cancers Article Anthracyclines Suppress Both NADPH Oxidase- Dependent and -Independent NETosis in Human Neutrophils Meraj A. Khan 1,2, Adam D’Ovidio 1,3, Harvard Tran 1,2 and Nades Palaniyar 1,2,* 1 Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686, Bay St., Toronto, ON M5G 0A4, Canada 2 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3K1 Canada 3 Applied Clinical Pharmacology Program, and 4 Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3K1, Canada * Correspondence:
[email protected]; Tel.: +1-416-813-7654 (ext. 302328) Received: 1 August 2019; Accepted: 28 August 2019; Published: 7 September 2019 Abstract: Neutrophil extracellular traps (NETs) are cytotoxic DNA-protein complexes that play positive and negative roles in combating infection, inflammation, organ damage, autoimmunity, sepsis and cancer. However, NETosis regulatory effects of most of the clinically used drugs are not clearly established. Several recent studies highlight the relevance of NETs in promoting both cancer cell death and metastasis. Here, we screened the NETosis regulatory ability of 126 compounds belonging to 39 classes of drugs commonly used for treating cancer, blood cell disorders and other diseases. Our studies show that anthracyclines (e.g., epirubicin, daunorubicin, doxorubicin, and idarubicin) consistently suppress both NADPH oxidase-dependent and -independent types of NETosis in human neutrophils, ex vivo. The intercalating property of anthracycline may be enough to alter the transcription initiation and lead NETosis inhibition. Notably, the inhibitory doses of anthracyclines neither suppress the production of reactive oxygen species that are necessary for antimicrobial functions nor induce apoptotic cell death in neutrophils.