Algebraic Geometric Codes on Curves and Surfaces

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Geometric Codes on Curves and Surfaces Algebraic geometric codes on curves and surfaces Paolo Zampolini Master Program in Mathematics Faculty of Science University of Padova, Italy. Supervisor: prof. Luca Barbieri Viale Department of Pure and Applied Mathematics, University of Padova. Italy Padova, 22nd March 2007 \The main application of Pure Mathematics is to make you happy" H.W. Lenstra, Leiden, November 2005 Contents Introduction 6 1 Basic notions of coding theory 7 2 Algebraic geometric codes on curves 11 2.1 AG codes . 11 2.2 Dual AG codes . 12 2.3 Rational points on curves and lower bounds . 15 3 Decoding methods 21 3.1 SV-algorithm . 21 3.2 A cubic curve . 24 3.3 The Duursma algorithm . 27 3.4 Example . 34 3.5 Another example: the Klein quartic . 36 4 Codes over higher dimensional varieties 41 4.1 Sheaves of modules . 41 4.2 Divisors . 45 4.3 De¯nition of AG codes on varieties . 48 5 Codes on surfaces 50 5.1 Ample and very ample invertible sheaves . 50 5.2 Arithmetic and geometric genus of varieties . 51 5.3 Basic properties of surfaces . 54 5.4 Parameters of codes on surfaces . 56 6 Codes on ruled surfaces 59 6.1 The projective space bundle . 59 6.2 Ruled surfaces . 60 6.3 Parameters of codes on ruled surfaces . 63 6.4 Codes on rational ruled surfaces . 64 6.5 Computing the dimension in the decomposable case . 65 6.6 Computing the dimension in the general case . 66 6.7 Ruled surfaces over elliptic curves . 70 6.8 Conclusion and open problems . 75 6 INTRODUCTION Introduction One of the main developments in the coding theory in the '80s was the introduction of algebraic geometric codes, due to the russian mathematician and engineer Goppa. His main idea was to associate linear codes to divisors on curves. In 1982 Tsfasman, Vladut and Zink used this new class of codes to prove the existence of codes with better parameters than the ones ensured by the Gilbert-Varshamow bound. The theory of algebraic geometric codes on curves has been deeply stud- ied during the '80s and the '90s and now we can consider it to be well-known by the mathematical community. Nowadays most of the works about alge- braic geometric codes on curves concern the search of a faster decoding algo- rithm. Indeed at the present times other codes with more e±cient decoding algorithms are preferred to algebraic geometric codes in the applications. In 1991 Tsfasman and Vladut generalized Goppa's idea and de¯ned al- gebraic geometric codes on varieties. Nevertheless, the ¯rst publication about codes on higher dimensional va- rieties is dated 2001. Hansen's PhD thesis opened a new interesting research ¯eld, combining both coding theory and the geometry of varieties. The aim of this work is to introduce the theory of algebraic geometric codes on curves and present the recent progresses about codes on higher dimen- sional varieties. In the ¯rst section we recall the elementary notions of coding theory. The second section regards algebraic geometric codes on curves with par- ticular attention to the connection between them and the Gilbert-Varshamov bound, while the third one contains two decoding algorithms for codes on curves. We introduce in the fourth section codes on higher dimensional varieties and then we follow Hansen and Zarzar's works to study codes on surfaces. Lastly we focus on Lomont's PhD thesis about codes on ruled surfaces and we try to solve a problem left open in it. In sections 2 and 3 the language of classical algebraic geometry is as- sumed to be known, while in the last three sections we also recall the re- quired notions of scheme theory. Proofs are often omitted but we try to de¯ne almost every geometric object we use. 7 1 Basic notions of coding theory De¯nition 1.1 Let Fq be a ¯eld with q elements. An error correcting n n code is a subset C of Fq . C is said linear if it is a sub-vector space of Fq . In practice most of the codes are linear codes and they are used to transform words of length k < n (with letters in the alphabet Fq) to words of length n in order to ¯nd and correct errors happened during the transmission. The elements of the code are called words. n Let x,y 2 Fq . The Hamming distance (or, simply, distance) is de¯ned as d(x; y) := #fi j 1 · i · n; xi 6= yig. n