Massive Neutrinos in a Warped Extra Dimension
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pauli Crystals–Interplay of Symmetries
S S symmetry Article Pauli Crystals–Interplay of Symmetries Mariusz Gajda , Jan Mostowski , Maciej Pylak , Tomasz Sowi ´nski ∗ and Magdalena Załuska-Kotur Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland; [email protected] (M.G.); [email protected] (J.M.); [email protected] (M.P.); [email protected] (M.Z.-K.) * Correspondence: [email protected] Received: 20 October 2020; Accepted: 13 November 2020; Published: 16 November 2020 Abstract: Recently observed Pauli crystals are structures formed by trapped ultracold atoms with the Fermi statistics. Interactions between these atoms are switched off, so their relative positions are determined by joined action of the trapping potential and the Pauli exclusion principle. Numerical modeling is used in this paper to find the Pauli crystals in a two-dimensional isotropic harmonic trap, three-dimensional harmonic trap, and a two-dimensional square well trap. The Pauli crystals do not have the symmetry of the trap—the symmetry is broken by the measurement of positions and, in many cases, by the quantum state of atoms in the trap. Furthermore, the Pauli crystals are compared with the Coulomb crystals formed by electrically charged trapped particles. The structure of the Pauli crystals differs from that of the Coulomb crystals, this provides evidence that the exclusion principle cannot be replaced by a two-body repulsive interaction but rather has to be considered to be a specifically quantum mechanism leading to many-particle correlations. Keywords: pauli exclusion; ultracold fermions; quantum correlations 1. Introduction Recent advances of experimental capabilities reached such precision that simultaneous detection of many ultracold atoms in a trap is possible [1,2]. -
The Mechanics of the Fermionic and Bosonic Fields: an Introduction to the Standard Model and Particle Physics
The Mechanics of the Fermionic and Bosonic Fields: An Introduction to the Standard Model and Particle Physics Evan McCarthy Phys. 460: Seminar in Physics, Spring 2014 Aug. 27,! 2014 1.Introduction 2.The Standard Model of Particle Physics 2.1.The Standard Model Lagrangian 2.2.Gauge Invariance 3.Mechanics of the Fermionic Field 3.1.Fermi-Dirac Statistics 3.2.Fermion Spinor Field 4.Mechanics of the Bosonic Field 4.1.Spin-Statistics Theorem 4.2.Bose Einstein Statistics !5.Conclusion ! 1. Introduction While Quantum Field Theory (QFT) is a remarkably successful tool of quantum particle physics, it is not used as a strictly predictive model. Rather, it is used as a framework within which predictive models - such as the Standard Model of particle physics (SM) - may operate. The overarching success of QFT lends it the ability to mathematically unify three of the four forces of nature, namely, the strong and weak nuclear forces, and electromagnetism. Recently substantiated further by the prediction and discovery of the Higgs boson, the SM has proven to be an extraordinarily proficient predictive model for all the subatomic particles and forces. The question remains, what is to be done with gravity - the fourth force of nature? Within the framework of QFT theoreticians have predicted the existence of yet another boson called the graviton. For this reason QFT has a very attractive allure, despite its limitations. According to !1 QFT the gravitational force is attributed to the interaction between two gravitons, however when applying the equations of General Relativity (GR) the force between two gravitons becomes infinite! Results like this are nonsensical and must be resolved for the theory to stand. -
Charged Quantum Fields in Ads2
Charged Quantum Fields in AdS2 Dionysios Anninos,1 Diego M. Hofman,2 Jorrit Kruthoff,2 1 Department of Mathematics, King’s College London, the Strand, London WC2R 2LS, UK 2 Institute for Theoretical Physics and ∆ Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands Abstract We consider quantum field theory near the horizon of an extreme Kerr black hole. In this limit, the dynamics is well approximated by a tower of electrically charged fields propagating in an SL(2, R) invariant AdS2 geometry endowed with a constant, symmetry preserving back- ground electric field. At large charge the fields oscillate near the AdS2 boundary and no longer admit a standard Dirichlet treatment. From the Kerr black hole perspective, this phenomenon is related to the presence of an ergosphere. We discuss a definition for the quantum field theory whereby we ‘UV’ complete AdS2 by appending an asymptotically two dimensional Minkowski region. This allows the construction of a novel observable for the flux-carrying modes that resembles the standard flat space S-matrix. We relate various features displayed by the highly charged particles to the principal series representations of SL(2, R). These representations are unitary and also appear for massive quantum fields in dS2. Both fermionic and bosonic fields are studied. We find that the free charged massless fermion is exactly solvable for general background, providing an interesting arena for the problem at hand. arXiv:1906.00924v2 [hep-th] 7 Oct 2019 Contents 1 Introduction 2 2 Geometry near the extreme Kerr horizon 4 2.1 Unitary representations of SL(2, R).......................... -
