Update on North America Shale-Gas Exploration and Development

Total Page:16

File Type:pdf, Size:1020Kb

Update on North America Shale-Gas Exploration and Development CHAPTER ONE Update on North America Shale-Gas Exploration and Development DAVID G. HILL 1, JOHN B. CURTIS 2, PAUL G. LILLIS 3 1. EnCana Oil & Gas (USA) Inc., Denver Colorado 80202; 2. Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401; 3. U.S. Geological Survey, Denver, Colorado 80225 ABSTRACT In the oil and gas industry, shale has overcome its stigma as an odd unconventional hydrocarbon reservoir to become one of the most sought-after resource plays in North America. Spurred by develop - ment of the Barnett Shale in the Fort Worth Basin, U.S. drilling and exploration for this unique play type is at an all time high at year-end 2006. Recent shale specific consortia, workshops, symposia and confer - ences reflect this increased emphasis on shale plays. Shale-gas plays have emerged as commercially viable and encouraging exploration is ongoing in many basins in North America. Hydrocarbon production from shale-gas systems has a long and important history in North America. The first commercial U.S. natural gas production (1821) came from organic-rich Devonian shale in the Appalachian basin. The first commercial U.S. oil production from shale (1862) came from the Upper Cre - taceous Pierre Shale in Colorado. Both plays are still producing today. With the recent growth of shale-gas plays, defining and classifying shale reservoirs has become increasingly complex. Including both gas and oil productive systems and expanding the definition to include fine-grained source rocks creates a more encompassing taxonomy. Shale-gas systems are generally unconventional, self-sourced, continuous-type accumulations (biogenic, thermogenic or combined bio - genic-thermogenic gas accumulations). The principal shale-gas plays are characterized by widespread gas saturation, subtle trapping mechanisms, seals of variable lithology and enhanced permeability due to nat - ural fractures and/or variable interbedded lithology. It now is commonly accepted that gas is stored in shale-gas reservoirs in a variety of ways including in natural fractures and intergranular porosity as free gas, sorbed onto kerogen and possibly dissolved in bitumen. Shale-oil systems can also be continuous- type accumulations, characterized by widespread oil saturation, subtle trapping mechanisms, primary permeability from natural fractures and interbedded lithologies and seals of variable lithology. Shale oil reservoirs are typically a dual porosity system where oil is primarily stored in the natural fracture net - work and intergranular porosity. Natural gas production from the five principal shale plays has increased 151% from 2000 to 2006. These plays include Devonian Ohio Shale of the Appalachian Basin, Devonian Antrim Shale of the Michi - gan Basin, Devonian New Albany Shale in the Illinois Basin, Mississippian Barnett Shale in the Fort Worth Basin, and Cretaceous Lewis Shale in the San Juan Basin. The great majority of this increase has been in the Barnett Shale. The other principal plays have increased slightly or declined. These plays are being used as analogs for exploration and development in other basins. At year-end 2005, a new shale-gas play, the Fayetteville Shale, has emerged in the Arkansas portion of the Arkoma Basin and is proving to be commer - cially viable and potentially very large. Production is beginning to be established in several other plays such as the Baxter Shale in the Greater Green River Basin and the Woodford Shale in southeastern Oklahoma. Numerous other shale plays in the pilot stage are being worked to establish production. Gas Shale in the Rocky Mountains and Beyond, D. Hill, P. Lillis, and J. Curtis, eds., Rocky Mountain Association of Geologists 2008 Guidebook CD, p. 11-42. 11 David G. Hill, John B. Curtis, Paul G. Lillis New technologies have played a critical role in expanding industrys understanding of shale-gas plays and unlocking their potential. These technologies include advances in hydraulic fracturing, horizontal drilling and reservoir characterization. Operators and service companies have adapted, modified and cre - ated new approaches to exploration and development of shale reservoirs through innovation and trial and error. In the established shale-gas plays, approximately 38,000 shale-gas wells produced an estimated 1.0 Tcf of gas at year-end 2006. Cumulative natural gas production has exceeded 8.7 Tcf from 1979 to 2006 from these plays. The estimated technically recoverable resource ranges from 53 to 114 Tcf. INTRODUCTION predominate in the Michigan and Illinois Basin plays (Schurr and Ridgley, 2002; Schoell, 1980; Martini et al, Gas-productive shales occur in Paleozoic and Mesozoic 1998; Walter et al, 2000). rocks in the continental United States (Figure 1). As with Economic production typically, if not universally, most unconventional or continuous-type accumulations requires enhancement of gas shale’s inherently