Dioscorea Spp.) Tropical and Subtropical Agroecosystems, Vol

Total Page:16

File Type:pdf, Size:1020Kb

Dioscorea Spp.) Tropical and Subtropical Agroecosystems, Vol Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Shajeela, P.S.; Mohan, V. R.; Jesudas, L. Louis; Tresina Soris, P. NUTRITIONAL AND ANTINUTRITIONAL EVALUATION OF WILD YAM (Dioscorea spp.) Tropical and Subtropical Agroecosystems, vol. 14, núm. 2, mayo-agosto, 2011, pp. 723-730 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93918231037 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 14 (2011): 723-730 NUTRITIONAL AND ANTINUTRITIONAL EVALUATION OF WILD YAM (Dioscorea spp.) [EVALUACIÓN DEL VALOR NUTRICIONAL Y FACTORES ANTINUTRICIONALES DE Dioscorea spp. SILVESTRE] P.S. Shajeela1, V. R. Mohan2*, L. Louis Jesudas3 and P. Tresina Soris2 1PG & Research Department of Botany, St. John’s College, Palayamkottai, Tamil Nadu, India. 2Ethnopharmacology Unit, Research Department of Botany, V.O.Chidambaram College, Tuticorin, Tamil Nadu, India. 3PG & Research Department of Botany, St. Xavier’s College, Palayamkottai, Tamil Nadu, India. *Corresponding Author SUMMARY RESUMEN The wild yam tubers consumed by the tribes Los tubérculos de variedades silvestres de Dioscorea Kanikkars / Palliyars of South- Eastern slopes of spp. Son consumidos por las tribus Kanikkars / Western Ghats, Tamil Nadu (Dioscorea alata, D. Palliyars de la región sur y oriental de los Ghats bulbifera var vera, D. esculenta, D. oppositifolia var Occidentales de Tamil Nadu. Dioscorea alata, D. dukhumensis, D.oppositifolia var. oppositifolia, D. bulbifera var vera, D. esculenta, D. oppositifolia var pentaphylla var. pentaphylla, D. spicata, D. tomentosa dukhumensis, D.oppositifolia var. oppositifolia, D. and D. wallichi) were evaluated for its nutritional pentaphylla var. pentaphylla, D. spicata, D. tomentosa quality. From the present investigation, it is observed y D. wallichi fueron evaluados en cuanto a su calidad that most of the wild edible yams were found to be a nutricional. Se encontró que fueron una buena fuente good source of protein, lipid, crude fibre, starch, de protein, lípidos, fibra cruda, almidón, vitaminas y vitamins and minerals. Antinutritional substances like minerales. Adicionalmente se cuantificó el contenido total free phenolics, tannins, hydrogen cyanide, total de fenoles totales libres, taninos, cianuro de hidrógeno oxalate, amylase and trypsin inhibitor activities were y oxalatos totales. Se cuantificó también la actividad quantified. de los inhibidores de amilasa y tripsina. Key words: Proximate and mineral composition; Palabras claves: composición próximal; contenido de vitamins; in vitro digestibility; antinutrients. minerales; vitaminas; digestibilidad in vitro. INTRODUCTION of dietary energy in the form of carbohydrates in developing countries (Ugwu, 2009). With ever-increasing population pressure and fast depletion of natural resources, it has become Yams (Dioscorea) belong to Dioscoreaceae family. extremely important to diversify the present-day They are herbaceous plants with twine. Approximately agricultural in order to meet various human needs 600 Dioscorea species are eaten in various parts of the (Janardhanan et al., 2003). The world food crisis has world. (Agbor-Egbe and Treche, 1995). Yams, the been and will continue to be a major obstacle to edible starchy tubers, are of cultural economic and humanity. The observed interest in search for nutritional importance in the tropical and subtropical alternative / additional food and feed ingredients is of regions of the world (Coursey, 1967). Yam has been paramount importance mainly for two reasons, one is suggested to have nutritional superiority when the low production of oil seeds and grains and another compared with other tropical root crops. They are is the stiff competition between man and the livestock reported as good sources of essential dietary nutrients industry for existing food and feed materials (Baquar and Oke, 1976; Bhandari et al., 2003; (Siddhuraju et al., 2000). Root and tubers are the most Shanthakumari et al., 2008; Maneenoon et al., 2008; important food crops since time immemorial in the Arinathan et al., 2009). Earlier reports have also tropics and subtropics (Behera et al., 2009). Roots and pointed out that a few yam species contain some