Purse-Web Spiders (Atypidae) in Virginia (Araneida: Mygalomorphae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Species of the Genus Atypus Latreille, 1804 (Araneae: Atypidae) from Korea
Zootaxa 3915 (1): 139–142 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3915.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:5D41EF9C-63A4-408B-92F0-50C903A0A1F1 A new species of the genus Atypus Latreille, 1804 (Araneae: Atypidae) from Korea SUE YEON LEE1, JOON-HO LEE2, JUNG SUN YOO3 & SEUNG TAE KIM1,4 1Research Institute for Agriculture and Life Sciences, Seoul National University, 151-921 Seoul, Republic of Korea 2Entomology program, Department of Agricultural Biotechnology, Seoul National University, 151-921 Seoul, Republic of Korea 3Department of Exhibition and Education, National Institute of Biological Resources, Incheon, 404-170, Korea 4Corresponding author. E-mail:[email protected] Worldwide, 30 species of the genus Atypus Latreille, 1804 have been recorded from the United States, Europe, Africa, south-east and far-east Asia (Platnick 2014). Atypid spiders are characterized by a male sternum with marginal ridges, a short, straight and spike-like embolus, a straight conductor and a distally widened vulva with bulbous or pyriform receptacula and with two lateral patches of pores on the genital atrium (Gertsch and Platnick 1980). Kraus and Baur (1974) utilized various taxonomic characters to distinguish between the European species, such as the segmentation of the posterior spinnerets, features of the patellar membrane, morphology of sigilla opposite coxae I and IV, and the male palpal conductor, palpal furrow and male metatarsal spines. The genus Atypus was reviewed by Schwendinger (1990) who redescribed 12 recorded species and discussed the granular texture on the male chelicerae and front legs, and the cymbial pit for distinguishing species. -
Text Monitor
5th Symposium Conference Volume for Research in Protected Areas pages 389 - 398 10 to 12 June 2013, Mittersill Natural Hazards – Hazards for Nature? Avalanches as a promotor of biodiversity. A case study on the invertebrate fauna in the Gesäuse National Park (Styria, Austria) Christian Komposch, Thomas Frieß & Daniel Kreiner Abstract Avalanches are feared by humans and considered “catastrophic” due to their unpredictable and destructive force. But this anthropocentric perspective fails to capture the potential ecological value of these natural disturbances. The Gesäuse National Park is a model-region for investigations of such highly dynamic events because of its distinct relief and extreme weather conditions. This project aims to record and analyse the animal assemblages in these highly dynamic habitats as well as document succession and population structure. 1) Dynamic processes lead to one of the very few permanent and natural vegetationless habitat types in Central Europe outside the alpine zone – i. e. screes and other rocky habitats at various successional stages. In addition to the tight mosaic distribution of a variety of habitats over larger areas, avalanche tracks also offer valuable structures like dead wood and rocks. Remarkable is the sympatric occurrence of the three harvestmen species Trogulus tricarinatus, T. nepaeformis und T. tingiformis, a species diversity peak of spiders, true-bugs and ants; and the newly recorded occurrence of Formica truncorum. 2) The presence of highly adapted species and coenoses reflect the extreme environmental conditions, specific vegetation cover and microclimate of these habitats. Several of the recorded taxa are rare, endangered and endemic. The very rare dwarf spider Trichoncus hackmani is a new record for Styria and the stenotopic and critically endangered wolf-spider Acantholycosa lignaria is dependent on lying dead wood. -
Phase I Environmental Site Assessment Report Record No