Search for New Physics with Top Quark Pairs in the Fully Hadronic Final State at the ATLAS Experiment
Dissertation submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Mathis Kolb born in Heidelberg Oral examination: November 21, 2018 Search for new physics with top quark pairs in the fully hadronic final state at the ATLAS experiment Referees: Prof. Dr. André Schöning Prof. Dr. Tilman Plehn Search for new physics with top quark pairs in the fully hadronic final state at the ATLAS experiment Fully hadronic final states containing top quark pairs (tt) are investigated using proton- proton collision data at a center of mass energy of 13 TeV recorded in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider at CERN. The bucket algorithm suppresses the large combinatorial background and is used to identify and reconstruct the tt system. It is applied in three analyses. A model independent search for new heavy particles decaying to tt using 36 fb−1 of data is presented. The analysis concentrates on an optimization of sensitivity at tt masses below 1:3 TeV. No excess from the Standard Model prediction is observed. Thus, upper limits at 95% C.L. are set on the production cross section times branching ratio of 0 benchmark signal models excluding e.g. a topcolor assisted technicolor ZTC2 in the mass range from 0:59 TeV to 1:25 TeV. The prospects of a search for the production of the Higgs boson in association with tt using 33 fb−1 of data recorded solely in 2016 are studied. -
Spacetime Geometry from Graviton Condensation: a New Perspective on Black Holes
Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller München 2015 Spacetime Geometry from Graviton Condensation: A new Perspective on Black Holes Sophia Zielinski née Müller Dissertation an der Fakultät für Physik der Ludwig–Maximilians–Universität München vorgelegt von Sophia Zielinski geb. Müller aus Stuttgart München, den 18. Dezember 2015 Erstgutachter: Prof. Dr. Stefan Hofmann Zweitgutachter: Prof. Dr. Georgi Dvali Tag der mündlichen Prüfung: 13. April 2016 Contents Zusammenfassung ix Abstract xi Introduction 1 Naturalness problems . .1 The hierarchy problem . .1 The strong CP problem . .2 The cosmological constant problem . .3 Problems of gravity ... .3 ... in the UV . .4 ... in the IR and in general . .5 Outline . .7 I The classical description of spacetime geometry 9 1 The problem of singularities 11 1.1 Singularities in GR vs. other gauge theories . 11 1.2 Defining spacetime singularities . 12 1.3 On the singularity theorems . 13 1.3.1 Energy conditions and the Raychaudhuri equation . 13 1.3.2 Causality conditions . 15 1.3.3 Initial and boundary conditions . 16 1.3.4 Outlining the proof of the Hawking-Penrose theorem . 16 1.3.5 Discussion on the Hawking-Penrose theorem . 17 1.4 Limitations of singularity forecasts . 17 2 Towards a quantum theoretical probing of classical black holes 19 2.1 Defining quantum mechanical singularities . 19 2.1.1 Checking for quantum mechanical singularities in an example spacetime . 21 2.2 Extending the singularity analysis to quantum field theory . 22 2.2.1 Schrödinger representation of quantum field theory . 23 2.2.2 Quantum field probes of black hole singularities . -
Extraordinary Year for Gates Graduate Awards P.3 Staff Awards & Luncheon P.4 in January, President Obama Named Sylvester James Gates, Jr
the ONLINE PHOTONNEWSLETTER FROM UMD DEPARTMENT OF PHYSICS 2012‐2013 Ryan K Morris/Naonal Science & Technology Medals Foundaon this issue AAAS Fellows P.2 Extraordinary Year for Gates Graduate Awards P.3 Staff Awards & Luncheon P.4 In January, President Obama named Sylvester James Gates, Jr. as one of this New Faces P.5 year's recipients of the Naonal Medal of Science. The Naonal Medal of Science and the Naonal Medal of Technology and Innovaon are the highest honors be‐ stowed by the United States Government upon sciensts, engineers and inven‐ Gates on C‐SPAN’s Q & A tors. The honor was one of four in an extraordinary year for Gates. Most recently, Gates was awarded the 2013 Mendel Medal by Villanova Universi‐ Jim Gates discusses science educaon, string theory, working ty. The honor recognizes pioneering sciensts who have demonstrated, by their with the President almost becom‐ lives and their standing before the world as sciensts, that there is no intrinsic ing an astronaut and being mistak‐ conflict between science and religion. Addionally, Gates was one of 84 U.S. re‐ en for Morgan Freeman on C‐ searchers and 21 foreign associates elected to the Naonal Academy of Science. SPAN’s Q & A The interview Elecon to the academy is considered one of the highest honors that can be ac‐ transcript is available on the Q & A website or watch the video at corded a U.S. scienst or engineer. And in January he was named a University Sys‐ tem of Maryland (USM) Regents Professor, the System's most prominent faculty hp://www.c‐spanvideo.org/ recognion. -
