Pdf of the Talk I

Total Page:16

File Type:pdf, Size:1020Kb

Pdf of the Talk I Construction of highly symmetric Riemann surfaces, related manifolds and some exceptional objects, I Iain Aitchison 6 8 12 5 7 11 2 3 5 4 6 10 Hiroshima University March 2018 (IRA: Hiroshima 03-2018) Highly symmetric objects I 1 / 80 Highly symmetric objects I Motivation and context evolution Immediate: Talk given last year at Hiroshima (originally Caltech 2010) 20 years ago: Thurston's highly symmetric 8-component link Klein's quartic: sculpture at MSRI Berkeley Today: (p = 5) Historical context { Antiquity, 19th-20th Centuries Exceptional objects { Last letter of Galois, p = 5; 7; 11 Arnold Trinities Transcription complexes Construction of some special objects (p = 5) Tomorrow: (p = 7; 11) Construction of some special objects (p = 7; 11) WTC = Weeks-Thurston-Christie 8-component link New picture for Mathieu group M24, Steiner S(5; 8; 24) (Golay code, octads) New Arnold Trinity involving Thurston's 8-component link (IRA: Hiroshima 03-2018) Highly symmetric objects I 2 / 80 The Eightfold Way: Klein's Quartic at MSRI, Berkeley Eightfold Way sculpture at MSRI, Berkeley, commissioned by Thurston (IRA: Hiroshima 03-2018) Highly symmetric objects I 3 / 80 Excerpt of Thurston: `How to see 3-manifolds' View of link in S3 View from cusp in universal cover H3 Hyperbolic link complement: extraordinary 336-fold symmetry Weeks - Thurston -Joe Christie, seminar talk MSRI 1998 Immersed 24-punctured totally geodesic Klein quartic Complementary regions 28 regular ideal tetrahedra (IRA: Hiroshima 03-2018) Highly symmetric objects I 4 / 80 Old Babylonian Antiquity { 3,4,5 3 + 4 + 5 = 12 32 + 42 = 52 3:4:5 = 60 Tables of integers, inverses Right-triangles: 1 1 x2 − 1 1 1 x2 + 1 (x − ) = (x + ) = 2 x 2x 2 x 2x Rescale, give Pythagorean triples when x rational: x2 − 1; 2x; x2 + 1 (IRA: Hiroshima 03-2018) Highly symmetric objects I 5 / 80 Plimpton 322 circa 1800 BC Old Babylonian, Larsa 564 ** Translated about 70 yearsJ. P. Britton agoet al. 4 Appendix**B: ListPhoto of t ofhe tablet Pythagorean triples? Plimpton Cuneiform 322, Rare Book and Manuscript Library, Columbia University, Courtesy(egJane Siegel, (3,4,5),photo C. Proust (5,12,13),(see Figs.14, 15). ... Integers forming sides of a right-angled triangle.) Fig. 14 Plimpton 322, obverse (IRA: Hiroshima 03-2018) Highly symmetric objects I 6 / 80 Fig. 15 Plimpton 322, reverse 123 Ancient Greece Xenophanes c. 570-475 BC { all is opinion, no one can know truth Pythagoras c. 570-495 BC Heraclitus c. 535-475 BC { all existence is change Parmenides c. 515BC, pupil of Parmenides, { all change is illusion ZENO, pupil of Xenophanes, c. 490-430 BC { paradoxes, space, time, motion Leucippus, contemporary of Zeno { atomism, mentor of DEMOCRITUS c. 460-370 BC { atomic theory of the universe Socrates c. 470-399 BC PLATO c. 427-347 BC { unchanging mathematical reality, space, ... Fire:Tetrahedron Air:Octahedron Earth:Cube Water:Icosahedron Universe:Dodecahedron (IRA: Hiroshima 03-2018) Highly symmetric objects I 7 / 80 Consequence 2: Democritus and atomism (Aristotle) `... the differences in atoms are the causes of other things. They (Democritus et al) hold that these differences