Patterns of Coral Species Richness and Reef Connectivity in Malaysia Issue Date: 2016-11-22

Total Page:16

File Type:pdf, Size:1020Kb

Patterns of Coral Species Richness and Reef Connectivity in Malaysia Issue Date: 2016-11-22 Cover Page The handle http://hdl.handle.net/1887/44304 holds various files of this Leiden University dissertation Author: Waheed, Zarinah Title: Patterns of coral species richness and reef connectivity in Malaysia Issue Date: 2016-11-22 Patterns of coral species richness and reef connectivity in Malaysia Waheed, Z. Patterns of coral species richness and reef connectivity in Malaysia PhD thesis, Leiden University Cover design: Yee Wah Lau Printed by: Gildeprint, Enschede ISBN: 978 94 6233 460 1 © 2016 by Z. Waheed, all rights reserved. Funding. This thesis was accomplished with financial support from the Ministry of Higher Education Malaysia, with additional support from Universiti Malaysia Sabah, WWF-Malaysia, the A.M. Buitendijkfonds, and TREUB-maatschappij (Society for the Advancement of Research in the Tropics). Disclaimer. Following the recommendation of Article 8.2 of the International Code of Zoological Nomenclature, I declare that this publication is not issued for public and permanent scientific record, or for purposes of zoological nomenclature, and therefore not published within the meaning of the Code. Patterns of coral species richness and reef connectivity in Malaysia Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op dinsdag 22 november 2016 klokke 13:45 door Zarinah Waheed geboren te Kota Kinabalu, Maleisië in 1978 Promotiecommissie Prof. dr. L.M. Chou (National University of Singapore, Singapore) Prof. dr. M. Schilthuizen (Universiteit Leiden & Naturalis Biodiversity Center) Prof. dr. H.P. Spaink (Universiteit Leiden) Prof. dr. P.C. van Welzen (Universiteit Leiden & Naturalis Biodiversity Center) Dr. F. Benzoni (University of Milano-Bicoca, Italy) Dr. C.H.J.M. Fransen (Naturalis Biodiversity Center) Promoter Prof. dr. E. Gittenberger (Universiteit Leiden & Naturalis Biodiversity Center) Copromoter Dr. B.W. Hoeksema (Naturalis Biodiversity Center) For my parents Contents Chapter 1 General Introduction 9 Chapter 2 A tale of two winds: species richness patterns of reef corals 29 around the Semporna peninsula, Malaysia Chapter 3 Coral reefs at the northernmost tip of Borneo: an assessment of 49 scleractinian species richness patterns and reef benthos assemblages Chapter 4 Diversity patterns of scleractinian corals at Kota Kinabalu, 77 Malaysia, in relation to depth and exposure Chapter 5 Scleractinian corals (Fungiidae, Agariciidae and Euphylliidae) 97 of Pulau Layang-Layang, Spratly Islands, with a note on Pavona maldivensis (Gardiner, 1906) Chapter 6 Reef coral species richness gradient across Malaysia 129 Chapter 7 Connectivity of reef invertebrate populations in Malaysia: 161 perspectives of a mushroom coral, a blue seastar and a boring giant clam References 193 Affiliation of co-authors 219 Summary 221 Nederlandse samenvatting 225 Ringkasan Bahasa Malaysia 229 Acknowledgements 233 Curriculum vitae 235 Publications 237 Chapter 1 General Introduction Reef corals Coral reefs are among the most productive ecosystems on earth. They provide goods and services to millions of people worldwide, directly or indirectly, in the form of food, coastline protection, tourism, pharmaceuticals, and other sources of income (Moberg and Folke 1999, Wilkinson 2008). They also have recreational and cultural importance for local communities. Shallow tropical coral reefs have much value as habitat, providing shelter to innumerable marine species, making them the most species-rich marine ecosystem in the world. Hard corals (Scleractinia) form the backbone of tropical coral reefs. They are the main builders in the reef ecosystem, which supports the wealth of marine biodiversity. Naturally, the corals themselves also contribute to this diversity. Hard coral is composed of an individual polyp or a group of polyps that live together to form a coral colony. The ability of hard corals to build reefs stems from their symbiotic relationship with unicellular algae, zooxanthellae of the genus Symbiodinium. The photosynthesizing zooxanthellae, which live within the coral tissue, influence the growth rate and calcium carbonate (CaCO3) deposition of corals. The success of building and maintaining the three-dimensional reef structures relies on environmental parameters such as light, temperature, and nutrient levels (Barnes and Chalker 1990; Falkowski et al. 1990; Atkinson 2011; Dubinsky and Falkowski 2011). Equally important is the coral resilience to competition, and disturbance or stress of natural or anthropogenic origin. Most hard corals are colonial. Many coral species can easily be identified in situ, whereas others exhibit a wide range of morphological variation and plasticity, which makes their identification difficult (Veron 1995; Todd 2008). Such variation in coral appearance