low matrix (Curtis, 2001; U.S. Geological Survey National Oil and permeability (<0.001 md) (Hill and Nelson, 2000). Well Gas Resource Assessment Team, 1995), these systems rep - completion practices employ hydraulic fracturing technol - resent a potentially large, technically-recoverable gas ogy to access the natural fracture system and to create new resource, even though past production and proved reserve fractures. Less than 10% of shale-gas wells are completed estimates are small (Figure 2). The resource pyramid con - without some form of reservoir stimulation. Early attempts cept depicted in Figure 2 was first used in the late 1970s to fracture these formations employed nitroglycerin, pro - for analyzing natural gas accumulations in low-permeabil - pellants and a variety of hydraulic fracturing techniques ity reservoirs (Sumrow, 2001). If exploration and develop - (Hill and Nelson, 2000). ment companies are to access the gas resources towards the This paper is an update on shale-gas activity in North base of the pyramid, some combination of incrementally America reviewing the original five principal shale-gas sys - higher gas prices, lower operating costs and more advanced tems in the U.S., and discussing several emerging shale-gas technology will be required to make production economic. plays and plays that are in the early stages of exploration Production of gas deeper within the resource pyramid is and evaluation (Figure 1). required to fully realize the potential of this type of petro - leum system. More than 38,000 shale-gas wells have been drilled in HISTORICAL PERSPECTIVE the United States since the early 1800s (Hill and Nelson, 2000). Paucity of shale-gas production outside the United The birth of the oil and gas industry occurred in the States may be attributable more to uneconomical flow Appalachian Basin. Although the start of the oil industry is rates and well-payback periods than to the absence of commonly attributed to the Drake well drilled near Oil potentially productive shale-gas systems. Creek, Pennsylvania in 1859, the first gas well was report - These fine-grained, clay and organic carbon-rich rocks edly dug in 1821 to the Devonian Dunkirk Shale by are both gas source and reservoir rock components of the William A. Hart in Chautauqua County, New York. This petroleum system (Martini et al, 1998). Gas is thermogenic well produced natural gas that was used to illuminate the or biogenic and may be stored as free gas in fracture and town of Fredonia, New York (Roen, 1993). Both of these intergranular porosity, sorbed onto kerogen, and perhaps historic wells were shallow, and both of these areas are still dissolved in bitumen (Martini et al, 1998; Schettler and commercially productive. Parmely, 1990). Trapping mechanisms can be ambiguous Shortly following the oil discovery by the Drake well, oil with gas saturations covering large geographic areas (Roen, production was established west of the Mississippi river in 1993). Postulated seal-rock components differ among the 1862 in what is now Fremont County, Colorado. This pro - major shale-gas plays, including bentonites (San Juan duction came from the fractured Cretaceous Pierre Shale Basin), shale (Appalachian Basin and Fort Worth Basin), establishing the Florence-Cañon City field (Mallory, 1977). glacial till (Michigan Basin) and shale/carbonate facies Like the Devonian age shale in the Appalachian Basin, oil is changes (Illinois Basin) (Hill and Nelson, 2000; Walter et still being produced from the Pierre Shale in this field today. al, 2000; Curtis and Faure, 1997). While oil production spread quickly across the U.S. Thermogenic and biogenic gas components are present from east to west, shale-gas production was much slower in shale-gas reservoirs; however, biogenic gas appears to to develop. Production was concentrated in the eastern Gas Shale in the Rocky Mountains and Beyond 12 The Rocky Mountain Association of Geologists UPDATE ON NORTH AMERICAN SHALE -G AS EXPLORATION AND DEVELOPMENT . s y a l p e l a h s d n a s n i s a b y r a t n e m i d e s . S . U r o j a M . 1 e r u g i F Gas Shale in the Rocky Mountains and Beyond 13 The Rocky Mountain Association of Geologists David G. Hill, John B. Curtis, Paul G. Lillis U.S., mainly due to proximity to markets and infrastruc ture. Natural gas production from the New Albany Shale in the Illinois Basin was established in 1863. Growth stalled until the 1920s. By 1926, the Devonian shale-gas fields of east - ern Kentucky and West Virginia comprised the largest known gas occurrences in the world (Roen, 1993). The next period of revitalization for gas shales came with the shortages of natural gas during the early 1970s. Several initiatives increased gas production from approxi - mately 70 Bcf per year from one basin to over 400 Bcf per year in 2000 from 5 basins. These efforts included focused research and development and a federal tax incentive for producing gas from shale. In 1976, The Energy Research and Development Administration (ERDA), forerunner of U.S.