are three { shape, arrangement and position; being, they say, differs only in `rhythm, touching and turning', of which `rhythm' is shape, `touching' is arrangement and `turning' is position' rhythm touching turning shape arrangement position A − N AN − NA Z − N (Aristotle) `..these atoms move in the infinite void,separated one from the other and differing in shapes, sizes, position and arrangement; overtaking each other they collide, and some are shaken away in any chance direction, while others, becoming intertwined one with another according to the congruity of their shapes, sizes, positions and arrangements, stay together and so effect the coming into being of compound bodies.' (IRA: Hiroshima 03-2018) Highly symmetric objects I 8 / 80 Consequence 1: Plato's concept of space Fundamental polyhedra : PlatonicTHE PLATONIC solids (dodecahedron SOLIDS problematic) 3 SPACE: What is enclosed by a surface configuration of special 3-4-5-gons Fundamental triangles 3 4 5 60-60-60 30-60-90 45-45-90 36-54-90 54-54-72 (IRA: Hiroshima 03-2018) Highly symmetric objects I 9 / 80 Thales {3,4,5, Pythagorean triples, rational points z = p + iq; z2 = (p2 − q2) + i:2pq zz p2−q2 2pq (p+iq)2 Q = p2+q2 + i p2+q2 = (p+iq)(p−iq) Q 1+iq=p 1+iσ = (1−iq=p) = 1−iσ ; σ = q=p R z a P R = iσ ! 1+iσ = Q S aa 1−iσ Stereographic projection from S from Cayley transform, Half plane to Unit Disc Pythagorean Triples (p2 − q2; 2pq; p2 + q2) $ Rational points on circle (IRA: Hiroshima 03-2018) Highly symmetric objects I 10 / 80 Cayley transform= Octahedron rotational symmetry StereographicCayley transform projection is and conformal, the octahedron/cube sends circles on S2 to circles, lines Rotated octahedron Projection to C Cayley transform: order-3 rotation of an octahedron around an axis through opposite triangle faces. (IRA: Hiroshima 03-2018) Highly symmetric objects I 11 / 80 (IRA-VAC-31-29-11-13) Star of Ishtar, Daughter of Sin 14 / 62 Modular Diagram for SL2(Z) Modular diagram in upper-half-space and unit disc Rational numbers on the real line (as boundary of the upper-half-plane) and as rational points on the circle under the Cayley transform. (IRA-VAC-31-29-11-13) Star of Ishtar, Daughter of Sin 10 / 62 (IRA: Hiroshima 03-2018) Highly symmetric objects I 12 / 80 Elliptic curves as Euclidean triangles Torus from parallelogram; Parallelogram gives two Euclidean triangles Always possible: any Euclidean torus from triangle, angles ≤ π=2 A A D B C B C Choice of two triangles Unit base, apex in fundamental region (IRA: Hiroshima 03-2018) Highly symmetric objects I 13 / 80 4, 6 : Moduli space as Euclidean triangles Parallelograms give Euclidean triangles defining moduli space Rectangle 1/h I _ 1 1 I S Equilateral 1 Square i i a E a h a Rectangle 1 a Isosceles Singular points S, E correspond to Euclidean tori arising from the tessellation of the plane by SQUARES or regular HEXAGONS (honeycomb lattice). (IRA: Hiroshima 03-2018) Highly symmetric objects I 14 / 80 4, 6: Escher's Heaven and Hell, Circle Limit IV Hyperbolic plane tessellated by hexagons 4 at each vertex; dually, by squares 6 at each vertex. Remark. (A, 1988): All possible decompositions of all 3-manifolds as a union of generic 3-polyhedra arise from