toxic tubers refers to any growing plant that stores edible compounds and can impact serious health material in subterranean root, corm and tuber. The complications (Anthony, 2004). Some species of wild nutritional value of roots and tubers lies in their yams, particularly wild forms, are toxic and / or potential ability to provide one of the cheapest sources unpalatable, taste bitter and cause vomiting and 723 Shajeela et al., 2011 diarrhoea when large amount are ingested without lipid and NFE by the factors 16.7, 37.7 and 16.7 proper processing or if eaten raw (Webster et al., respectively (Siddhuraju et al., 1996). From the triple 1984). acid digested sample, sodium, potassium, calcium, magnesium, iron, copper, zinc and manganese were These wild yams make a significant contribution in the analyzed using an atomic absorption diets of the tribal people of India. The tubers were spectrophotometer (Perkin Elmer Model 5000) (Issac found with a high amount protein, a good proportion and Johnson, 1975). Phosphorus was estimated of essential amino acids and appeared as a fairly good colorimetrically (Dickman and Bray, 1940). The total source of many dietary minerals. However, their wider starch was determined by the titrimetric method of utilization is limited due to the presence of some toxic Moorthy and Padmaja (2002). The antinutritional and antinutritional factors. In India the cooked wild factors, total free phenolics (Sadasivam and tubers are known to be consumed by the Palliyar and Manickam, 1996), tannins (Burns, 1971), hydrogen Kanikkar tribes (Arinathan et al., 2007; cyanide (Jackson, 1967), total oxalate (AOAC, 1984), Shanthakumari et al., 2008) living in South-Eastern trypsin inhibitor activity (Sasikaran and Padmaja, slopes of Western Ghats, Tamil Nadu. Information 2003) and amylase inhibitor activity (Rekha and regarding the chemical and nutritional content of wild Padmaja, 2002). In vitro protein digestibility was edible tuber is meager (Babu et al., 1990; Nair and determined using the multi-enzyme technique (Hsu et Nair, 1992; Rajyalakshmi and Geervani, 1994; al., 1977) and in vitro starch digestibility was assayed Shanthakumari et al., 2008; Alozie et al., 2009; by Padmaja et al. (2001). Arinathan et al., 2009). Studies of nutritional value of wild plant food are of considerable significance since RESULTS AND DISCUSSION it may help to identify long forgotten food resources. In this context, an attempt was made to understand the The crude protein (Table 1) content of the various chemical composition and antinutritional factors of the species of Dioscorea tubers investigated in the present under utilized tubers of nine species of Dioscorea to study was found to be in agreement with the earlier suggest ways and means to remove the antinutritional / investigation in the species of Dioscorea tubers toxins and make the edible tubers as the safe food (Onyilagha and Lowe, 1985; Rajyalakshmi and sources for mass consumption. Geervani, 1994; Akissoe et al., 2001; Shanthakumari et al., 2008; Alozie et al., 2009; Arinathan et al., MATERIALS AND METHODS 2009). Among the two varieties of D. oppositifolia tubers, the variety dukhumensis contained more crude Nine samples of wild yam tubers (Dioscorea alata, D. protein than the variety oppositifolia. This value is bulbifera var vera, D. esculenta, D. oppositifolia var found to be consonance with earlier reports (Arinathan dukhumensis, D.oppositifolia var. oppositifolia, D. et al., 2009). The crude lipid content of D. pentaphylla var. pentaphylla, D. spicata, D. tomentosa oppositifolia var dukhumensis was found to be higher and D. wallichi) grown in sandy loam soil consumed when compared to the presently investigated other by the tribal Kanikkars / Palliyars were collected using Dioscorea species. The content of crude lipids in the multistage sampling technique in three consecutive tubers of Dioscorea species exhibited more crude lipid rainy seasons during August and January 2009 from content than the earlier reports in the tubers of D. alata the South Eastern Slopes of Western Ghats, (Udensi et al., 2008); D. oppositifolia, D, bulbifera, D. Virudhunagar district, Madurai district and pentaphylla, D. hispida (Rajyalakshmi and Geervani, Kanyakumari district, Tamil Nadu. 1994) and D. rotundata (Akissoe et al., 