Phase I Environmental Site Assessment Report Record No. 101650317 17771-17789 Panama City Beach Parkway; 17690 Front Beach Road Panama City Beach, FL 32413 Prepared For: Federal Deposit Insurance Corporation (FDIC) as Receiver for Peoples First Community Bank,Bank No. 10165, c/o CBRE 2001 Ross Avenue, 33rd Floor Dallas, TX 75201 Prepared By: Tetra Tech, Inc. 17885 Von Karman Avenue Irvine, CA 92614 TETRA TECH PROJECT T24023.003 2010-08-25 17885 Von Karman Avenue, Suite 500 Irvine, CA 92614 Office: (949) 809-5000 Fax: (949) 809-5010 August 25, 2010 Mr. Jon Walker (CB Richard Ellis, Inc. [CBRE]) Federal Deposit Insurance Corporation (FDIC) as Receiver for Peoples First Community Bank, Bank No. 10165 c/o CBRE 2001 Ross Avenue, 33rd Floor Dallas, TX 75201 RE: Phase I Environmental Site Assessment Record No. 101650317 17771-17789 Panama City Parkway and 17690 Front Beach Road Panama City Beach, Florida 32413 Project No. T24023.003 Dear Mr. Walker: Tetra Tech, Inc. (Tetra Tech) is pleased to submit this Phase I Environmental Site Assessment (ESA) report to Federal Deposit Insurance Corporation (FDIC), as Receiver for Peoples First Community Bank, Bank No. 10165, c/o CBRE, for the above-referenced property (the Site). Tetra Tech found one recognized environmental conditions (RECs), no historical RECs (HRECs), no potential environmental concerns (PECs), and three business environmental risks (BERs) in connection with the Site. It is Tetra Tech’s understanding that this ESA is being requested in conjunction with due diligence activities for the Site by the FDIC, as Receiver for Peoples First Community Bank, Bank No. -
Tarantulas and Social Spiders
Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences. -
AMERICAN MUSEUM NOVITATES Published by Number 895 the AMERICAN MUSEUM of NATURAL HISTORY Dec
AMERICAN MUSEUM NOVITATES Published by Number 895 THE AMERICAN MUSEUM OF NATURAL HISTORY Dec. 31 1936 New York City THE NEARCTIC ATYPIDAE By W. J. GERTSCH The curious spiders now comprising the Atypidae were set apart many years ago by various authors as representing a group which, though obviously closely related to the other mygalomorph species, was worthy of separation from them in some way, either as a genus, a sub- family, or a family. The genus Atypus dates from 1804, when Latreille used the name for the first time in a generic sense. Aranea subterranea Roemer, now placed as a synonym of Atypus piceus (Sulzer), was desig- nated as the genotype by this same author in 1810. Ausserer in his 'Beitrage zur Kenntniss der Arachniden-Familie der Territelariae' recognized a subfamily Atypinae, which name had been used pro- visionally by Thorell in 1869-1870, and included three generic cate- gories, Calommata Lucas, its synonym Pelecodon Doleschal, and Atypus Latreille. This author placed two of the American species in Atypus but erected the new genus Madognatha for Sphodros abbotii Walckenaer, assigning it to the subfamily Theraphosinae. The family name, Atypidae, was proposed by P. Bertkau in 1878 and was based on the characters presented in the German species of Atypus. A little later Thorell (1889-1890) divided his Territelariae into five families and for some reason substituted the name Calommatoidae for the Atypidae of Bertkau. In the 'Historie Naturelle des Araginees' Simon restored the name Atypidae and considerably enlarged the limits of the family by including twenty-four species representing six genera, and placed them in three subfamilies, the Brachybothrinae, Hexurinae, and Atypinae. -
Die Gattung Atypus LATREILLE 1804 in Deutschland Mit
ARACHNE 12(3), 2007 ARACHNE 12(3), 2007 Die Gattung Atypus LATREILLE 1804 in Deutschland mit • Atypus muralis BERTKAU, 1890 SYSTEMATIK UND TAXONOMIE besonderem Augenmerk auf die Typusart Atypus • Atypus pedicellatus ZHU et al., 2006 • Atypus piceus (SULZER, 1776) (Typusart) PIERRE ANDRÈ LATREILLE (*1762 - †1833) pi ce us (SULZER, 1776) • Atypus quelpartensis NAMKUNG, 2002 stellte 1804 anhand der von SULZER 1776 als von Bastian Drolshagen • Atypus sacculatus ZHU et al., 2006 Araneus piceus (= Atypus piceus) beschriebenen • Atypus sinensis SCHENKEL, 1953 Art die Gattung Atypus auf. • Atypus snetsingeri SARNO, 1973 ZHU et al. publizierten 2006 eine Revisi- EINLEITUNG • Atypus flexus