quotient surfaces of this pattern of hexagons. (Heegaard surfaces, handlebodies) (IRA: Hiroshima 03-2018) Highly symmetric objects I 15 / 80 Symmetry : Legacy of Galois Non-solvability by radicals for general quintics etc simple groups { A5 simple, series An < Sn; n > 4 simple simple groups { L2(p) := PSL2(Z=pZ) simple, p prime p > 11: L2(p) has no non-trivial permutation representation on fewer than p + 1 Exceptional: p = 5; 7; 11, related to Platonic solids (IRA: Hiroshima 03-2018) Highly symmetric objects I 16 / 80 Last letter of Galois Ainsi pour le cas de p = 5; 7; 11, l'equation modulaire s'abaisse au degre p. En toute rigueur, cette reduction n'est pas possible dans les cas plus eleves. `No subgroup F such that (set-theoretically) L2(p) = F × Cp' 1 L2(p) acts via M¨obiustransformations on PFp = Fp [ f1g p = 5; 7; 11, Galois uses involutions ∗ π5 = (0; 1)(1; 4)(2; 3) ∗ π7 = (0; 1)(1; 3)(2; 6)(4; 5) ∗ π11 = (0; 1)(1; 2)(3; 6)(9; 7)(5; 10)(4; 8) −i i L2(p) leaves invariant p involutions Π = fα πpα : 1 ≤ i ≤ pg. ∗ See later (IRA: Hiroshima 03-2018) Highly symmetric objects I 17 / 80 Arnold Trinities, Numerology, Mysticism Arnold (1976, Hilbert Problems) : find a common origin for the ubiquity of ADE occurrences in mathematics Later, TRINITIES. 3 4 5 Tetrahedronf , Cubef , Dodecahedronf : Face degrees Pythagorean Triple: right-triangle 2 4 8 Simply-laced Lie algebras: A2... D4... E8.. Division algebra dimensions: C; Q; Cay =2 1 2 4 Division algebra dimensions: R; C; Q +1 2 3 5 E8 singularity : Poincare homology sphere ×2 4 6 10 3D symmetric networks : Cubes, Diamond, K4 Laves +1 5 7 11 Galois : Exceptional actions of PSL2(p); p = 5; 7; 11 +1 6 8 12 Cubef , Cubev , Cubee Tetrahedrone , Cubev , Dodecahedronf (IRA: Hiroshima 03-2018) Highly symmetric objects I 18 / 80 Arnol'd Trinities: Cube (f ; v; e) = (6; 8; 12) ! (5; 7; 11) 5 = 6 − 1; 7 = 8 − 1; 11 = 12 = 1 Galois: exceptional finite groups for primes 5; 7; 11: ∼ ∼ L2(5) = A5 ∼ A4 × C5; L2(7) = L3(2) ∼ S4 × C7; L2(11) ∼ A5 × C11 Amazing fact: Platonic groups! TETRAHEDRON (group A4) CUBE/octahedron (group S4) { four body diagonals DODECAHEDRON/icosahedron (group A5) { five inscribed tetrahedra L2(5) ' A5 = icosahedron/dodecahedron automorphism group L2(7) = Klein quartic automorphism group Is L2(11) = nice surface??? automorphism group? A surface genus 70 (Martin-Singerman) A surface genus 26 (A-) =? a - presumably less studied! - surface studied by Klein (IRA: Hiroshima 03-2018) Highly symmetric objects I 19 / 80 Exceptional groups and symmetric surfaces Three `exceptional' Galois-groups correspond to the three Platonic groups in SO(3) Three Platonic groups in SO(3) lift to binary groups in SU(2) (spin) (Subgroups of SU(2) correspond to representations of E8 via the McKay correspondence) Three Platonic groups correspond to the three exceptional Lie algebras E6; E7; E8 Arnol'd: `I have heard from John MacKay that the 27 straight lines on a cubical surface, the 28 bitangents of a quartic plane curve and the 120 tritangent planes of a canonic sextic curve of genus 4, form a trinity parallel to E6; E7 and E8.' (IRA: Hiroshima 03-2018) Highly symmetric objects I 20 / 80 Root systems, semi simple Lie algebras A2, B2, G2, Weyl ..