2001); D. calicola, D. daunea, D.wallichi, D. stemonoides and Moisture content was determined by drying the D. glabra (Maneenoon et al., 2008). The crude fibre samples in an oven at 80°C for 24hrs and was content in the presently investigated tubers of D. expressed on a percentage basis. The samples were esculenta, D. oppositifolia var oppositifolia, D. powdered in Willey mill 60 mesh sizes and stored in pentaphylla var pentaphylla, D.spicata and D. wallichi screw cap bottles at room temperature for further were found to be more than that in the earlier reports analysis. Nitrogen content was estimated by the micro- in D. bulbifera (Pramila et al., 1991); D. oppositifolia, kjeldhal method
Recommended publications
  • Taro Improvement and Development in Papua New Guinea
    Taro Improvement and Development in Papua New Guinea - A Success Story Abner Yalu1, Davinder Singh1#, Shyam Singh Yadav1 1National Agricultural Research Institute, Lae, PNG Corresponding author email: [email protected] 2Current address: CIMMYT, Nairobi, Kenya [email protected] Asia-Pacific Association of Agricultural Research Institutions c/o FAO Regional Office for Asia and the Pacific Bangkok, Thailand For copies and further information, please write to: The Executive Secretary Asia-Pacific Association of Agricultural Research Institutions (APAARI) C/o FAO Regional Office for Asia & the Pacific (FAO RAP) Maliwan Mansion, 39 Phra Atit Road Bangkok 10200, Thailand Tel : (+66 2) 697 4371 – 3 Fax : (+66 2) 697 4408 E-Mail : [email protected] Printed in August 2009 Foreword Taro (Colocasia esculenta) is a crop of prime economic importance, used as a major food in the Pacific Island Countries (PICs). In Papua New Guinea (PNG), taro is consumed by the majority of people whose livelihood is mainly dependent on subsistence agriculture. It is the second most important root staple crop after sweet potato in terms of consumption, and is ranked fourth root crop after sweet potato, yam and cassava in terms of production. PNG is currently ranked fourth highest taro producing nation in the world. This success story illustrates as to how National Agricultural Research Institute (NARI) of PNG in collaboration with national, regional and international partners implemented a south Pacific regional project on taro conservation and utilization (TaroGen), and how the threat of taro leaf blight disease was successfully addressed by properly utilizing national capacity. So far, four high yielding leaf blight resistant taro varieties have been released to the farmers, which are widely adopted now.
    [Show full text]
  • Dioscorea Hispida, Alkaloid, Dioscorine, Agriculture Mechanization, Automation Technology
    Frontiers in Science 2011; 1(1): 16-20 DOI: 10.5923/j.fs.20110101.03 Development of Automatic Alkaloid Removal System for Dioscorea hispida Hudzari R. M.1,*, Ssomad M. A. H. A.1, Rizuwan Y. M.1, Asimi M. N. N.2, Abdullah A. B. C3 1Faculty of Agriculture and Biotechnology 2Faculty of Innovative Design and Technology 3Faculty of Food Technology, Universiti Sultan Zainal Abidin (UniSZA), 21300, Gong Badak, Kuala Terengganu, Terengganu, Malaysia Abstract Dioscorea hispida (D.hispida) is a poisonous plant which their tuber contains toxic poison and can be con- sumed after the poison or dioscorine is removed. The tubers were peeled, sliced and soaked in flowing water (river) up to 7 days during traditionally detoxified process. Due to the traditional processing methods for removal of dioscorine is difficult to practice, we develop two types of equipment (wavy and spin) based on their water circulation operations. This project consisted the stages of design, fabricate and testing for the development of stand alone dioscorine removal equipment. Sur- vival of Cyprinus carpio fish in slicing tuber of D.hispida extraction was used as a tool for detection of dioscorine removal. Results indicate that water circulation of spin operation was more effective compared to wavy type based on their capabil- ity of increasing pH activity and survival of fish as in D.hispida tuber during 6 hours of detoxified process. Therefore, this unique equipment can reduce the preparation time and also handling process of detoxified D.hispida thus making it to be more hygienic as compared to the traditional method in which river is used as a medium for dioscorine removal.