Arxiv:1907.02341V1 [Gr-Qc]
Different types of torsion and their effect on the dynamics of fields Subhasish Chakrabarty1, ∗ and Amitabha Lahiri1, † 1S. N. Bose National Centre for Basic Sciences Block - JD, Sector - III, Salt Lake, Kolkata - 700106 One of the formalisms that introduces torsion conveniently in gravity is the vierbein-Einstein- Palatini (VEP) formalism. The independent variables are the vierbein (tetrads) and the components of the spin connection. The latter can be eliminated in favor of the tetrads using the equations of motion in the absence of fermions; otherwise there is an effect of torsion on the dynamics of fields. We find that the conformal transformation of off-shell spin connection is not uniquely determined unless additional assumptions are made. One possibility gives rise to Nieh-Yan theory, another one to conformally invariant torsion; a one-parameter family of conformal transformations interpolates between the two. We also find that for dynamically generated torsion the spin connection does not have well defined conformal properties. In particular, it affects fermions and the non-minimally coupled conformal scalar field. Keywords: Torsion, Conformal transformation, Palatini formulation, Conformal scalar, Fermion arXiv:1907.02341v1 [gr-qc] 4 Jul 2019 ∗ [email protected] † [email protected] 2 I. INTRODUCTION Conventionally, General Relativity (GR) is formulated purely from a metric point of view, in which the connection coefficients are given by the Christoffel symbols and torsion is set to zero a priori. Nevertheless, it is always interesting to consider a more general theory with non-zero torsion. The first attempt to formulate a theory of gravity that included torsion was made by Cartan [1]. -
SLAC-PUB3031 January 1983 (T) SPONTANEOUS CP VIOLATION IN
SLAC-PUB3031 January 1983 (T) - . SPONTANEOUS CP VIOLATION IN EXTENDED TECHNICOLOR MODELS WITH HORIZONTAL V(2)t @ U(~)R FLAVOR SYMMETRIES (II)* WILLIAM GOLDSTEIN Stanford Linear Accelerator Center Stanford University, Stanford, California S&l05 ABSTRACT -- The results presented in Part I of this paper are extended to-include previously neglected electro-weak degrees of freedom, and are illustrated in a toy model. A problem associated with colored technifermions is identified and discussed. Some hope is offered for the disappointing quark mass matrix obtained in Part I. Submitted to Nuclear Physics B * Work supported by the Department of Energy, contract DEAC03-76SF00515. 1. INTRODUCTION In a previous paper [l], hereafter referred to as I, we investigated sponta- neous CP violation in a class of extended technicolor (ETC) models [2,3,4,5]. We constructed the effective Hamiltonian generated by broken EZ’C interactions and minimized its contribution to the vacuum energy, as called for by Dashen’s - . Theorem [S]. As originally pointed out by Dashen, and more recently by Eichten, Lane and Preskill in the context of the EK’ program, this aligning of the chiral vacuum and Hamiltonian can lead to CP violation from an initially CP symmet- ric theory [7,8]. The ETC models analyzed in I were distinguished by the global flavor invari- ance of the color-technicolor forces: GF = n u(2)L @ u@)R (1) For-- these models, we found that, in general, the occurrence of spontaneous CP violation is tied to CP nonconservation in the strong interactions and, thus, - to an unacceptably large neutron electric dipole moment. -
N = 1 Field Theory Duality from M-Theory
hep-th/9708015 BUHEP-97-23 N = 1 Field Theory Duality from M-theory Martin Schmaltz and Raman Sundrum Department of Physics Boston University Boston, MA 02215, USA [email protected], [email protected] Abstract We investigate Seiberg’s N = 1 field theory duality for four-dimensional super- symmetric QCD with the M-theory 5-brane. We find that the M-theory configuration for the magnetic dual theory arises via a smooth deformation of the M-theory config- arXiv:hep-th/9708015v2 27 Aug 1997 uration for the electric theory. The creation of Dirichlet 4-branes as Neveu-Schwarz 5-branes are passed through each other in Type IIA string theory is given a nice derivation from M-theory. 1 Introduction In the last few years there has been tremendous progress in understanding supersym- metric gauge dynamics and the remarkable phenomenon of electric-magnetic duality [1, 2]. Most of the results were first guessed at within field theory and then checked to satisfy many non-trivial consistency conditions. However, the organizing principle behind these dualities has always been somewhat mysterious from the field theoretic perspective. Recently there has arisen a fascinating connection between supersymmetric gauge dynamics and string theory brane dynamics [3] which has the potential for unifying our understanding of these dualities [4-13]. This stems from our ability to set up configurations of branes in string theory with supersymmetric gauge field theories living on the world-volumes of branes in the low-energy limit. The moduli spaces of the gauge field theories are thereby encoded geometrically in the brane set-up. -
Technicolor Evolution Elizabeth H