Recommended publications
  • Deconstructing the Fayetteville Lessons from a Mature Shale Play
    Deconstructing the Fayetteville ©Lessons Kimmeridge 2015 from - Deconstructing a Mature the Fayetteville Shale Play June 20151 Introduction The Fayetteville shale gas play lies in the eastern Arkoma Basin, east of the historic oil and gas fields in the central and western parts of the Basin. As one of the most mature, well-developed and well-understood shale gas plays, it offers an unparalleled dataset on which we can look back and review how closely what we “thought we knew” matches “what we now know”, and what lessons there are to be learned in the development of shales and the distribution of the cores of these plays. As we have previously noted (see Figure 1), identifying the core of a shale play is akin to building a Venn diagram based on a number of geological factors. By revisiting the Fayetteville we can rebuild this diagram and overlay it on what is now a vast database of historical wells to see whether it matched expectations, and if not, why not. The data also allows us to review how the development of the play changed (lateral length, completion, etc.) and the variance in performance Figure 1: Schematic of gradational overlap of geologic between operators presents valuable lessons in attributes that define the core of an unconventional whether success is all about the rocks, or whether resource play operator knowledge/insight can make good rocks bad or vice versa. © Kimmeridge 2015 - Deconstructing the Fayetteville 2 Background The Fayetteville shale lies in the eastern Arkoma Basin and ranges in depth from outcrop in the north to 9,000’ at the southern end of the play, with drill depths primarily between 3,000’ and 6,000’.
    [Show full text]
  • Study Develops Fayetteville Shale Reserves, Production Forecast John Browning Katie Smye a Study of Reserve and Production Potential for the Fayette- Scott W
    Study develops Fayetteville Shale reserves, production forecast John Browning Katie Smye A study of reserve and production potential for the Fayette- Scott W. Tinker Susan Horvath ville Shale in north central Arkansas forecasts a cumulative Svetlana Ikonnikova Tad Patzek 18 tcf of economically recoverable reserves by 2050, with Gürcan Gülen Frank Male production declining to about 400 bcf/year by 2030 from Eric Potter Forrest Roberts the current peak of about 950 bcf/year. Qilong Fu Carl Grote The forecast suggests the formation will continue to be a The University of Texas major contributor to U.S. natural gas production. Austin The Bureau of Economic Geology (BEG) at The University In this cross section of the Fayetteville Shale, the pay zone is identified by lines correlated between logs. Shaded areas of density-log porosity (DPhi) curve represent DPhi values less than 5%. The map shows the location of the cross section. TECHNOLOGY 1 FAYETTEVILLE POROSITY * THICKNESS (PHI*H) FIG. 2 Contours,2 density porosity-ft Stone 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 Batesville Van Buren Cleburne Independence Pope Conway Faulkner Area shown White Conway 0 Miles 25 Arkansas 0 Km 40 1With 60° NE trend bias to reect fault trends. 2Porosity is net from density logs (DPhi). of Texas at Austin conducted the study, integrating engineer- sient flow model for the first 3-5 years, resulting in decline ing, geology, and economics into a numerical model that al- rates inversely proportional to the square root of time, later lows for scenario testing on the basis of an array of technical shifting to exponential decline as a result of interfracture and economic parameters.