    [Show full text]
  • Maafala Fact Sheet
    MA‘AFALA This popular breadfruit variety originated in Samoa and Tonga and has been grown in Hawai‘i for decades. Ma‘afala is a fast-growing tree that tends to be shorter, with a more compact shape than most breadfruit varieties. Trees can begin bearing fruit in 2-1/2 to 3 years. 16-month-old tree 36-month-old tree Season in Hawai‘i 100 Ma‘afala ‘Ulu 0 Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Average seasonality profile of Ma‘afala compared to the Hawaiian ‘Ulu. BREADFRUIT INSTITUTE - NATIONAL TROPICAL BOTANICAL GARDEN 3530 Papalina Road, Kalaheo, Kauai, Hawaii 96741 Phone: 808.332.7324 ext 221 Fax: 808.332.9765 www.ntbg.org/breadfruit MA‘AFALA Weight 1.4 - 2.3 lbs (634-1053 g) 1.7 lbs (783g) average Shape & Size Oval; 5-6“ long x 4-5“ wide Edible Portion 83% Protein Ma’afala ‘Ulu Taro White Rice Potato g/100 g 0 1 2 3 4 5 Fiber Ma’afala ‘Ulu Taro White Rice Potato g/100 g 0 2 4 6 8 10 Potassium Ma’afala ‘Ulu Taro White Rice Potato mg/100 g Ma‘afala produces 150-200, or more, 0 250 500 750 1000 1250 delicious, nutritious fruits per year. The fruit has a creamy to pale yellow flesh and is Calcium usually seedless. The flesh has a soft, tender Ma’afala texture when cooked. ‘Ulu Breadfruit is a starchy energy-rich Taro White Rice carbohydrate food and is also gluten free. Potato mg/100 g Ma‘afala is higher in protein (3.3%) than 0 20 40 60 80 100 most breadfruit varieties, and flour made from the dried fruit contains 7.6% protein.
    [Show full text]
  • American Samoa Series 1 Elementary (K–6)
    American Samoa Series 1 Elementary (K–6) TABLE OF CONTENTS Why Study Cultures? . 2 Traditions Belief in God . 3 Folklore & Language A Unique Language . 6 Food The Samoan Appetite and the Coconut . 8 Cross-cultural Contributions Samoan Rhythm . 11 Reference Material Facts about American Samoa . 13 History and Holidays . 14 Additional Resources . 15 Visuals . 17 F OOD THE SAMOAN APPETITE AND THE COCONUT Samoans love to eat. They use a variety of tropical foods, but the most common food is the coconut. Every part of the coconut can be used, from the juice to the husk. There is even a famous legend that describes where the coconut came from. Starting Points 1. Ask the students to guess what Samoans typically eat. Point out where Samoa is on a globe and show them how it is surrounded by the ocean. Discuss how much Samoans must depend on both the sea and the land for their food. 2. Discuss how the Samoan diet differs from the United States diet. 3. Show the students a coconut and discuss it. Have they ever tasted one? Think of all the parts of the coconut and how these things could be used (i.e., husk, meat, shell, milk). Information The Samoan Diet and the Coconut Samoans eat a variety of food, including tropical crops, root vegetables, fresh fruit, chicken, pork, and seafood. However, the coconut is the most common food product in the Samoan diet. The niu is a young coconut that is not fully ripened. Every part of a coconut can be used in food preparation.
    [Show full text]
  • Polynesian Canoe Plants, Including Breadfruit, Taro, and Coconut: the Ultimate in Sustainability Planning Posted on June 27, 2019 by Leslie Lang
    HOME HOURS & DIRECTIONS GARDEN SLIDESHOW GARDEN NEWS & BLOG Polynesian Canoe Plants, Including Breadfruit, Taro, and Coconut: the Ultimate in Sustainability Planning Posted on June 27, 2019 by Leslie Lang Do you know about “canoe plants?” These are the plants—such as kalo (taro), ‘ulu (breadfruit), and niu (coconut), among others—that Polynesians brought in their carefully-stocked voyaging canoes perhaps 1,600 years ago when they first settled in Hawai‘i. Canoe plants are one more piece of the evidence showing us that the people who colonized Hawai‘i were intelligent voyagers who came in planned expeditions, not islanders who drifted here unintentionally. Not only did they successfully navigate the oceans like highways, but before they left home to explore and settle new lands, they pr​​epared themselves well. After all, they had to sustain themselves both during their long journeys and also upon arrival in a new island group, where they didn’t know what resources they would find. They maximized their limited space by packing seeds, roots, shoots, and cuttings of their most critical plants, the ones they relied on the most for food, medicine, and for making containers, fabric, cordage, and more. We can identify about 24 plants that arrived in Hawai‘i as canoe plants. You can see samples of some of them at Hawaii Tropical Botanical Garden. The Most Significant Polynesian Canoe Plants: ‘Ulu ‘Ulu (Artocarpus altilis, Artocarpus incisus or Artocarpus communis) belongs to the Moracceae (fig or mulberry) family. Known in English as breadfruit, the ‘ulu tree produces a “fruit” that is actually a vegetable with a high carbohydrate content.