Recommended publications
  • Arxiv:1912.10980V2 [Math.AG] 28 Jan 2021 6
    Automorphisms of real del Pezzo surfaces and the real plane Cremona group Egor Yasinsky* Universität Basel Departement Mathematik und Informatik Spiegelgasse 1, 4051 Basel, Switzerland ABSTRACT. We study automorphism groups of real del Pezzo surfaces, concentrating on finite groups acting with invariant Picard number equal to one. As a result, we obtain a vast part of classification of finite subgroups in the real plane Cremona group. CONTENTS 1. Introduction 2 1.1. The classification problem2 1.2. G-surfaces3 1.3. Some comments on the conic bundle case4 1.4. Notation and conventions6 2. Some auxiliary results7 2.1. A quick look at (real) del Pezzo surfaces7 2.2. Sarkisov links8 2.3. Topological bounds9 2.4. Classical linear groups 10 3. Del Pezzo surfaces of degree 8 10 4. Del Pezzo surfaces of degree 6 13 5. Del Pezzo surfaces of degree 5 16 arXiv:1912.10980v2 [math.AG] 28 Jan 2021 6. Del Pezzo surfaces of degree 4 18 6.1. Topology and equations 18 6.2. Automorphisms 20 6.3. Groups acting minimally on real del Pezzo quartics 21 7. Del Pezzo surfaces of degree 3: cubic surfaces 28 Sylvester non-degenerate cubic surfaces 34 7.1. Clebsch diagonal cubic 35 *[email protected] Keywords: Cremona group, conic bundle, del Pezzo surface, automorphism group, real algebraic surface. 1 2 7.2. Cubic surfaces with automorphism group S4 36 Sylvester degenerate cubic surfaces 37 7.3. Equianharmonic case: Fermat cubic 37 7.4. Non-equianharmonic case 39 7.5. Non-cyclic Sylvester degenerate surfaces 39 8. Del Pezzo surfaces of degree 2 40 9.
    [Show full text]
  • Combination of Cubic and Quartic Plane Curve
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis.
    [Show full text]
  • Effective Methods for Plane Quartics, Their Theta Characteristics and The
    Effective methods for plane quartics, their theta characteristics and the Scorza map Giorgio Ottaviani Abstract Notes for the workshop on \Plane quartics, Scorza map and related topics", held in Catania, January 19-21, 2016. The last section con- tains eight Macaulay2 scripts on theta characteristics and the Scorza map, with a tutorial. The first sections give an introduction to these scripts. Contents 1 Introduction 2 1.1 How to write down plane quartics and their theta characteristics 2 1.2 Clebsch and L¨urothquartics . 4 1.3 The Scorza map . 5 1.4 Description of the content . 5 1.5 Summary of the eight M2 scripts presented in x9 . 6 1.6 Acknowledgements . 7 2 Apolarity, Waring decompositions 7 3 The Aronhold invariant of plane cubics 8 4 Three descriptions of an even theta characteristic 11 4.1 The symmetric determinantal description . 11 4.2 The sextic model . 11 4.3 The (3; 3)-correspondence . 13 5 The Aronhold covariant of plane quartics and the Scorza map. 14 1 6 Contact cubics and contact triangles 15 7 The invariant ring of plane quartics 17 8 The link with the seven eigentensors of a plane cubic 18 9 Eight algorithms and Macaulay2 scripts, with a tutorial 19 1 Introduction 1.1 How to write down plane quartics and their theta characteristics Plane quartics make a relevant family of algebraic curves because their plane embedding is the canonical embedding. As a byproduct, intrinsic and pro- jective geometry are strictly connected. It is not a surprise that the theta characteristics of a plane quartic, being the 64 square roots of the canonical bundle, show up in many projective constructions.