Technicolor Evolution Elizabeth H. Simmons∗ Physics Department, Boston University† This talk describes how modern theories of dynamical electroweak symmetry breaking have evolved from the original minimal QCD-like technicolor model in response to three key challenges: Rb, flavor-changing neutral currents, and weak isospin violation. 1. Introduction In order to understand the origin of mass, we must find both the cause of electroweak symme- try breaking, through which the W and Z bosons obtain mass, and the cause of flavor symmetry breaking, by which the quarks and leptons obtain their diverse masses and mixings. The Standard Higgs Model of particle physics, based on the gauge group SU(3)c × SU(2)W × U(1)Y accommo- dates both symmetry breakings by including a fundamental weak doublet of scalar (“Higgs”) + 2 = φ = † − 1 2 bosons φ φ0 with potential function V (φ) λ φ φ 2 v . However the Standard Model does not explain the dynamics responsible for the generation of mass. Furthermore, the scalar sector suffers from two serious problems. The scalar mass is unnaturally sensitive to the pres- ence of physics at any higher scale Λ (e.g. the Planck scale), as shown in fig. 1. This is known as the gauge hierarchy problem. In addition, if the scalar must provide a good description of physics up to arbitrarily high scale (i.e., be fundamental), the scalar’s self-coupling (λ) is driven to zero at finite energy scales as indicated in fig. 1. That is, the scalar field theory is free (or “trivial”). Then the scalar cannot fill its intended role: if λ = 0, the electroweak symmetry is not spontaneously broken. -
Supersymmetry in Quantum Mechanics
supersy13u’rletry m intend to develop here some of the algebra pertinent to the example, the operation of changing a fermion to a boson and back basic concepts of supersymmetry. I will do this by showing an again results in changing the position of the fermion. I analogy between the quantum-mechanical harmonic os- If supersymmetry is an invariance of nature, then cillator and a bosonic field and a further analogy between the quantum-mechanical spin-% particle and a fermionic field. One [H, Q.]= O, (3) result of combining the two resulting fields will be to show that a “tower” ofdegeneracies between the states for bosons wtd fermions is that is, Q. commutes with the Hamiltonian H of the universe. Also, a natural feature of even the simplest of stspersymmetry theories. in this case, the vacuum is a supersymmetric singlet (Qalvac) = O). A supersymmetry operation changes bosons into fermions and Equations I through 3 are the basic defining equations of super- vice versa, which can be represented schematically with the operators symmetry. In the form given, however, the supcrsymmetry is solely Q: and Q, and the equations an external or space-time symmetry (a supersymmetry operation changes particle spin without altering any of the particle’s internal (?$lboson) = Ifermion)a symmetries). An exlended supersymmetry that connects external and internal symmetries can be constructed by expanding the number of and (1) operators of Eq. 2. However, for our purposes, we need not consider Q.lfermion) = Iboson)a. that complication. In the simplest version of supersymmetry, there are four such The Harmonic oscillator. -
Investigation of Theories Beyond the Standard Model
Investigation of Theories beyond the Standard Model Sajid Ali1, Georg Bergner2, Henning Gerber1, Pietro Giudice1, Istvan´ Montvay3, Gernot Munster¨ 1, Stefano Piemonte4, and Philipp Scior1 1 Institut fur¨ Theoretische Physik, Universitat¨ Munster,¨ Wilhelm-Klemm-Str. 9, D-48149 Munster¨ E-mail: fsajid.ali, h.gerber, p.giudice, munsteg, [email protected] 2 Theoretisch-Physikalisches Institut, Universitat¨ Jena, Max-Wien-Platz 1, D-07743 Jena E-mail: [email protected] 3 Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22603 Hamburg E-mail: [email protected] 4 Fakultat¨ fur¨ Physik, Universitat¨ Regensburg, Universitatsstr.¨ 31, D-93053 Regensburg E-mail: [email protected] The fundamental constituents of matter and the forces between them are splendidly described by the Standard Model of elementary particle physics. Despite its great success, it will be superseded by more comprehensive theories that are able to include phenomena, which are not covered by the Standard Model. Among the attempts in this direction are supersymmetry and Technicolor models. We report about our non-perturbative investigations of the characteristic properties of such models by numerical simulations on high-performance computers. 1 Introduction The physics of elementary particles has a marvellous theoretical framework available, which is called the Standard Model. It accurately describes a vast number of phenom- ena and experiments. In the Standard Model the fundamental interactions among parti- cles are described in terms of gauge field theories, which are characterized by an infinite- dimensional group of symmetries. Despite its great success it is evident that the Standard Model does not offer a complete description of the fundamental constituents of matter and their interactions.