ZHU et al., 2006 • Atypus sternosulcus KIM et al., 2006 on der Gattung Atypus aus China, in der sie • Atypus formosensis KAYASHIMA, 1943 • Atypus suiningensis ZHANG, 1985 insgesamt dreizehn Arten beschrieben, von Zurzeit sind 28 Atypus-Arten aus der Familie • Atypus heterothecus ZHANG, 1985 • Atypus suthepicus SCHWENDINGER, 1989 denen sieben in der Revision zum ersten der Atypidae THORELL, 1870 bekannt (vgl. • Atypus javanus THORELL, 1890 • Atypus sutherlandi CHENNAPPAYIA, 1935 Mal beschrieben wurden (Atypus flexus, A. PLATNICK 2007): • Atypus karschi DÖNITZ, 1887 • Atypus suwonensis KIM et al., 2006 lar gosaccatus, A. ledongensis, A. pedicellatus, A. • Atypus lannaianus SCHWENDINGER, 1989 • Atypus tibetensis ZHU et al., 2006 sacculatus, A. tibetensis und A. yajuni). Mit Hil- • Atypus affinis EICHWALD, 1830 • Atypus largosaccatus ZHU et al., 2006 • Atypus yajuni ZHU et al., 2006 fe des in der Re vision veröffentlichten Be- • Atypus baotianmanensis HU, 1994 • Atypus ledongensis ZHU et al., 2006 stimmungsschlüssels ist es möglich alle • Atypus coreanus KIM, 1985 • Atypus magnus NAMKUNG, 1986 Die Gattung Atypus ist hauptsächlich im asi - zwölf in China vorkommenden Arten und • Atypus dorsualis Thorell, 1897 • Atypus medius OLIGER, 1999 ati schen Raum verbreitet. -
Arthropods in Linear Elements
Arthropods in linear elements Occurrence, behaviour and conservation management Thesis committee Thesis supervisor: Prof. dr. Karlè V. Sýkora Professor of Ecological Construction and Management of Infrastructure Nature Conservation and Plant Ecology Group Wageningen University Thesis co‐supervisor: Dr. ir. André P. Schaffers Scientific researcher Nature Conservation and Plant Ecology Group Wageningen University Other members: Prof. dr. Dries Bonte Ghent University, Belgium Prof. dr. Hans Van Dyck Université catholique de Louvain, Belgium Prof. dr. Paul F.M. Opdam Wageningen University Prof. dr. Menno Schilthuizen University of Groningen This research was conducted under the auspices of SENSE (School for the Socio‐Economic and Natural Sciences of the Environment) Arthropods in linear elements Occurrence, behaviour and conservation management Jinze Noordijk Thesis submitted in partial fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Tuesday 3 November 2009 at 1.30 PM in the Aula Noordijk J (2009) Arthropods in linear elements – occurrence, behaviour and conservation management Thesis, Wageningen University, Wageningen NL with references, with summaries in English and Dutch ISBN 978‐90‐8585‐492‐0 C’est une prairie au petit jour, quelque part sur la Terre. Caché sous cette prairie s’étend un monde démesuré, grand comme une planète. Les herbes folles s’y transforment en jungles impénétrables, les cailloux deviennent montagnes et le plus modeste trou d’eau prend les dimensions d’un océan. Nuridsany C & Pérennou M 1996. -
Observations on the Natural History O F Sphodros Abbott and Sphodros Rufipes (Araneae, Atypidae), with Evidence for a Contact Sex Pheromon E
Coyle, F . A. and W. A . Shear. 1981 . Observations on the natural history of Sphodros abboti and Sphodros rufipes (Araneae, Atypidae), with evidence for a contact sex pheromone . J. Arachnol ., 9 :317-326 . OBSERVATIONS ON THE NATURAL HISTORY O F SPHODROS ABBOTT AND SPHODROS RUFIPES (ARANEAE, ATYPIDAE), WITH EVIDENCE FOR A CONTACT SEX PHEROMON E Frederick A. Coyle Department of Biology Western Carolina University Cullowhee, North Carolina 2872 3 Wllliam A. Shear Department of Biology Hampden-Sydney College Hampden-Sydney, Virginia 23943 ABSTRAC T The three populations of S. abboti studied exhibit much higher densities than the two of S. rufipes. In S. abboti mating occurs in July, egg laying in August, hatching in September, and the fully equipped and self-sufficient third instar spiderlings develop by November . The tubes of S. abboti are proportionately longer and have a greater aerial length to underground length ratio than do those of S. rufipes. Other differences in tube architecture exist . Both species capture and feed upon a wide variet y of ground