d really de¯nes a metric on Fq . The minimum distance d of a code C is d = d(C) := minfd(x; y) j x; y 2 C; x 6= yg. It is immediate to see that the minimum distance of a linear code corresponds to the minimum weight w = w(C) := minfwt(x) j x 2 C; x 6= 0g, where wt(x) := #fi j xi 6= 0g. Let us indicate with (n; M; d) a code of length n, M words and distance d, while an [n; k; d]-code is a linear code of length n, dimension k and distance d. The decoding of a message respects the so-called maximum-likelihood- decoding principle, i.e. we suppose that, during the transmission, the small- n est number of errors occurred. The received vector y 2 Fq is interpreted as the code word x 2 C such that wt(x ¡ y) is as small as possible. Thus it is clear that a code with minimum distance d is able to ¯nd every error of d¡1 weight e < d and correct every error of weight not bigger than e = b 2 c. It follows trivially from the triangular inequality that spheres of radius e and center in a code word are disjoint. A code with distance d = 2e+1 is said to n n be perfect if such spheres cover Fq . Hence, for a perfect code, every y 2 Fq has distance less or equal e from a unique code word. The most immediate relation between the parameters of a code is called singleton bound. Proposition 1.1 (Singleton bound) Let C be an (n; M; d)¡code. Then Mqd¡1 · qn. n The proposition can be proved just by counting the elements of Fq that d¡1 belong to the disjoint spheres of radius e = b 2 c and with a code word as 8 1 BASIC NOTIONS OF CODING THEORY center. A code whose parameters satisfy the equality in the previous propo- sition is called MDS (maximum-distance-separable). We remark that, for a [n; k; d]-code, the singleton bound can be written as d + k · n + 1. A fundamental role in the development of coding theory is due to Shan- non's work ([20]) and, in particular, to his famous theorem. Suppose we have to transmit a message through a channel where the probability of re- ceiving a wrong digit is p and the probability of transmitting a wrong symbol is the same for every symbol (such a channel is called uniform). Further- more suppose we use a code C formed by M words x1; ¢ ¢ ¢ ; xM which occur with the same probability. Let Pi be the probability of not being able to decode exactly xi according to the maximum-likelihood-decoding principle. In thisP case the average probability of wrongly decoding a code in C is n Pi PC = i=1 M . Hence a code with good properties is a a code such that PC ¤ is minimum. Let P (M; n; p) be the minimum PC for C running over all the logq M (M; n)-codes and R = n the so-called information rate. Theorem 1.1 (Shannon) There exists a function c, called channel ca- bRnc pacity, depending only on q and p, such that, if 0 < R < c and Mn = q , ¤ then limn!+1 P (Mn; n; p) = 0. By Shannon's theorem, for R in an interval depending only on the trans- mission channel, among the codes with the same information rate, the good ones are those with n big. This is a good motivation to look for long codes and to study the asymptotical behavior of codes in the same class, letting n change. During the transmission of a word of length n through a channel with probability p, we expect an average of pn errors. Hence we need a code with minimum distance d > 2pn. We therefore require that d grows at least proportionally to n. d Let ± = n , Aq(n; d) = maxfM j there exists a (n; M; d)-code over Fqg. We now de¯ne the function ®: log Aq(n; b±nc) ®(±) = lim sup q , n!+1 n which is an important and widely studied object of the coding theory. Thus we are interested in studying, for a ¯xed ±, what the best possible infor- mation rate for a code of length n is, and then letting n go to in¯nity, as suggested by Shannon's theorem. The easiest (and the least precise) among those upper bounds for ® is a direct consequence of singleton bound. Theorem 1.2 For ± 2 [0; 1], we have ®(±) · 1 ¡ ±. 9 Proof: From proposition 1.1 we have M · qn+1¡d for every (n; M; d)-code, so Aq(n; ±n) · n+1¡±n. Taking the limsup, we conclude that ®(±) · 1¡±. A much more interesting result is Gilbert's (or Gilbert-Varshamov) lower q¡1 bound. De¯ne on [0; q ] the entropy function as ½ 0 if x = 0 Hq(x) := q¡1 x logq(q ¡ 1) ¡ x logq x ¡ (1 ¡ x) logq(1 ¡ x) if 0 < x · q q¡1 Hq is an increasing function and its value in 1 is q .