can be in the form of 1) corallite variation within a coral colony, usually in different parts of the colony, 2) colony growth form due to different environmental conditions such as depth or proximity to land, 3) coral colony variation between regions, most likely related to environmental gradients, genetic isolation, or a combination of these factors, and 4) soft tissue variation, such as in corals with fleshy polyp tissue, like Euphyllia, Plerogyra and Physogyra (see Veron 1995). In recent times, coral taxonomy has moved beyond using solely morphological characters for defining species boundaries. Increasingly frequent, molecular data and additional micro-morphological/microstructure traits are applied to support new species descriptions (Benzoni and Stefani 2012; Terraneo et al. 2014), and taxonomic classifications or revisions (Budd et al. 2012; Huang et al. 2014), while resolving problematic species or species complexes (Stefani et al. 2008, 2011; Benzoni et 9 Chapter 1 al. 2010, 2014; Gittenberger et al. 2011; Keshavmurthy et al. 2013; Forsman et al. 2015). At present, more than 800 species of scleractinian reef corals have been described (Paulay 1997, Veron et al. 2015). The highest biodiversity in the marine world can be found in the Coral Triangle. This centre of maximum marine biodiversity spans across six countries (Indonesia, Malaysia the Philippines, Timor-Leste, Papua New Guinea, and the Solomon Islands), and is named after the somewhat triangular shape of the area (see Hoeksema 2007). It covers < 1.6% of the world’s ocean area (Veron et al. 2011), yet it contains over 600 scleractinian reef coral species, accounting for almost 75% of the world’s reef coral species (Veron et al. 2015). Marine diversity decreases along latitudinal and longitudinal gradients with increasing distance from this centre (e.g. Hoeksema 2007; Barber 2009; Bellwood and Meyer 2009; Carpenter et al. 2011). Several hypotheses have been proposed as explanatory models for this centre of maximum marine diversity (Rosen 1988; Hoeksema 2007; Bellwood et al. 2012). However, it is likely that a combination of factors may be at work to explain the patterns and species richness in the region (Hoeksema 2007; Halas and Winterbottom 2009; Cowman and Bellwood 2013). Although famed for its astounding biodiversity, the reefs of the Coral Triangle are also known to be highly vulnerable, with more than 85% of the reefs threatened by unsustainable fisheries, coastal development and pollution, and this percentage increases to over 90% when thermal stress and coral bleaching is taken into account (Burke et al. 2012). Based on estimates of coral cover data, Indo-Pacific reefs had an average of only 22% cover in 2003, and coral cover loss was approximately 2% between 1997 and 2003 (Bruno and Selig 2007). Such numbers are worrying, and initiatives are being made to conserve and effectively manage coral reefs area through the establishments of marine protected areas (MPAs) or marine managed areas (e.g. Burke et al. 2012, White et al. 2014; Weeks at al. 2014). Diversity measures and patterns Documenting, mapping and explaining patterns of biodiversity are the essence of ecological studies (Magurran 2004). Understanding the current status of biodiversity is important in order to predict its response to environmental changes (Gaston 2000), and to identify systematic conservation planning and its sustainable use (Margules and Pressey 2000). Biodiversity can be grouped into three main components: genetic diversity, species diversity and ecosystem diversity (Norse et al. 1986; Heywood and Baste 1996; Gaston and Spicer 2004; Gaston 2010). Genetic diversity reflects the variation of genes within a species, and species diversity refers to the different number of species in an area, whereas ecosystem diversity is the variation in ecosystems through its communities and habitats in a region. Aspects of the first two components of diversity are examined in this thesis. 10 General Introduction Genes are the essence of a species. Genetic diversity can be measured by assessing and comparing DNA sequence data (Culver et al. 2011). Genetic data is increasingly being applied to resolve taxonomic uncertainties (as mentioned in the previous section). At the population level, genetic diversity is evaluated within and among populations to quantify the distribution and pattern of genetic variation of a species (Templeton 1998). Such population genetics studies have revealed various patterns of connectivity or disjunction among populations. Species diversity is commonly quantified in terms of species counts to represent richness (McIntosh 1967; Magurran 2004), but it
Recommended publications
  • Cruising Guide to the Philippines