arthropods and discard prey remains through the upper end of the tube . S. abboti males search for mates in daylight and appear to be generalized wasp-ant mimics . Our observations of S. abboti male behavior suggests that adult female tubes are marked by a contact sex pheromone . INTRODUCTION Despite their covert behavior and patchy abundance, purse-web spiders (Atypidae ) have attracted considerable attention from araneologists for at least two reasons . First , atypids possess an interesting mixture of primitive and specialized characteristics, thei r outstanding specializations being part of a unique strategy of capturing prey through th e walls of a silk tube, the purse-web. -
Phase I Environmental Site Assessment Clear Lake Estates Unit One Nassau County, Callahan, Florida 32011 Record No
Phase I Environmental Site Assessment Clear Lake Estates Unit One Nassau County, Callahan, Florida 32011 Record No. 101650256 Project No. 112IG02645 June 4, 2010 TETRA TECH 201 Pine Street ● Suite 1000 ● Orlando, Florida 32801 (407) 839.3955 ● FAX (407) 839.3790 ● www.tetratech.com Phase I Environmental Site Assessment Clear Lake Estates Unit One Nassau County, Callahan, Florida 32011 Record No. 101650256 Project No. 112IG02645 June 4, 2010 Prepared By: Tetra Tech, Inc. 17885 Von Karman Avenue, Suite 500 Irvine, California 92614 Phone: 949.809.5000 Fax: 949.809.5010 Prepared For: Federal Deposit Insurance Corporation (FDIC) As Receiver for Peoples First Community Bank No. 10165 c/o CB Richard Ellis, Inc. 2001 Ross Avenue, Suite 400 Dallas, Texas 75201 Attention: Ms. Linda Yium TETRA TECH 201 Pine Street ● Suite 1000 ● Orlando, Florida 32801 (407) 839.3955 ● FAX (407) 839.3790 ● www.tetratech.com June 4, 2010 Federal Deposit Insurance Corporation (FDIC) As Receiver for Peoples First Community Bank No. 10165 c/o CB Richard Ellis, Inc. 2001 Ross Avenue, Suite 400 Dallas, Texas 75201 Attention: Ms. Linda Yium RE: Phase I Environmental Site Assessment Clear Lake Estates Unit One Nassau County, Callahan, Florida 32011 Record No. 101650256 Project No. 112IG02645 Dear Ms. Yium: Tetra Tech, Inc. (Tetra Tech) is pleased to submit this Phase I Environmental Site Assessment (ESA) report to Federal Deposit Insurance Corporation (FDIC), as Receiver for Peoples First Community Bank No. 10165, c/o CB Richard Ellis, Inc. (CBRE), for the above-referenced property (the Site). Tetra Tech found one potential environmental concern (PEC) and two business environmental risks (BERs) associated with the site. -
Epigeic Spider (Araneae) Diversity and Habitat Distributions in Kings
Clemson University TigerPrints All Theses Theses 5-2011 Epigeic Spider (Araneae) Diversity and Habitat Distributions in Kings Mountain National Military Park, South Carolina Sarah Stellwagen Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Entomology Commons Recommended Citation Stellwagen, Sarah, "Epigeic Spider (Araneae) Diversity and Habitat Distributions in Kings Mountain National Military Park, South Carolina" (2011). All Theses. 1091. https://tigerprints.clemson.edu/all_theses/1091 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. EPIGEIC SPIDER (ARANEAE) DIVERSITY AND HABITAT DISTRIBUTIONS IN KINGS MOUNTAIN NATIONAL MILITARY PARK, SOUTH CAROLINA ______________________________ A Thesis Presented to the Graduate School of Clemson University _______________________________ In Partial Fulfillment of the Requirements for the Degree Masters of Science Entomology _______________________________ by Sarah D. Stellwagen May 2011 _______________________________ Accepted by: Dr. Joseph D. Culin, Committee Chair Dr. Eric Benson Dr. William Bridges ABSTRACT This study examined the epigeic spider fauna in Kings Mountain National Military Park. The aim of this study is to make this information available to park management for use in the preservation of natural resources. Pitfall trapping was conducted monthly for one year in three distinct habitats: riparian, forest, and ridge-top. The study was conducted from August 2009 to July 2010. One hundred twenty samples were collected in each site. Overall, 289 adult spiders comprising 66 species were collected in the riparian habitat, 345 adult comprising 57 species were found in the forest habitat, and 240 adults comprising 47 species were found in the ridge-top habitat. -