Recommended publications
  • Arxiv:1912.10980V2 [Math.AG] 28 Jan 2021 6
    Automorphisms of real del Pezzo surfaces and the real plane Cremona group Egor Yasinsky* Universität Basel Departement Mathematik und Informatik Spiegelgasse 1, 4051 Basel, Switzerland ABSTRACT. We study automorphism groups of real del Pezzo surfaces, concentrating on finite groups acting with invariant Picard number equal to one. As a result, we obtain a vast part of classification of finite subgroups in the real plane Cremona group. CONTENTS 1. Introduction 2 1.1. The classification problem2 1.2. G-surfaces3 1.3. Some comments on the conic bundle case4 1.4. Notation and conventions6 2. Some auxiliary results7 2.1. A quick look at (real) del Pezzo surfaces7 2.2. Sarkisov links8 2.3. Topological bounds9 2.4. Classical linear groups 10 3. Del Pezzo surfaces of degree 8 10 4. Del Pezzo surfaces of degree 6 13 5. Del Pezzo surfaces of degree 5 16 arXiv:1912.10980v2 [math.AG] 28 Jan 2021 6. Del Pezzo surfaces of degree 4 18 6.1. Topology and equations 18 6.2. Automorphisms 20 6.3. Groups acting minimally on real del Pezzo quartics 21 7. Del Pezzo surfaces of degree 3: cubic surfaces 28 Sylvester non-degenerate cubic surfaces 34 7.1. Clebsch diagonal cubic 35 *[email protected] Keywords: Cremona group, conic bundle, del Pezzo surface, automorphism group, real algebraic surface. 1 2 7.2. Cubic surfaces with automorphism group S4 36 Sylvester degenerate cubic surfaces 37 7.3. Equianharmonic case: Fermat cubic 37 7.4. Non-equianharmonic case 39 7.5. Non-cyclic Sylvester degenerate surfaces 39 8. Del Pezzo surfaces of degree 2 40 9.
    [Show full text]
  • Combination of Cubic and Quartic Plane Curve
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis.
    [Show full text]
  • Effective Methods for Plane Quartics, Their Theta Characteristics and The
    Effective methods for plane quartics, their theta characteristics and the Scorza map Giorgio Ottaviani Abstract Notes for the workshop on \Plane quartics, Scorza map and related topics", held in Catania, January 19-21, 2016. The last section con- tains eight Macaulay2 scripts on theta characteristics and the Scorza map, with a tutorial. The first sections give an introduction to these scripts. Contents 1 Introduction 2 1.1 How to write down plane quartics and their theta characteristics 2 1.2 Clebsch and L¨urothquartics . 4 1.3 The Scorza map . 5 1.4 Description of the content . 5 1.5 Summary of the eight M2 scripts presented in x9 . 6 1.6 Acknowledgements . 7 2 Apolarity, Waring decompositions 7 3 The Aronhold invariant of plane cubics 8 4 Three descriptions of an even theta characteristic 11 4.1 The symmetric determinantal description . 11 4.2 The sextic model . 11 4.3 The (3; 3)-correspondence . 13 5 The Aronhold covariant of plane quartics and the Scorza map. 14 1 6 Contact cubics and contact triangles 15 7 The invariant ring of plane quartics 17 8 The link with the seven eigentensors of a plane cubic 18 9 Eight algorithms and Macaulay2 scripts, with a tutorial 19 1 Introduction 1.1 How to write down plane quartics and their theta characteristics Plane quartics make a relevant family of algebraic curves because their plane embedding is the canonical embedding. As a byproduct, intrinsic and pro- jective geometry are strictly connected. It is not a surprise that the theta characteristics of a plane quartic, being the 64 square roots of the canonical bundle, show up in many projective constructions.