    Cruising Guide to the Philippines For Yachtsmen By Conant M. Webb Draft of 06/16/09 Webb - Cruising Guide to the Phillippines Page 2 INTRODUCTION The Philippines is the second largest archipelago in the world after Indonesia, with around 7,000 islands. Relatively few yachts cruise here, but there seem to be more every year. In most areas it is still rare to run across another yacht. There are pristine coral reefs, turquoise bays and snug anchorages, as well as more metropolitan delights. The Filipino people are very friendly and sometimes embarrassingly hospitable. Their culture is a unique mixture of indigenous, Spanish, Asian and American. Philippine charts are inexpensive and reasonably good. English is widely (although not universally) spoken. The cost of living is very reasonable. This book is intended to meet the particular needs of the cruising yachtsman with a boat in the 10-20 meter range. It supplements (but is not intended to replace) conventional navigational materials, a discussion of which can be found below on page 16. I have tried to make this book accurate, but responsibility for the safety of your vessel and its crew must remain yours alone. CONVENTIONS IN THIS BOOK Coordinates are given for various features to help you find them on a chart, not for uncritical use with GPS. In most cases the position is approximate, and is only given to the nearest whole minute. Where coordinates are expressed more exactly, in decimal minutes or minutes and seconds, the relevant chart is mentioned or WGS 84 is the datum used. See the References section (page 157) for specific details of the chart edition used.
    [Show full text]
  • Sabah REDD+ Roadmap Is a Guidance to Press Forward the REDD+ Implementation in the State, in Line with the National Development
    Study on Economics of River Basin Management for Sustainable Development on Biodiversity and Ecosystems Conservation in Sabah (SDBEC) Final Report Contents P The roject for Develop for roject Chapter 1 Introduction ............................................................................................................. 1 1.1 Background of the Study .............................................................................................. 1 1.2 Objectives of the Study ................................................................................................ 1 1.3 Detailed Work Plan ...................................................................................................... 1 ing 1.4 Implementation Schedule ............................................................................................. 3 Inclusive 1.5 Expected Outputs ......................................................................................................... 4 Government for for Government Chapter 2 Rural Development and poverty in Sabah ........................................................... 5 2.1 Poverty in Sabah and Malaysia .................................................................................... 5 2.2 Policy and Institution for Rural Development and Poverty Eradication in Sabah ............................................................................................................................ 7 2.3 Issues in the Rural Development and Poverty Alleviation from Perspective of Bangladesh in Corporation City Biodiversity
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Status of Coral Reefs and Sedimentation at Kota Kinabalu a Preliminary Study at Gaya Bay
    STATUS OF CORAL REEFS AND SEDIMENTATION AT KOTA KINABALU: A PRELIMINARY STUDY AT GAYA BAY AND SEPANGAR BAY Zarinah Waheed1, Farrah Anis F. Adnan2 Lee Chee Hwa1 & Siti Rahayu Mohd. Hashim2 1Borneo Marine Research Institute, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia 2School of Science and Technology, Universiti Malaysia Sabah 88999 Kota Kinabalu, Malaysia ABSTRACT. Sedimentation is considered as one of the major factors that cause degradation of coral reefs in coastal areas. This study examined the effect of sedimentation on coral reefs at Gaya Island (Gaya Bay), Sepangar Island and UMS jetty (Sepangar Bay). At each location, two depths were surveyed, between 3m - 5m and between 7m -10m. The status of coral reefs was surveyed by using Line Intercept Transect, Fish Visual Census and Invertebrate Belt Survey. Two 20m line transects were laid at each depth. Sedimentation rates were measured by placing sediment traps at areas where the reef was surveyed. The sediment traps were collected once a month and further laboratory analysis was undertaken to determine the sedimentation rate, calcium carbonate content, organic matter content and sediment composition. Coral reef surveys conducted at all the sites showed that three sites were in fair condition (25-50% hard coral cover) while the other three sites were in good condition (50-75% hard coral cover). The low levels or absence of indicator species suggest overexploitation of the invertebrates and fishes on the reef. The mean sedimentation rate measured at the UMS jetty was higher than Gaya Island and Sepangar Island (126.25 ± 86.58 mg/cm2/day, 3.15 ± 1.75 mg/cm2day and 7.62 ± 6.9 mg/cm2/day, respectively).