    [Show full text]
  • Pacific Root Crops
    module 4 PACIFIC ROOT CROPS 60 MODULE 4 PACIFIC ROOT CROPS 4.0 ROOT CROPS IN THE PACIFIC Tropical root crops are grown widely throughout tropical and subtropical regions around the world and are a staple food for over 400 million people. Despite a growing reliance on imported flour and rice products in the Pacific, root crops such as taro (Colocasia esculenta), giant swamp taro (Cyrtosperma chamissonis), giant taro (Alocasia macrorhhiza), tannia (Xanthosoma sagittifolium), cassava (Manihot esculenta), sweet potato (Ipomoea batatas) and yams (Dioscorea spp.) remain critically important components of many Pacific Island diets, particularly for the large rural populations that still prevail in many PICTs (Table 4.1). Colocasia taro, one of the most common and popular root crops in the region, has become a mainstay of many Pacific Island cultures. Considered a prestige crop, it is the crop of choice for traditional feasts, gifts and fulfilling social obligations in many PICTs. Though less widely eaten, yams, giant taro and giant swamp taro are also culturally and nutritionally important in some PICTs and have played an important role in the region’s food security. Tannia, cassava and sweet potato are relatively newcomers to the Pacific region but have rapidly gained traction among some farmers on account of their comparative ease of establishment and cultivation, and resilience to pests, disease and drought. Generations of accumulated traditional knowledge relating to seasonal variations in rainfall, temperature, winds and pollination, and their influence on crop planting and harvesting times now lie in jeopardy given the unparalleled speed of environmental change impacting the region.
    [Show full text]
  • Weed Notes: Dioscorea Bulbifera, D. Alata, D. Sansibarensis Tunyalee
    Weed Notes: Dioscorea bulbifera, D. alata, D. sansibarensis TunyaLee Morisawa The Nature Conservancy Wildland Invasive Species Program http://tncweeds.ucdavis.edu 27 September 1999 Background: Dioscorea bulbifera L. is commonly called air-potato, potato vine, and air yam. The genus Dioscorea (true yams) is economically important world-wide as a food crop. Two-thirds of the worldwide production is grown in West Africa. The origin of D. bulbifera is uncertain. Some believe that the plant is native to both Asia and Africa. Others believe that it is a native of Asia and was subsequently introduced into Africa (Hammer, 1998). In 1905, D. bulbifera was imported into Florida for scientific study. A perennial herbaceous vine with annual stems, D. bulbifera climbs to a height of 9 m or more by twining to the left. Potato vine has alternate, orbicular to cordate leaves, 10-25 cm wide, with prominent veins (Hammer, 1998). Dioscorea alata (white yam), also found in Florida, is recognizable by its winged stems. These wings are often pink on plants growing in the shade. Unlike D. bulbifera, D. alata twines to the right. Native to Southeast Asia and Indo-Malaysia, this species is also grown as a food crop. The leaves are heart-shaped like D. bulbifera, but more elongate and primarily opposite. Sometimes the leaves are alternate in young, vigorous stems and often one leaf is aborted and so the vine appears to be alternate, but the remaining leaf scar is still visible. Stems may root and develop underground tubers that can reach over 50 kg in weight if they touch damp soil.