    [Show full text]
  • U.S. Shale Gas
    U.S. Shale Gas An Unconventional Resource. Unconventional Challenges. WHITE PAPER U.S. Shale Gas An Unconventional Resource . Unconventional Challenges . Executive Summary Current increasing demand and lagging supply mean high prices for both oil and gas, making exploitation of North American unconventional gas plays suddenly far more lucrative for producers. One of the most important such plays to emerge has been U.S. shale gas, with current recoverable reserves conservatively estimated at 500 to 1,000 trillion cubic feet. Hydraulic fracturing and horizontal drilling are the key enabling technologies that first made recovery of shale gas economically viable with their introduction in the Barnett Shale of Texas during the 1990s. However, a comparison of the currently hottest shale plays makes it clear that, after two decades of development and several iterations of the learning curve, best practices are application-dependent and must evolve locally. That said, a review of current trends in these hot plays indicates that, in many cases, the impact of high-drilling density required to develop continuous gas accumulations can be minimized through early and better identification of the accumulation type and size, well- designed access and transportation networks, and cooperative planning and construction efforts, when possible. U.S. Shale Gas Geographic Potential Across the U.S., from the West Coast to the Northeast, some 19 geographic basins are recognized sources of shale gas, where an estimated 35,000 wells were drilled in 2006. Presently, significant commercial gas shale production occurs in the Barnett Shale in the Fort Worth Basin, Lewis Shale in the San Juan Basin, Antrim Shale in the Michigan Basin, Marcellus Shale and others in the Appalachian Basin, and New Albany Shale in the Illinois Basin.
    [Show full text]
  • Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent
    Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and AdJa(-erit Parts of the Lewis Sliale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest lo U.S. OEOLOGI AL SURVEY PROFESSIONAL PAPER 1532 Stratigraphy of the Upper Cretaceous Fox Hills Sandstone and Adjacent Parts of the Lewis Shale and Lance Formation, East Flank of the Rock Springs Uplift, Southwest Wyoming By HENRYW. ROEHLER U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1532 Description of three of/lapping barrier shorelines along the western margins of the interior seaway of North America UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Library of Congress Cataloging-in-Publication Data Roehler, Henry W. Stratigraphy of the Upper Cretaceous Fox Hills sandstone and adjacent parts of the Lewis shale and Lance formation, east flank of the Rock Springs Uplift, southwest Wyoming / by Henry W. Roehler. p. cm. (U.S. Geological Survey professional paper ; 1532) Includes bibliographical references. Supt.ofDocs.no.: I19.16:P1532 1. Geology, Stratigraphic Cretaceous. 2. Geology Wyoming. 3. Fox Hills Formation. I. Geological Survey (U.S.). II. Title. III. Series. QE688.R64 1993 551.7T09787 dc20 92-36645 CIP For sale by USGS Map Distribution Box 25286, Building 810 Denver Federal Center Denver, CO 80225 CONTENTS Page Page Abstract......................................................................................... 1 Stratigraphy Continued Introduction................................................................................... 1 Formations exposed on the east flank of the Rock Springs Description and accessibility of the study area ................
    [Show full text]
  • Shallow Groundwater Quality and Geochemistry in the Fayetteville Shale Gas-Production Area, North-Central Arkansas, 2011
    Prepared in cooperation with (in alphabetical order) the Arkansas Natural Resources Commission, Arkansas Oil and Gas Commission, Duke University, Faulkner County, Shirley Community Development Corporation, and the University of Arkansas at Fayetteville, and the U.S. Geological Survey Groundwater Resources Program Shallow Groundwater Quality and Geochemistry in the Fayetteville Shale Gas-Production Area, North-Central Arkansas, 2011 Scientific Investigations Report 2012–5273 U.S. Department of the Interior U.S. Geological Survey Cover: Left, Drilling rig and equipment used in the Fayetteville Shale gas-production area, north-central Arkansas. Right, Pond with synthetic liner used to store water at shale gas-production facility in the Fayetteville Shale area, north-central Arkansas. Bottom, Freshwater pond and distribution lines for source water used in drilling and hydrofracturing in the Fayetteville Shale gas-production area, north-central Arkansas. All photographs by Timothy M. Kresse, U.S. Geological Survey. Shallow Groundwater Quality and Geochemistry in the Fayetteville Shale Gas-Production Area, North-Central Arkansas, 2011 By Timothy M. Kresse, Nathaniel R. Warner, Phillip D. Hays, Adrian Down, Avner Vengosh, Robert B. Jackson Prepared in cooperation with (in alphabetical order) the Arkansas Natural Resources Commission, Arkansas Oil and Gas Commission, Duke University, Faulkner County, Shirley Community Development Corporation, and the University of Arkansas at Fayetteville, and the U.S. Geological Survey Groundwater Resources Program Scientific Investigations Report 2012–5273 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This and other USGS information products are available at http://store.usgs.gov/ U.S.