    [Show full text]
  • Arxiv:1012.2020V1 [Math.CV]
    TRANSITIVITY ON WEIERSTRASS POINTS ZOË LAING AND DAVID SINGERMAN 1. Introduction An automorphism of a Riemann surface will preserve its set of Weier- strass points. In this paper, we search for Riemann surfaces whose automorphism groups act transitively on the Weierstrass points. One well-known example is Klein’s quartic, which is known to have 24 Weierstrass points permuted transitively by it’s automorphism group, PSL(2, 7) of order 168. An investigation of when Hurwitz groups act transitively has been made by Magaard and Völklein [19]. After a section on the preliminaries, we examine the transitivity property on several classes of surfaces. The easiest case is when the surface is hy- perelliptic, and we find all hyperelliptic surfaces with the transitivity property (there are infinitely many of them). We then consider surfaces with automorphism group PSL(2, q), Weierstrass points of weight 1, and other classes of Riemann surfaces, ending with Fermat curves. Basically, we find that the transitivity property property seems quite rare and that the surfaces we have found with this property are inter- esting for other reasons too. 2. Preliminaries Weierstrass Gap Theorem ([6]). Let X be a compact Riemann sur- face of genus g. Then for each point p ∈ X there are precisely g integers 1 = γ1 < γ2 <...<γg < 2g such that there is no meromor- arXiv:1012.2020v1 [math.CV] 9 Dec 2010 phic function on X whose only pole is one of order γj at p and which is analytic elsewhere. The integers γ1,...,γg are called the gaps at p. The complement of the gaps at p in the natural numbers are called the non-gaps at p.
    [Show full text]
  • Klein's Curve
    KLEIN'S CURVE H.W. BRADEN AND T.P. NORTHOVER Abstract. Riemann surfaces with symmetries arise in many studies of integrable sys- tems. We illustrate new techniques in investigating such surfaces by means of an example. By giving an homology basis well adapted to the symmetries of Klein's curve, presented as a plane curve, we derive a new expression for its period matrix. This is explicitly related to the hyperbolic model and results of Rauch and Lewittes. 1. Introduction Riemann surfaces with their differing analytic, algebraic, geometric and topological per- spectives have long been been objects of fascination. In recent years they have appeared in many guises in mathematical physics (for example string theory and Seiberg-Witten theory) with integrable systems being a unifying theme [BK]. In the modern approach to integrable systems a spectral curve, the Riemann surface in view, plays a fundamental role: one, for example, constructs solutions to the integrable system in terms of analytic objects (the Baker-Akhiezer functions) associated with the curve; the moduli of the curve play the role of actions for the integrable system. Although a reasonably good picture exists of the geom- etry and deformations of these systems it is far more difficult to construct actual solutions { largely due to the transcendental nature of the construction. An actual solution requires the period matrix of the curve, and there may be (as in the examples of monopoles, harmonic maps or the AdS-CFT correspondence) constraints on some of these periods. Fortunately computational aspects of Riemann surfaces are also developing. The numerical evaluation of period matrices (suitable for constructing numerical solutions) is now straightforward but analytic studies are far more difficult.