    [Show full text]
  • Atlasrep —A GAP 4 Package
    AtlasRep —A GAP 4 Package (Version 2.1.0) Robert A. Wilson Richard A. Parker Simon Nickerson John N. Bray Thomas Breuer Robert A. Wilson Email: [email protected] Homepage: http://www.maths.qmw.ac.uk/~raw Richard A. Parker Email: [email protected] Simon Nickerson Homepage: http://nickerson.org.uk/groups John N. Bray Email: [email protected] Homepage: http://www.maths.qmw.ac.uk/~jnb Thomas Breuer Email: [email protected] Homepage: http://www.math.rwth-aachen.de/~Thomas.Breuer AtlasRep — A GAP 4 Package 2 Copyright © 2002–2019 This package may be distributed under the terms and conditions of the GNU Public License Version 3 or later, see http://www.gnu.org/licenses. Contents 1 Introduction to the AtlasRep Package5 1.1 The ATLAS of Group Representations.........................5 1.2 The GAP Interface to the ATLAS of Group Representations..............6 1.3 What’s New in AtlasRep, Compared to Older Versions?...............6 1.4 Acknowledgements................................... 14 2 Tutorial for the AtlasRep Package 15 2.1 Accessing a Specific Group in AtlasRep ........................ 16 2.2 Accessing Specific Generators in AtlasRep ...................... 18 2.3 Basic Concepts used in AtlasRep ........................... 19 2.4 Examples of Using the AtlasRep Package....................... 21 3 The User Interface of the AtlasRep Package 33 3.1 Accessing vs. Constructing Representations...................... 33 3.2 Group Names Used in the AtlasRep Package..................... 33 3.3 Standard Generators Used in the AtlasRep Package.................. 34 3.4 Class Names Used in the AtlasRep Package...................... 34 3.5 Accessing Data via AtlasRep ............................
    [Show full text]
  • Arxiv:1012.2020V1 [Math.CV]
    TRANSITIVITY ON WEIERSTRASS POINTS ZOË LAING AND DAVID SINGERMAN 1. Introduction An automorphism of a Riemann surface will preserve its set of Weier- strass points. In this paper, we search for Riemann surfaces whose automorphism groups act transitively on the Weierstrass points. One well-known example is Klein’s quartic, which is known to have 24 Weierstrass points permuted transitively by it’s automorphism group, PSL(2, 7) of order 168. An investigation of when Hurwitz groups act transitively has been made by Magaard and Völklein [19]. After a section on the preliminaries, we examine the transitivity property on several classes of surfaces. The easiest case is when the surface is hy- perelliptic, and we find all hyperelliptic surfaces with the transitivity property (there are infinitely many of them). We then consider surfaces with automorphism group PSL(2, q), Weierstrass points of weight 1, and other classes of Riemann surfaces, ending with Fermat curves. Basically, we find that the transitivity property property seems quite rare and that the surfaces we have found with this property are inter- esting for other reasons too. 2. Preliminaries Weierstrass Gap Theorem ([6]). Let X be a compact Riemann sur- face of genus g. Then for each point p ∈ X there are precisely g integers 1 = γ1 < γ2 <...<γg < 2g such that there is no meromor- arXiv:1012.2020v1 [math.CV] 9 Dec 2010 phic function on X whose only pole is one of order γj at p and which is analytic elsewhere. The integers γ1,...,γg are called the gaps at p. The complement of the gaps at p in the natural numbers are called the non-gaps at p.