    [Show full text]
  • Micronesica 38(1):93–120, 2005
    Micronesica 38(1):93–120, 2005 Archaeological Evidence of a Prehistoric Farming Technique on Guam DARLENE R. MOORE Micronesian Archaeological Research Services P.O. Box 22303, GMF, Guam, 96921 Abstract—On Guam, few archaeological sites with possible agricultural features have been described and little is known about prehistoric culti- vation practices. New information about possible upland planting techniques during the Latte Phase (c. A.D. 1000–1521) of Guam’s Prehistoric Period, which began c. 3,500 years ago, is presented here. Site M201, located in the Manenggon Hills area of Guam’s interior, con- tained three pit features, two that yielded large pieces of coconut shell, bits of introduced calcareous rock, and several large thorns from the roots of yam (Dioscorea) plants. A sample of the coconut shell recovered from one of the pits yielded a calibrated (2 sigma) radiocarbon date with a range of A.D. 986–1210, indicating that the pits were dug during the early Latte Phase. Archaeological evidence and historic literature relat- ing to planting, harvesting, and cooking of roots and tubers on Guam suggest that some of the planting methods used in historic to recent times had been used at Site M201 near the beginning of the Latte Phase, about 1000 years ago. I argue that Site M201 was situated within an inland root/tuber agricultural zone. Introduction The completion of numerous archaeological projects on Guam in recent years has greatly increased our knowledge of the number and types of prehis- toric sites, yet few of these can be considered agricultural. Descriptions of agricultural terraces, planting pits, irrigation canals, or other agricultural earth works are generally absent from archaeological site reports, although it has been proposed that some of the piled rock alignments in northern Guam could be field boundaries (Liston 1996).
    [Show full text]
  • Plant Production--Root Vegetables--Yams Yams
    AU.ENCI FOR INTERNATIONAL DEVILOPME4T FOR AID USE ONLY WASHINGTON. 0 C 20823 A. PRIMARYBIBLIOGRAPHIC INPUT SHEET I. SUBJECT Bbliography Z-AFOO-1587-0000 CL ASSI- 8 SECONDARY FICATIDN Food production and nutrition--Plant production--Root vegetables--Yams 2. TITLE AND SUBTITLE A bibliography of yams and the genus Dioscorea 3. AUTHOR(S) Lawani,S.M.; 0dubanjo,M.0. 4. DOCUMENT DATE IS. NUMBER OF PAGES 6. ARC NUMBER 1976 J 199p. ARC 7. REFERENCE ORGANIZATION NAME AND ADDRESS IITA 8. SUPPLEMENTARY NOTES (Sponaoring Ordanization, Publlahera, Availability) (No annotations) 9. ABSTRACT This bibliography on yams bring together the scattered literature on the genus Dioscorea from the early nineteenth century through 1975. The 1,562 entries in this bibliography are grouped into 36 subject categories, and arranged within each category alphabetically by author. Some entries, particularly those whose titles are not sufficiently informative, are annotated. The major section titles in the book are as follows: general and reference works; history and eography; social and cultural importance; production and economics; botany including taxonomy, genetics, and breeding); yam growing (including fertilizers and plant nutrition); pests and diseases; storage; processing; chemical composition, nutritive value, and utilization; toxic and pharmacologically active constituents; author index; and subject index. Most entries are in English, with a few in French, Spanish, or German. 10. CONTROL NUMBER I1. PRICE OF DOCUMENT PN-AAC-745 IT. DrSCRIPTORS 13. PROJECT NUMBER Sweet potatoes Yams 14. CONTRACT NUMBER AID/ta-G-1251 GTS 15. TYPE OF DOCUMENT AID 590-1 44-741 A BIBLIOGRAPHY OF YAMS AND THE GENUS DIOSCOREA by S.
    [Show full text]
  • The Hawaiian Islands Case Study Robert F
    FEATURE Origin of Horticulture in Southeast Asia and the Dispersal of Domesticated Plants to the Pacific Islands by Polynesian Voyagers: The Hawaiian Islands Case Study Robert F. Bevacqua1 Honolulu Botanical Gardens, 50 North Vineyard Boulevard, Honolulu, HI 96817 In the islands of Southeast Asia, following the valleys of the Euphrates, Tigris, and Nile tuber, and fruit crops, such as taro, yams, the Pleistocene or Ice ages, the ancestors of the rivers—and that the first horticultural crops banana, and breadfruit. Polynesians began voyages of exploration into were figs, dates, grapes, olives, lettuce, on- Chang (1976) speculates that the first hor- the Pacific Ocean (Fig. 1) that resulted in the ions, cucumbers, and melons (Halfacre and ticulturists were fishers and gatherers who settlement of the Hawaiian Islands in A.D. 300 Barden, 1979; Janick, 1979). The Greek, Ro- inhabited estuaries in tropical Southeast Asia. (Bellwood, 1987; Finney, 1979; Irwin, 1992; man, and European civilizations refined plant They lived sedentary lives and had mastered Jennings, 1979; Kirch, 1985). These skilled cultivation until it evolved into the discipline the use of canoes. The surrounding terrestrial mariners were also expert horticulturists, who we recognize as horticulture today (Halfacre environment contained a diverse flora that carried aboard their canoes many domesti- and Barden, 1979; Janick, 1979). enabled the fishers to become intimately fa- cated plants that would have a dramatic impact An opposing view associates the begin- miliar with a wide range of plant resources. on the natural environment of the Hawaiian ning of horticulture with early Chinese civili- The first plants to be domesticated were not Islands and other areas of the world.