    [Show full text]
  • Status of Coral Reefs in Malaysia, 2011
    Reef Check Malaysia Bhd (783440-X) Status of Coral Reefs in Malaysia, 2011 Reef Check Malaysia Saving Our Reefs Research, Education, Conservation Reef Check Malaysia Bhd (783440-X) Contents Page Executive Summary 1. Introduction 1 2. Reef Check 2 2.1 Background 2 2.2 Survey Methodology 2 2.3 Survey Sites 3 3. 2011 Survey Results & Analysis 4 3.1 Status of Coral Reefs in Malaysia 2011 4 3.2 Comparison Between Peninsular Malaysia and East Malaysia 9 3.3 Status of Coral Reefs on Islands/Regions in Malaysia 11 4. Challenges and Recommendations 23 4.1 General Recommendations 23 4.2 Peninsular Malaysia 23 4.3 East Malaysia 25 4.4 Improving Management Through Monitoring 25 5. The Broader Picture: Building Coral Reef Resilience 27 Acknowledgements 28 References 29 Appendix 1 30 Saving Our Reefs Research, Education, Conservation Reef Check Malaysia Bhd (783440-X) Executive Summary 1. A total of 100 Reef Check surveys were completed in 2011, 52 in Peninsular Malaysia and 48 in East Malaysia, a slight increase on 2010. The surveys are a continuation of a successful National Reef Check Survey Programme that has now run for five years. 2. The surveys were carried out by volunteers trained and certified in the global standard Reef Check method. Nearly 50 people were trained in 2011, adding to the base of volunteers who are participating in Reef Check Malaysia’s programmes. 10% of trainees were officers of the Department of Marine Parks Malaysia, reflecting growing interest from the Government in further improving management of Malaysia’s coral reefs.
    [Show full text]
  • Settlement of Larvae from Four Families of Corals in Response to a Crustose Coralline Alga and Its Biochemical Morphogens Taylor N
    www.nature.com/scientificreports OPEN Settlement of larvae from four families of corals in response to a crustose coralline alga and its biochemical morphogens Taylor N. Whitman1,2, Andrew P. Negri 1, David G. Bourne 1,2 & Carly J. Randall 1* Healthy benthic substrates that induce coral larvae to settle are necessary for coral recovery. Yet, the biochemical cues required to induce coral settlement have not been identifed for many taxa. Here we tested the ability of the crustose coralline alga (CCA) Porolithon onkodes to induce attachment and metamorphosis, collectively termed settlement, of larvae from 15 ecologically important coral species from the families Acroporidae, Merulinidae, Poritidae, and Diploastreidae. Live CCA fragments, ethanol extracts, and hot aqueous extracts of P. onkodes induced settlement (> 10%) for 11, 7, and 6 coral species, respectively. Live CCA fragments were the most efective inducer, achieving over 50% settlement for nine species. The strongest settlement responses were observed in Acropora spp.; the only non-acroporid species that settled over 50% were Diploastrea heliopora, Goniastrea retiformis, and Dipsastraea pallida. Larval settlement was reduced in treatments with chemical extracts compared with live CCA, although high settlement (> 50%) was reported for six acroporid species in response to ethanol extracts of CCA. All experimental treatments failed (< 10%) to induce settlement in Montipora aequituberculata, Mycedium elephantotus, and Porites cylindrica. Individual species responded heterogeneously to all treatments, suggesting that none of the cues represent a universal settlement inducer. These results challenge the commonly-held notion that CCA ubiquitously induces coral settlement, and emphasize the critical need to assess additional cues to identify natural settlement inducers for a broad range of coral taxa.