    [Show full text]
  • Geometry of Algebraic Curves
    Geometry of Algebraic Curves Fall 2011 Course taught by Joe Harris Notes by Atanas Atanasov One Oxford Street, Cambridge, MA 02138 E-mail address: [email protected] Contents Lecture 1. September 2, 2011 6 Lecture 2. September 7, 2011 10 2.1. Riemann surfaces associated to a polynomial 10 2.2. The degree of KX and Riemann-Hurwitz 13 2.3. Maps into projective space 15 2.4. An amusing fact 16 Lecture 3. September 9, 2011 17 3.1. Embedding Riemann surfaces in projective space 17 3.2. Geometric Riemann-Roch 17 3.3. Adjunction 18 Lecture 4. September 12, 2011 21 4.1. A change of viewpoint 21 4.2. The Brill-Noether problem 21 Lecture 5. September 16, 2011 25 5.1. Remark on a homework problem 25 5.2. Abel's Theorem 25 5.3. Examples and applications 27 Lecture 6. September 21, 2011 30 6.1. The canonical divisor on a smooth plane curve 30 6.2. More general divisors on smooth plane curves 31 6.3. The canonical divisor on a nodal plane curve 32 6.4. More general divisors on nodal plane curves 33 Lecture 7. September 23, 2011 35 7.1. More on divisors 35 7.2. Riemann-Roch, finally 36 7.3. Fun applications 37 7.4. Sheaf cohomology 37 Lecture 8. September 28, 2011 40 8.1. Examples of low genus 40 8.2. Hyperelliptic curves 40 8.3. Low genus examples 42 Lecture 9. September 30, 2011 44 9.1. Automorphisms of genus 0 an 1 curves 44 9.2.
    [Show full text]
  • The Klein Quartic in Number Theory
    The Eightfold Way MSRI Publications Volume 35, 1998 The Klein Quartic in Number Theory NOAM D. ELKIES Abstract. We describe the Klein quartic X and highlight some of its re- markable properties that are of particular interest in number theory. These include extremal properties in characteristics 2, 3, and 7, the primes divid- ing the order of the automorphism group of X; an explicit identification of X with the modular curve X(7); and applications to the class number 1 problem and the case n = 7 of Fermat. Introduction Overview. In this expository paper we describe some of the remarkable prop- erties of the Klein quartic that are of particular interest in number theory. The Klein quartic X is the unique curve of genus 3 over C with an automorphism group G of size 168, the maximum for its genus. Since G is central to the story, we begin with a detailed description of G and its representation on the 2 three-dimensional space V in whose projectivization P(V )=P the Klein quar- tic lives. The first section is devoted to this representation and its invariants, starting over C and then considering arithmetical questions of fields of definition and integral structures. There we also encounter a G-lattice that later occurs as both the period lattice and a Mordell–Weil lattice for X. In the second section we introduce X and investigate it as a Riemann surface with automorphisms by G. In the third section we consider the arithmetic of X: rational points, relations with the Fermat curve and Fermat’s “Last Theorem” for exponent 7, and some extremal properties of the reduction of X modulo the primes 2, 3, 7 dividing #G.
    [Show full text]
  • The 21 Reducible Polars of Klein's Quartic
    The 21 reducible polars of Klein's quartic Piotr Pokora and Joaquim Ro´e Published in Experimental Mathematics, 2019, pp. 1{18. Abstract We describe the singularities and related properties of the arrange- ment of 21 reducible polars of Klein's quartic, containing Klein's well- known arrangement of 21 lines. Introduction In 1878/1879, F. Klein [20] found and studied in detail a remarkable complex algebraic curve, which nowadays bears his name. It can be defined in the complex projective plane by the homogeneous polynomial 3 3 3 Φ4 : x y + y z + z x; and its exceptional properties follow from the fact that it has an automor- phism group of the maximal possible order according to Hurzwitz's bound [18], namely j Aut(Φ4)j = 84(g − 1) = 168: Because Φ4 is a smooth quartic, its group of automorphisms Aut(Φ4) is realized by a subgroup G ⊂ Aut( 2 ) = PGL(3; ). PC C In the theory of complex arrangements of lines, there is a particularly symmetric arrangement of 21 lines well known for its properties, extremal in many senses; it was discovered by Klein, and it is the unique set of 21 lines invariant under the action of G. In this work, following the recent trend to extend the study of arrangements of lines to arrangements of curves of higher degree, we study an arrangement of lines and conics closely related to Klein's arrangement of lines, which displays a similarly rich geometry, with some features extreme among arrangements of lines and conics. Every sufficiently general smooth quartic has 21 reducible polars (a fact already known by E.