    [Show full text]
  • Weeds As Pathogen Hosts and Disease Risk for Crops In
    Journal of Fungi Article Weeds as Pathogen Hosts and Disease Risk for Crops in the Wake of a Reduced Use of Herbicides: Evidence from Yam (Dioscorea alata) Fields and Colletotrichum Pathogens in the Tropics Pauline Dentika, Harry Ozier-Lafontaine and Laurent Penet * UR ASTRO, INRAE, F-97170 Petit-Bourg, Guadeloupe, France; [email protected] (P.D.); [email protected] (H.O.-L.) * Correspondence: [email protected] Abstract: The transition toward sustainable agriculture requires rethinking cropping systems in the light of less intensive and chemically reliant practices. Weed management is one of the target practices to evolve cropping systems with decreased impact on the environment. While softened management will lead to increased weeds/crops coexistence, it is of importance to assess the relative benefits and drawbacks of new practices. Among the potential drawbacks of weeds/crops coexistence, disease risk may increase if weeds are hosting pathogens. In this study, we assessed the potential of weeds for hosting pathogenic generalist fungi known to translate into disease in crops. We first describe prevalence in fields after harvest and relate prevalence to species characteristics and communities. Then, we directly test the idea that weeds serve as inoculums sources during cropping with a natural experiment. This study highlights variation in host skill among feral weeds for Colletotrichum species, Citation: Dentika, P.; including potential congeneric sub-specialization on different weeds within communities. Last, Ozier-Lafontaine, H.; Penet, L. Weeds as Pathogen Hosts and Disease Risk prevalence within fields was more correlated to focal crop inoculation rates compared to local weed for Crops in the Wake of a Reduced load, but there was a significant correlation effect with prevalence on weeds in the vicinity of fields, Use of Herbicides: Evidence from suggesting that weeds are mediating disease levels at the local scale, too.
    [Show full text]
  • Diversification Into Novel Habitats in the Africa Clade of Dioscorea (Dioscoreaceae): Erect Habit and Elephant’S Foot Tubers Olivier Maurin1,2, A
    Maurin et al. BMC Evolutionary Biology (2016) 16:238 DOI 10.1186/s12862-016-0812-z RESEARCHARTICLE Open Access Diversification into novel habitats in the Africa clade of Dioscorea (Dioscoreaceae): erect habit and elephant’s foot tubers Olivier Maurin1,2, A. Muthama Muasya3*, Pilar Catalan4,5, Eugene Z. Shongwe1, Juan Viruel 6,7, Paul Wilkin 2 and Michelle van der Bank1 Abstract Background: Dioscorea is a widely distributed and highly diversified genus in tropical regions where it is represented by ten main clades, one of which diversified exclusively in Africa. In southern Africa it is characterised by a distinct group of species with a pachycaul or “elephant’sfoot” structure that is partially to fully exposed above the substrate. In contrast to African representatives of the genus from other clades, occurring mainly in forest or woodland, the pachycaul taxa and their southern African relatives occur in diverse habitats ranging from woodland to open vegetation. Here we investigate patterns of diversification in the African clade, time of transition from forest to more open habitat, and morphological traits associated with each habitat and evaluate if such transitions have led to modification of reproductive organs and mode of dispersal. Results: The Africa clade originated in the Oligocene and comprises four subclades. The Dioscorea buchananii subclade (southeastern tropical Africa and South Africa) is sister to the East African subclade, which is respectively sister to the recently evolved sister South African (e. g., Cape and Pachycaul) subclades. The Cape and Pachycaul subclades diversified in the east of the Cape Peninsula in the mid Miocene, in an area with complex geomorphology and climate, where the fynbos, thicket, succulent karoo and forest biomes meet.
    [Show full text]