    [Show full text]
  • 399 International Court of Justice Case Between Indonesia And
    International Court of Justice Case between Indonesia and Malaysia Concerning Sovereignty over Pulau Ligitan and Pulau Sipadan Introduction On 2 November 1998 Indonesia and Malaysia jointly seised the International Court of Justice (ICJ) of their dispute concerning sovereignty over the islands of Pulau Ligitan and Pulau Sipadan in the Celebes Sea.' They did so by notifying the Court of a Special Agreement between the two states, signed in Kuala Lumpur on 31 May 1997 and which entered into force on 14 May 1998 upon the exchange of ratifying instruments. In the Special Agreement, the two parties request the Court "to determine on the basis of the treaties, agreements and other evidence furnished by [the two parties], whether sovereignty over Pulau Ligitan and Pulau Sipadan belongs to the Republic of Indonesia or Malaysia". The parties expressed the wish to settle their dispute "in the spirit of friendly relations existing between [them] as enunciated in the 1976 Treaty of Amity and Co-operation in Southeast Asia" and declared in advance that they will "accept the Judgement of the Court given pursuant to [the] Special Agreement as final and binding upon them." On 10 November 1998 the ICJ made an Order' fixing the time limits for the respective initial pleadings in the case as follows: 2 November 1999 for the filing by each of the parties of a Memorial; and 2 March 2000 for the filing of the counter-memorials. By this order the Court also reserved subsequent procedure on this case for future decision. In fixing the time limits for the initial written pleadings, the Court took account and applied the wishes expressed by the two parties in Article 3, paragraph 2 of their Special Agreement wherein they provided that the written pleadings should consist of: 1 International Court of Justice, Press Communique 98/35, 2 November 1998.
    [Show full text]
  • M.V. Solita's Passage Notes
    M.V. SOLITA’S PASSAGE NOTES SABAH BORNEO, MALAYSIA Updated August 2014 1 CONTENTS General comments Visas 4 Access to overseas funds 4 Phone and Internet 4 Weather 5 Navigation 5 Geographical Observations 6 Flags 10 Town information Kota Kinabalu 11 Sandakan 22 Tawau 25 Kudat 27 Labuan 31 Sabah Rivers Kinabatangan 34 Klias 37 Tadian 39 Pura Pura 40 Maraup 41 Anchorages 42 2 Sabah is one of the 13 Malaysian states and with Sarawak, lies on the northern side of the island of Borneo, between the Sulu and South China Seas. Sabah and Sarawak cover the northern coast of the island. The lower two‐thirds of Borneo is Kalimantan, which belongs to Indonesia. The area has a fascinating history, and probably because it is on one of the main trade routes through South East Asia, Borneo has had many masters. Sabah and Sarawak were incorporated into the Federation of Malaysia in 1963 and Malaysia is now regarded a safe and orderly Islamic country. Sabah has a diverse ethnic population of just over 3 million people with 32 recognised ethnic groups. The largest of these is the Malays (these include the many different cultural groups that originally existed in their own homeland within Sabah), Chinese and “non‐official immigrants” (mainly Filipino and Indonesian). In recent centuries piracy was common here, but it is now generally considered relatively safe for cruising. However, the nearby islands of Southern Philippines have had some problems with militant fundamentalist Muslim groups – there have been riots and violence on Mindanao and the Tawi Tawi Islands and isolated episodes of kidnapping of people from Sabah in the past 10 years or so.
    [Show full text]
  • How to Prepare the Final Version of Your Manuscript for The
    Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012 17C Regional-scale design and local scale actions for marine Bridging the gap between regional plans and local action: The case of the Malaysian Coral Triangle Initiative and Semporna, Sabah. Choo Poh Leem1, Kenneth Kassem1,2,Monique Sumampouw1, 1WWF-Malaysia Semporna, Sabah, Malaysia 2Graduate School of Global Environmental Studies, Kyoto University, Japan Corresponding author: [email protected] Abstract. Within the Sulu-Sulawesi Marine Ecoregion (SSME), Semporna Priority Conservation Area (PCA) ranks among the highest marine biodiversity in the world. Within Semporna waters, there are several government bodies responsible for different islands. Tun Sakaran Marine Park was gazetted under the management of Sabah Parks in 2004. Sipadan Island’s water is under the protection of Majlis Keselamatan Negara (National Security Council). The Department of Fisheries Sabah is interested in Omadal Island for seaweed farming. Mabul Island receives the most attention due to its proximity to Sipadan, and is the base for most tourism operators. Mabul has 2,500 residents relying on fisheries, and more than 15 resorts and dive lodges on 26 hectares of land (Aw et al, 2006). Reef check survey, community-based seagrass survey, seawater quality monitoring and groundwater analysis have been conducted on Mabul over the past 2 years. The environmental condition of Mabul is currently threatened, to the point where it might become the source of pollution that will spread to other islands within the Semporna PCA. Collaborative environmental monitoring has been identified as a primary method to reverse human impacts, so collaborative efforts have been initiated on Mabul since April 2010.
