protein translation by hormones, growth factors and other stimuli that signal through the MAP kinase and mTORC1 pathways. -
Relevance of Translation Initiation in Diffuse Glioma Biology and Its
cells Review Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential Digregorio Marina 1, Lombard Arnaud 1,2, Lumapat Paul Noel 1, Scholtes Felix 1,2, Rogister Bernard 1,3 and Coppieters Natacha 1,* 1 Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; [email protected] (D.M.); [email protected] (L.A.); [email protected] (L.P.N.); [email protected] (S.F.); [email protected] (R.B.) 2 Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium 3 Department of Neurology, CHU of Liège, 4000 Liège, Belgium * Correspondence: [email protected] Received: 18 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: Cancer cells are continually exposed to environmental stressors forcing them to adapt their protein production to survive. The translational machinery can be recruited by malignant cells to synthesize proteins required to promote their survival, even in times of high physiological and pathological stress. This phenomenon has been described in several cancers including in gliomas. Abnormal regulation of translation has encouraged the development of new therapeutics targeting the protein synthesis pathway. This approach could be meaningful for glioma given the fact that the median survival following diagnosis of the highest grade of glioma remains short despite current therapy. The identification of new targets for the development of novel therapeutics is therefore needed in order to improve this devastating overall survival rate. This review discusses current literature on translation in gliomas with a focus on the initiation step covering both the cap-dependent and cap-independent modes of initiation. -
DATASHEET Eukaryotic Translation Initiation Factor 4E-Binding
DATASHEET Abbexa Ltd, Innovation Centre, Cambridge Science Park, Cambridge, CB4 0EY, UK Telephone: +44 (0) 1223 755950 - Fax: +44 (0) 1223 755951 - E-Mail: [email protected] Eukaryotic Translation Initiation Factor 4E-Binding Protein 1 (4EBP1) Antibody Catalogue No.:abx015717 Western blot analysis using 4E-BP1 antibody against truncated 4E-BP1 recombinant protein (1) and A431 cell lysate (2). Immunohistochemical analysis of paraffin-embedded human pancreas carcinoma (A), esophagus carcinoma tissue (B) and ovary tumor tissue (C), showing cytoplasmic and membrane localization using 4E-BP1 antibody with DAB staining. 4E-BP1 (eukaryotic translation Initiation Factor 4E Binding Protein 1),also called ELF4EBP1/BP-1/PHAS-I,which is located on chromosome 8p12, with 118-amino acid protein (about 13kDa).Binding of eIF4EBP1 to eIF4E is reversible and is dependent on the phosphorylation status of eIF4EBP1.Non phosphorylated eIF4EBP1 will bind strongly to eIF4E while (24kDa), the phosphorylated form will not.Akt, TOR, MAP kinase, S6 kinase, and Cdc2 are known kinases capable of inactivating eIF4EBP1 binding to eIF4E by phosphorylating either threonines 35, 45, 69 or serine 64.Although, not all phosphorylation events equally block the eIF4EBP1-eIF4E interaction. Target: 4EBP1 Reactivity: Human Host: Mouse Clonality: Monoclonal Tested Applications: ELISA, WB, IHC Recommended dilutions: ELISA: 1/10000, WB: 1/500 - 1/2000, IHC: 1/200 - 1/1000. Optimal dilutions/concentrations should be determined by the end user. Immunogen: Purified recombinant fragment of 4E-BP1 expressed in E. coli. Purification: Unpurified Ascites. Registered in England: 8475531 - VAT Reg No: GB 167 9240 79 Page 1 DATASHEET Abbexa Ltd, Innovation Centre, Cambridge Science Park, Cambridge, CB4 0EY, UK Telephone: +44 (0) 1223 755950 - Fax: +44 (0) 1223 755951 - E-Mail: [email protected] Isotype: IgG1 Conjugation: Unconjugated Storage: Aliquot and store at -20 °C.