    [Show full text]
  • Klein's Curve
    KLEIN'S CURVE H.W. BRADEN AND T.P. NORTHOVER Abstract. Riemann surfaces with symmetries arise in many studies of integrable sys- tems. We illustrate new techniques in investigating such surfaces by means of an example. By giving an homology basis well adapted to the symmetries of Klein's curve, presented as a plane curve, we derive a new expression for its period matrix. This is explicitly related to the hyperbolic model and results of Rauch and Lewittes. 1. Introduction Riemann surfaces with their differing analytic, algebraic, geometric and topological per- spectives have long been been objects of fascination. In recent years they have appeared in many guises in mathematical physics (for example string theory and Seiberg-Witten theory) with integrable systems being a unifying theme [BK]. In the modern approach to integrable systems a spectral curve, the Riemann surface in view, plays a fundamental role: one, for example, constructs solutions to the integrable system in terms of analytic objects (the Baker-Akhiezer functions) associated with the curve; the moduli of the curve play the role of actions for the integrable system. Although a reasonably good picture exists of the geom- etry and deformations of these systems it is far more difficult to construct actual solutions { largely due to the transcendental nature of the construction. An actual solution requires the period matrix of the curve, and there may be (as in the examples of monopoles, harmonic maps or the AdS-CFT correspondence) constraints on some of these periods. Fortunately computational aspects of Riemann surfaces are also developing. The numerical evaluation of period matrices (suitable for constructing numerical solutions) is now straightforward but analytic studies are far more difficult.
    [Show full text]
  • Classifying Spaces, Virasoro Equivariant Bundles, Elliptic Cohomology and Moonshine
    CLASSIFYING SPACES, VIRASORO EQUIVARIANT BUNDLES, ELLIPTIC COHOMOLOGY AND MOONSHINE ANDREW BAKER & CHARLES THOMAS Introduction This work explores some connections between the elliptic cohomology of classifying spaces for finite groups, Virasoro equivariant bundles over their loop spaces and Moonshine for finite groups. Our motivation is as follows: up to homotopy we can replace the loop group LBG by ` the disjoint union [γ] BCG(γ) of classifying spaces of centralizers of elements γ representing conjugacy classes of elements in G. An elliptic object over LBG then becomes a compatible family of graded infinite dimensional representations of the subgroups CG(γ), which in turn E ∗ defines an element in J. Devoto's equivariant elliptic cohomology ring ``G. Up to localization (inversion of the order of G) and completion with respect to powers of the kernel of the E ∗ −! E ∗ ∗ homomorphism ``G ``f1g, this ring is isomorphic to E`` (BG), see [5, 6]. Moreover, elliptic objects of this kind are already known: for example the 2-variable Thompson series forming part of the Moonshine associated with the simple groups M24 and the Monster M. Indeed the compatibility condition between the characters of the representations of CG(γ) mentioned above was originally formulated by S. Norton in an Appendix to [21], independently of the work on elliptic genera by various authors leading to the definition of elliptic cohom- ology (see the various contributions to [17]). In a slightly different direction, J-L. Brylinski [2] introduced the group of Virasoro equivariant bundles over the loop space LM of a simply connected manifold M as part of his investigation of a Dirac operator on LM with coefficients in a suitable vector bundle.
    [Show full text]
  • Geometry of Algebraic Curves
    Geometry of Algebraic Curves Fall 2011 Course taught by Joe Harris Notes by Atanas Atanasov One Oxford Street, Cambridge, MA 02138 E-mail address: [email protected] Contents Lecture 1. September 2, 2011 6 Lecture 2. September 7, 2011 10 2.1. Riemann surfaces associated to a polynomial 10 2.2. The degree of KX and Riemann-Hurwitz 13 2.3. Maps into projective space 15 2.4. An amusing fact 16 Lecture 3. September 9, 2011 17 3.1. Embedding Riemann surfaces in projective space 17 3.2. Geometric Riemann-Roch 17 3.3. Adjunction 18 Lecture 4. September 12, 2011 21 4.1. A change of viewpoint 21 4.2. The Brill-Noether problem 21 Lecture 5. September 16, 2011 25 5.1. Remark on a homework problem 25 5.2. Abel's Theorem 25 5.3. Examples and applications 27 Lecture 6. September 21, 2011 30 6.1. The canonical divisor on a smooth plane curve 30 6.2. More general divisors on smooth plane curves 31 6.3. The canonical divisor on a nodal plane curve 32 6.4. More general divisors on nodal plane curves 33 Lecture 7. September 23, 2011 35 7.1. More on divisors 35 7.2. Riemann-Roch, finally 36 7.3. Fun applications 37 7.4. Sheaf cohomology 37 Lecture 8. September 28, 2011 40 8.1. Examples of low genus 40 8.2. Hyperelliptic curves 40 8.3. Low genus examples 42 Lecture 9. September 30, 2011 44 9.1. Automorphisms of genus 0 an 1 curves 44 9.2.