    [Show full text]
  • EVIDENCE of PRESSURE DEPENDENT PERMEABILITY in LONG-TERM SHALE GAS PRODUCTION and PRESSURE TRANSIENT RESPONSES a Thesis by FABIA
    EVIDENCE OF PRESSURE DEPENDENT PERMEABILITY IN LONG-TERM SHALE GAS PRODUCTION AND PRESSURE TRANSIENT RESPONSES A Thesis by FABIAN ELIAS VERA ROSALES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Christine Ehlig-Economides Committee Members, Robert Wattenbarger Maria Barrufet Head of Department, Dan Hill December 2012 Major Subject: Petroleum Engineering Copyright 2012 Fabian Elias Vera Rosales ABSTRACT The current state of shale gas reservoir dynamics demands understanding long- term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability. Petroleum geologists suggest that observed steep declining rates may involve pressure- dependent permeability (PDP). This study accounts for PDP in three potential shale media: the shale matrix, the existing natural fractures, and the created hydraulic fractures. Sensitivity studies comparing expected long-term rate and pressure production behavior with and without PDP show that these two are distinct when presented as a sequence of coupled build-up rate-normalized pressure (BU-RNP) and its logarithmic derivative, making PDP a recognizable trend. Pressure and rate field data demonstrate evidence of PDP only in Horn River and Haynesville but not in Fayetteville shale. While the presence of PDP did not seem to impact the long term recovery forecast, it is possible to determine whether the observed behavior relates to change in hydraulic fracture conductivity or to change in fracture network permeability. As well, it provides insight on whether apparent fracture networks relate to an existing natural fracture network in the shale or to a fracture network induced during hydraulic fracturing.
    [Show full text]
  • Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma Introduction by MACKENZIE GORDON, JR
    Revision of Some of Girty's Invertebrate Fossils from the Fayetteville Shale (Mississippian) of Arkansas and Oklahoma Introduction By MACKENZIE GORDON, JR. Corals By WILLIAM J. SANDO Pelecypods By JOHN POJETA, JR. Gastropods By ELLIS L. YOCHELSON Trilobites By MACKENZIE GORDON, JR. Ostracodes By I. G. SOHN GEOLOGICAL SURVEY PROFESSIONAL PAPER 606-A, B, C, D, E, F Papers illustrating and describing certain of G. H. Girty' s invertebrate fossils from the Fayetteville Shale UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 70-650224 For sale by the Superintendent of Documents, U.S. Government Printing Office Washing.ton, D.C. 20402 CONTENTS [The letters in parentheses preceding the titles are those used to designate the chapters] Page (A) Introduction, by Mackenzie Gordon, Jr _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 (B) Corals, by William J. Sando__________________________________________________________________________________ 9 (C) Pelecypods, by John Pojeta, Jr _____ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 15 (D) Gastropods, by Ellis L.
    [Show full text]
  • Central San Juan Basin
    Acta - ---- - - ---Palaeontologic- -- ---' ~ Polonica Vol. 28, No. 1-2 pp. 195-204 Warszawa, 1983 Second Symposium on Mesozoic Terrestiol. Ecosystems, Jadwisin 1981 SPENCER G. LUCAS and NIALL J. MATEER VERTEBRATE PALEOECOLOGY OF THE LATE CAMPANIAN (CRETACEOUS):FRUITLAND FORMATION, SAN JUAN BASIN, ~EW MEXICO (USA) LUCAS, s. G. and MATEER, N. J .: Vertebrate paleoecology of the late Campanian (Cretaceous) Fruitland Formation, San Juan Basin, New Mexico (USA). Acta Palaeontologica Polonica, 28, 1-2, 195-204, 1983. Sediments of the Fruitland Formation in northwestern New Mexico represent a delta plain that prograded northeastward over the retrating strandline of the. North American epeiric seaway during the late Campanian. Fruitland fossil · vertebrates are fishes, amphibians, lizards, a snake, turtles, crocodilians, dinosaurs (mostly h adrosaurs and ceratopsians) and mammals. Autochthonous fossils in the Fruitland ' Form ation represent organisms of the trophically-complex Para­ saurolophus community. Differences in diversity, physical stress and life-history strategies within the ParasaurolopllUS community . fit well the stablllty-time hypothesis. Thus, dinosaurs experienced relatively low physical stress whereas fishes, amphibians, small reptiles and mammals experienced greater physical stress. Because of this, dinosaurs were less likely to recover from an environment­ al catastrophe than were smaller contemporaneous vertebrates. The terminal Cretaceous extinctions selectively eliminated animals that lived in less physlcally­ -stressed situations, indicating that the extinctions resulted from an environmental catastrophe. Key w 0 r d s: Fruitland Formation, New Mexico, delta plain, stablllty-time hypothesis, Cretaceous extinctions. Spencer G. Lucas, Department ot Geology and Geophysics and Peabody Museum ot Natural History, Yale University, P.O. Box 6666, New Haven, Connecticut 06511 USA ; NlaU J .