    [Show full text]
  • Pleistocene Reefs of the Egyptian Red Sea: Environmental Change and Community Persistence
    Pleistocene reefs of the Egyptian Red Sea: environmental change and community persistence Lorraine R. Casazza School of Science and Engineering, Al Akhawayn University, Ifrane, Morocco ABSTRACT The fossil record of Red Sea fringing reefs provides an opportunity to study the history of coral-reef survival and recovery in the context of extreme environmental change. The Middle Pleistocene, the Late Pleistocene, and modern reefs represent three periods of reef growth separated by glacial low stands during which conditions became difficult for symbiotic reef fauna. Coral diversity and paleoenvironments of eight Middle and Late Pleistocene fossil terraces are described and characterized here. Pleistocene reef zones closely resemble reef zones of the modern Red Sea. All but one species identified from Middle and Late Pleistocene outcrops are also found on modern Red Sea reefs despite the possible extinction of most coral over two-thirds of the Red Sea basin during glacial low stands. Refugia in the Gulf of Aqaba and southern Red Sea may have allowed for the persistence of coral communities across glaciation events. Stability of coral communities across these extreme climate events indicates that even small populations of survivors can repopulate large areas given appropriate water conditions and time. Subjects Biodiversity, Biogeography, Ecology, Marine Biology, Paleontology Keywords Coral reefs, Egypt, Climate change, Fossil reefs, Scleractinia, Cenozoic, Western Indian Ocean Submitted 23 September 2016 INTRODUCTION Accepted 2 June 2017 Coral reefs worldwide are threatened by habitat degradation due to coastal development, 28 June 2017 Published pollution run-off from land, destructive fishing practices, and rising ocean temperature Corresponding author and acidification resulting from anthropogenic climate change (Wilkinson, 2008; Lorraine R.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • A Sabah Gazetteer
    A Sabah Gazetteer Copyright © Sabah Forestry Department and Forest Research Institute Malaysia (FRIM), 1995 Forest Research Centre, Forestry Department, Sabah, Malaysia First published 1995 A Sabah Gazetteer by Joseph Tangah and K.M. Wong ISBN 983–9592–36–X Printed in Malaysia by Print Resources Sdn. Bhd., 47301 Petaling Jaya, Selangor Darul Ehsan A Sabah Gazetteer Joseph Tangah and K.M. Wong Forest Research Centre, Forestry Department, Sabah, Malaysia Published by Sabah Forestry Department and Forest Research Institute Malaysia 1995 Contents Page Foreword vii Introduction 1 Acknowledgements 2 PART 1. Human Settlements 3 PART 2. Hill and Mountain Peaks 24 PART 3. Mountain Ranges 27 PART 4. Islands 30 PART 5. Rivers and Streams 39 PART 6. Roads 81 PART 7. Forest Reserves, Wildlife Reserves and Protected Areas 98 Foreword In the endeavour to prepare a Tree Flora for the botanically rich states of Sabah and Sarawak in Malaysian Borneo, one of the main concerns has also been to assemble an up­to­date data base which incorporates information on species. It was at once realised that this opportunity comes hand­in­hand with information from numerous specimens that will be made available by specialists involved in the project, making the data set as scientifically sound as can be. This gazetteer is one of those steps towards such a specialised data base, tabulating information that serves as a primordial vocabulary on localities within that data base. By itself, too, the gazetteer will be a handy reference to all who are concerned with the scientific and systematic management of natural resources and land use in Sabah, and in the development of geographical information systems.
    [Show full text]