    [Show full text]
  • Arxiv:1305.5974V1 [Math-Ph]
    INTRODUCTION TO SPORADIC GROUPS for physicists Luis J. Boya∗ Departamento de F´ısica Te´orica Universidad de Zaragoza E-50009 Zaragoza, SPAIN MSC: 20D08, 20D05, 11F22 PACS numbers: 02.20.a, 02.20.Bb, 11.24.Yb Key words: Finite simple groups, sporadic groups, the Monster group. Juan SANCHO GUIMERA´ In Memoriam Abstract We describe the collection of finite simple groups, with a view on physical applications. We recall first the prime cyclic groups Zp, and the alternating groups Altn>4. After a quick revision of finite fields Fq, q = pf , with p prime, we consider the 16 families of finite simple groups of Lie type. There are also 26 extra “sporadic” groups, which gather in three interconnected “generations” (with 5+7+8 groups) plus the Pariah groups (6). We point out a couple of physical applications, in- cluding constructing the biggest sporadic group, the “Monster” group, with close to 1054 elements from arguments of physics, and also the relation of some Mathieu groups with compactification in string and M-theory. ∗[email protected] arXiv:1305.5974v1 [math-ph] 25 May 2013 1 Contents 1 Introduction 3 1.1 Generaldescriptionofthework . 3 1.2 Initialmathematics............................ 7 2 Generalities about groups 14 2.1 Elementarynotions............................ 14 2.2 Theframeworkorbox .......................... 16 2.3 Subgroups................................. 18 2.4 Morphisms ................................ 22 2.5 Extensions................................. 23 2.6 Familiesoffinitegroups ......................... 24 2.7 Abeliangroups .............................. 27 2.8 Symmetricgroup ............................. 28 3 More advanced group theory 30 3.1 Groupsoperationginspaces. 30 3.2 Representations.............................. 32 3.3 Characters.Fourierseries . 35 3.4 Homological algebra and extension theory . 37 3.5 Groupsuptoorder16..........................
    [Show full text]
  • K3 Surfaces, N= 4 Dyons, and the Mathieu Group
    K3 Surfaces, =4 Dyons, N and the Mathieu Group M24 Miranda C. N. Cheng Department of Physics, Harvard University, Cambridge, MA 02138, USA Abstract A close relationship between K3 surfaces and the Mathieu groups has been established in the last century. Furthermore, it has been observed recently that the elliptic genus of K3 has a natural inter- pretation in terms of the dimensions of representations of the largest Mathieu group M24. In this paper we first give further evidence for this possibility by studying the elliptic genus of K3 surfaces twisted by some simple symplectic automorphisms. These partition functions with insertions of elements of M24 (the McKay-Thompson series) give further information about the relevant representation. We then point out that this new “moonshine” for the largest Mathieu group is con- nected to an earlier observation on a moonshine of M24 through the 1/4-BPS spectrum of K3 T 2-compactified type II string theory. This insight on the symmetry× of the theory sheds new light on the gener- alised Kac-Moody algebra structure appearing in the spectrum, and leads to predictions for new elliptic genera of K3, perturbative spec- arXiv:1005.5415v2 [hep-th] 3 Jun 2010 trum of the toroidally compactified heterotic string, and the index for the 1/4-BPS dyons in the d = 4, = 4 string theory, twisted by elements of the group of stringy K3N isometries. 1 1 Introduction and Summary Recently there have been two new observations relating K3 surfaces and the largest Mathieu group M24. They seem to suggest that the sporadic group M24 naturally acts on the spectrum of K3-compactified string theory.