    [Show full text]
  • Geometry of Algebraic Curves
    Geometry of Algebraic Curves Lectures delivered by Joe Harris Notes by Akhil Mathew Fall 2011, Harvard Contents Lecture 1 9/2 x1 Introduction 5 x2 Topics 5 x3 Basics 6 x4 Homework 11 Lecture 2 9/7 x1 Riemann surfaces associated to a polynomial 11 x2 IOUs from last time: the degree of KX , the Riemann-Hurwitz relation 13 x3 Maps to projective space 15 x4 Trefoils 16 Lecture 3 9/9 x1 The criterion for very ampleness 17 x2 Hyperelliptic curves 18 x3 Properties of projective varieties 19 x4 The adjunction formula 20 x5 Starting the course proper 21 Lecture 4 9/12 x1 Motivation 23 x2 A really horrible answer 24 x3 Plane curves birational to a given curve 25 x4 Statement of the result 26 Lecture 5 9/16 x1 Homework 27 x2 Abel's theorem 27 x3 Consequences of Abel's theorem 29 x4 Curves of genus one 31 x5 Genus two, beginnings 32 Lecture 6 9/21 x1 Differentials on smooth plane curves 34 x2 The more general problem 36 x3 Differentials on general curves 37 x4 Finding L(D) on a general curve 39 Lecture 7 9/23 x1 More on L(D) 40 x2 Riemann-Roch 41 x3 Sheaf cohomology 43 Lecture 8 9/28 x1 Divisors for g = 3; hyperelliptic curves 46 x2 g = 4 48 x3 g = 5 50 1 Lecture 9 9/30 x1 Low genus examples 51 x2 The Hurwitz bound 52 2.1 Step 1 . 53 2.2 Step 10 ................................. 54 2.3 Step 100 ................................ 54 2.4 Step 2 .
    [Show full text]
  • Simple Finite Non-Abelian Flavor Groups
    UFIFT-HEP-07-13 Simple Finite Non-Abelian Flavor Groups 1 1,2 1 Christoph Luhn ,∗ Salah Nasri ,† Pierre Ramond ‡ 1Institute for Fundamental Theory, Department of Physics, University of Florida, Gainesville, FL 32611, USA 2Department of Physics, United Arab Emirates University, P.O.Box 17551, Al Ain, United Arab Emirates Abstract The recently measured unexpected neutrino mixing patterns have caused a resurgence of interest in the study of finite flavor groups with two- and three-dimensional irreducible representations. This paper details the mathematics of the two finite simple groups with such representations, the Icosahedral group A5, a subgroup of SO(3), and PSL2(7), a subgroup of SU(3). arXiv:0709.1447v2 [hep-th] 12 Dec 2007 ∗E-mail: [email protected] †E-mail: [email protected] ‡E-mail: [email protected] 1 Introduction The gauge interactions of the Standard Model are associated with symmetries which naturally generalize to a Grand-Unified structure. Yet there is no cor- responding recognizable symmetry in the Yukawa couplings of the three chiral families. I. I. Rabi’s old question about the muon, “Who ordered it?”, remains unanswered. Today, in spite of the large number of measured masses and mixing angles, the origin of the chirality-breaking Yukawa interactions remain shrouded in mystery. A natural suggestion that the three chiral families assemble in three- or two-dimensional representations of a continuous group, single out SU(3) [1], or SU(2) [2], respectively, as natural flavor groups, which have to be broken at high energies to avoid flavor-changing neutral processes. Unfortunately, such hypotheses did not prove particularly fruitful.
