SLOCC Invariants for Multipartite Mixed States Naihuan Jing1,5,∗ Ming Li2,3, Xianqing Li-Jost2, Tinggui Zhang2, and Shao-Ming Fei2,4 1School of Sciences, South China University of Technology, Guangzhou 510640, China 2Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany 3Department of Mathematics, China University of Petroleum , Qingdao 266555, China 4School of Mathematical Sciences, Capital Normal University, Beijing 100048, China 5Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA Abstract We construct a nontrivial set of invariants for any multipartite mixed states under the SLOCC symmetry. These invariants are given by hyperdeterminants and independent from basis change. In particular, a family of d2 invariants for arbitrary d-dimensional even partite mixed states are explicitly given. PACS numbers: 03.67.-a, 02.20.Hj, 03.65.-w arXiv:1404.6852v1 [quant-ph] 28 Apr 2014 ∗Electronic address:
[email protected] 1 I. INTRODUCTION Classification of multipartite states under stochastic local operations and classical commu- nication (SLOCC) has been a central problem in quantum communication and computation. Recently advances have been made for the classification of pure multipartite states under SLOCC [1, 2] and the dimension of the space of homogeneous SLOCC-invariants in a fixed degree is given as a function of the number of qudits. In this work we present a general method to construct polynomial invariants for mixed states under SLOCC. In particular we also derive general invariants under local unitary (LU) symmetry for mixed states. Polynomial invariants have been investigated in [3–6], which allow in principle to deter- mine all the invariants of local unitary transformations.