    [Show full text]
  • The Klein Quartic in Number Theory
    The Eightfold Way MSRI Publications Volume 35, 1998 The Klein Quartic in Number Theory NOAM D. ELKIES Abstract. We describe the Klein quartic X and highlight some of its re- markable properties that are of particular interest in number theory. These include extremal properties in characteristics 2, 3, and 7, the primes divid- ing the order of the automorphism group of X; an explicit identification of X with the modular curve X(7); and applications to the class number 1 problem and the case n = 7 of Fermat. Introduction Overview. In this expository paper we describe some of the remarkable prop- erties of the Klein quartic that are of particular interest in number theory. The Klein quartic X is the unique curve of genus 3 over C with an automorphism group G of size 168, the maximum for its genus. Since G is central to the story, we begin with a detailed description of G and its representation on the 2 three-dimensional space V in whose projectivization P(V )=P the Klein quar- tic lives. The first section is devoted to this representation and its invariants, starting over C and then considering arithmetical questions of fields of definition and integral structures. There we also encounter a G-lattice that later occurs as both the period lattice and a Mordell–Weil lattice for X. In the second section we introduce X and investigate it as a Riemann surface with automorphisms by G. In the third section we consider the arithmetic of X: rational points, relations with the Fermat curve and Fermat’s “Last Theorem” for exponent 7, and some extremal properties of the reduction of X modulo the primes 2, 3, 7 dividing #G.
    [Show full text]
  • Moonshines for L2(11) and M12
    Moonshines for L2(11) and M12 Suresh Govindarajan Department of Physics Indian Institute of Technology Madras (Work done with my student Sutapa Samanta) Talk at the Workshop on Modular Forms and Black Holes @NISER, Bhubaneswar on January 13. 2017 Plan Introduction Some finite group theory Moonshine BKM Lie superalgebras Introduction Classification of Finite Simple Groups Every finite simple group is isomorphic to one of the following groups: (Source: Wikipedia) I A cyclic group with prime order; I An alternating group of degree at least 5; I A simple group of Lie type, including both I the classical Lie groups, namely the groups of projective special linear, unitary, symplectic, or orthogonal transformations over a finite field; I the exceptional and twisted groups of Lie type (including the Tits group which is not strictly a group of Lie type). I The 26 sporadic simple groups. The classification was completed in 2004 when Aschbacher and Smith filled the last gap (`the quasi-thin case') in the proof. Fun Reading: Symmetry and the Monster by Mark Ronan The sporadic simple groups I the Mathieu groups: M11, M12, M22, M23, M24; (found in 1861) I the Janko groups: J1, J2, J3, J4; (others 1965-1980) I the Conway groups; Co1, Co2, Co3; 0 I the Fischer groups; Fi22. Fi23, Fi24; I the Higman-Sims group; HS I the McLaughlin group: McL I the Held group: He; I the Rudvalis group Ru; I the Suzuki sporadic group: Suz; 0 I the O'Nan group: O N; I Harada-Norton group: HN; I the Lyons group: Ly; I the Thompson group: Th; I the baby Monster group: B and Sources: Wikipedia and Mark Ronan I the Fischer-Griess Monster group: M Monstrous Moonshine Conjectures I The j-function has the followed q-series: (q = exp(2πiτ)) j(τ)−744 = q−1+[196883+1] q+[21296876+196883+1] q2+··· I McKay observed that 196883 and 21296876 are the dimensions of the two smallest irreps of the Monster group.
    [Show full text]