    [Show full text]
  • MR: Publications Results for "Author/Related=(Edge, W*)"
    MR: Publications results for "Author/Related=(Edge, W*)" http://www.ams.org/mathscinet/search/publdoc.html?bdlall=bdlall&req... MathJax is on Publications results for "Author/Related=(Edge, W*)" MR1697595 (2000b:01029) Citations Monk, David From References: 0 Obituary: Professor W. L. Edge: 1904–1997. From Reviews: 0 Proc. Edinburgh Math. Soc. (2) 41 (1998), no. 3, 631–641. 01A70 W. L. Edge (1904–1997) was a lecturer at the University of Edinburgh from 1932 until his retirement in 1975, and was associated with some of the most famous mathematicians of his time, including E. T. Whittaker, H. W. Turnbull, and H. S. M. Coxeter. Just two years into his career at Edinburgh he was elected a Fellow of the Royal Society of Edinburgh. He carried out extensive research on the classification of surfaces, and this work is nicely summarized in the present obituary. Most amazing of all is Edge's continuing productivity, even with failing eyesight, into his 90th year. Between 1932 and 1994 he produced 93 research papers, all, according to the author, written in a visual geometric style. Reviewed by R. L. Cooke MR1298589 (95j:14075) Citations Edge, W. L. From References: 1 28 real bitangents. (English summary) From Reviews: 0 Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 4, 729–736. 14P05 (14H99 14N10) It is classically known that the number of real bitangent lines of a smooth real plane quartic is related to the number of ovals of the quartic and their nesting (for a modern treatment, see B. H. Gross and J. D.
    [Show full text]
  • Pdf of the Talk I
    Construction of highly symmetric Riemann surfaces, related manifolds and some exceptional objects, I Iain Aitchison 6 8 12 5 7 11 2 3 5 4 6 10 Hiroshima University March 2018 (IRA: Hiroshima 03-2018) Highly symmetric objects I 1 / 80 Highly symmetric objects I Motivation and context evolution Immediate: Talk given last year at Hiroshima (originally Caltech 2010) 20 years ago: Thurston's highly symmetric 8-component link Klein's quartic: sculpture at MSRI Berkeley Today: (p = 5) Historical context { Antiquity, 19th-20th Centuries Exceptional objects { Last letter of Galois, p = 5; 7; 11 Arnold Trinities Transcription complexes Construction of some special objects (p = 5) Tomorrow: (p = 7; 11) Construction of some special objects (p = 7; 11) WTC = Weeks-Thurston-Christie 8-component link New picture for Mathieu group M24, Steiner S(5; 8; 24) (Golay code, octads) New Arnold Trinity involving Thurston's 8-component link (IRA: Hiroshima 03-2018) Highly symmetric objects I 2 / 80 The Eightfold Way: Klein's Quartic at MSRI, Berkeley Eightfold Way sculpture at MSRI, Berkeley, commissioned by Thurston (IRA: Hiroshima 03-2018) Highly symmetric objects I 3 / 80 Excerpt of Thurston: `How to see 3-manifolds' View of link in S3 View from cusp in universal cover H3 Hyperbolic link complement: extraordinary 336-fold symmetry Weeks - Thurston -Joe Christie, seminar talk MSRI 1998 Immersed 24-punctured totally geodesic Klein quartic Complementary regions 28 regular ideal tetrahedra (IRA: Hiroshima 03-2018) Highly symmetric objects I 4 / 80 Old Babylonian Antiquity { 3,4,5 3 + 4 + 5 = 12 32 + 42 = 52 3:4:5 = 60 Tables of integers, inverses Right-triangles: 1 1 x2 − 1 1 1 x2 + 1 (x − ) = (x + ) = 2 x 2x 2 x 2x Rescale, give Pythagorean triples when x rational: x2 − 1; 2x; x2 + 1 (IRA: Hiroshima 03-2018) Highly symmetric objects I 5 / 80 Plimpton 322 circa 1800 BC Old Babylonian, Larsa 564 ** Translated about 70 yearsJ.
    [Show full text]