Araneae (Spider) Photos
Araneae (Spider) Photos Araneae (Spiders) About Information on: Spider Photos of Links to WWW Spiders Spiders of North America Relationships Spider Groups Spider Resources -- An Identification Manual About Spiders As in the other arachnid orders, appendage specialization is very important in the evolution of spiders. In spiders the five pairs of appendages of the prosoma (one of the two main body sections) that follow the chelicerae are the pedipalps followed by four pairs of walking legs. The pedipalps are modified to serve as mating organs by mature male spiders. These modifications are often very complicated and differences in their structure are important characteristics used by araneologists in the classification of spiders. Pedipalps in female spiders are structurally much simpler and are used for sensing, manipulating food and sometimes in locomotion. It is relatively easy to tell mature or nearly mature males from female spiders (at least in most groups) by looking at the pedipalps -- in females they look like functional but small legs while in males the ends tend to be enlarged, often greatly so. In young spiders these differences are not evident. There are also appendages on the opisthosoma (the rear body section, the one with no walking legs) the best known being the spinnerets. In the first spiders there were four pairs of spinnerets. Living spiders may have four e.g., (liphistiomorph spiders) or three pairs (e.g., mygalomorph and ecribellate araneomorphs) or three paris of spinnerets and a silk spinning plate called a cribellum (the earliest and many extant araneomorph spiders). Spinnerets' history as appendages is suggested in part by their being projections away from the opisthosoma and the fact that they may retain muscles for movement Much of the success of spiders traces directly to their extensive use of silk and poison. -
Cladistic Analysis of the Atypoides Plus Antrodiaetus Lineage of Mygalomorph Spiders (Araneae, Antrodiaetidae )
1996 . The Journal of Arachnology 24 :201–21 3 CLADISTIC ANALYSIS OF THE ATYPOIDES PLUS ANTRODIAETUS LINEAGE OF MYGALOMORPH SPIDERS (ARANEAE, ANTRODIAETIDAE ) Jeremy A . Miller and Frederick A . Coyle : Department of Biology, Western Carolina University, Cullowhee, North Carolina 28723 USA ABSTRACT . Cladistic analyses of the antrodiaetid spider genera Atypoides O .P.-Cambridge 1883 and Antrodiaetus Ausserer 1871 yield a much more completely resolved phylogeny than that proposed by Coyle in 1971 . Twenty-nine potentially informative characters were used in the analyses, which wer e performed using PAUPs a posteriori weighting options . Three independent analyses were performed , each with a different outgroup . These outgroups were 1) the antrodiaetid genus Aliatypus Smith 1908, the putative sister group of Atypoides plus Antrodiaetus, 2) Aliatypus gulosus Coyle 1974, the most primitive Aliatypus species, and 3) a hypothetical ancestral taxon based on character states found in Aliatypus an d the Atypidae, the latter being the putative sister group of the antrodiaetids . These three analyses produced a total of eight most parsimonious trees which support the following principal conclusions : 1) Atypoides, as defined by Coyle, is paraphyletic (Atypoides riversi O . P.-Cambridge 1883 plus At. gertschi Coyle 1968 share with Antrodiaetus a common ancestor not shared with At . hadros Coyle 1968). 2) Antrodiaetus roretzi (L. Koch 1878) is a relict species which shares a unique common ancestor with all other Antro- diaetus species . 3) Coyles unicolor group of nine Antrodiaetus species is paraphyletic ; six of these form a recently-derived Glade, (Antrodiaetus occultus Coyle 1971 (An . yesoensis [Uyemura 1942], An. cerberu s Coyle 1971, (An. montanus [Chamberlin Ivie 1933], (An.