    [Show full text]
  • Technically Recoverable Shale Oil and Shale Gas Resources: United Kingdom
    Technically Recoverable Shale Oil and Shale Gas Resources: United Kingdom September 2015 Independent Statistics & Analysis U.S. Department of Energy www.eia.gov Washington, DC 20585 September 2015 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i September 2015 Contents Executive Summary ....................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Resource categories ................................................................................................................................. 3 Methodology ........................................................................................................................................... 5 Key exclusions .......................................................................................................................................... 6 United Kingdom…………………………………… ………………………………………………………………………………………......XI-1
    [Show full text]
  • Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations
    Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-A Introduction to Greater Green River Basin Geology, Physiography, and History of Investigations By HENRY W. ROEHLER GEOLOGY OF THE EOCENE WASATCH, GREEN RIVER, AND BRIDGER (WASHAKIE) FORMATIONS, GREATER GREEN RIVER BASIN, WYOMING, UTAH, AND COLORADO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1506-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Roehler, Henry W. Introduction to greater Green River basin geology, physiography, and history of investigations / by Henry W. Roehler. p. cm. (Geology of the Eocene Wasatch, Green River, and Bridger (Washakie) formations, greater Green River basin, Wyoming, Utah, and Colorado) (U.S. Geological Survey professional paper ; 1506-A) Includes bibliographical references (p. ). Supt. of Docs, no.: I 19.16:1506A 1. Geology, Stratigraphic Eocene. 2. Geology Green River Watershed (Wyo.-Utah). I. Title. II. Series. III. Series: U.S. Geological Survey professional paper ; 1506-A. QE692.2.R625 1992 551.7'84'097925 dc20 91-23181 CIP For sale by Book and Open-File Report Sales, U.S. Geological Survey, Federal Center, Box 25286, Denver, CO 80225 CONTENTS Page Abstract ........................................................................................................................................ Al Purpose and scope of investigation ............................................................................................ 1 Location and accessibility of the greater Green River basin ................................................... 2 Geologic setting ...........................................................................................................................
    [Show full text]
  • Application of Organic Petrography in North American Shale Petroleum Systems: a Review
    International Journal of Coal Geology 163 (2016) 8–51 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Application of organic petrography in North American shale petroleum systems: A review Paul C. Hackley a, Brian J. Cardott b a U.S. Geological Survey, MS 956 National Center, 12201 Sunrise Valley Dr, Reston, VA 20192, USA b Oklahoma Geological Survey, 100 E. Boyd St., Rm. N-131, Norman, OK 73019-0628, USA article info abstract Article history: Organic petrography via incident light microscopy has broad application to shale petroleum systems, including Received 13 April 2016 delineation of thermal maturity windows and determination of organo-facies. Incident light microscopy allows Received in revised form 10 June 2016 practitioners the ability to identify various types of organic components and demonstrates that solid bitumen Accepted 13 June 2016 is the dominant organic matter occurring in shale plays of peak oil and gas window thermal maturity, whereas Available online 16 June 2016 oil-prone Type I/II kerogens have converted to hydrocarbons and are not present. High magnification SEM obser- Keywords: vation of an interconnected organic porosity occurring in the solid bitumen of thermally mature shale reservoirs Organic petrology has enabled major advances in our understanding of hydrocarbon migration and storage in shale, but suffers Thermal maturity from inability to confirm the type of organic matter present. Herein we review organic petrography applications Shale petroleum systems in the North American shale plays through discussion of incident light photographic examples. In the first part of Unconventional resources the manuscript we provide basic practical information on the measurement of organic reflectance and outline Vitrinite reflectance fluorescence microscopy and other petrographic approaches to the determination of thermal maturity.
    [Show full text]
  • Mesozoic Stratigraphy at Durango, Colorado
    160 New Mexico Geological Society, 56th Field Conference Guidebook, Geology of the Chama Basin, 2005, p. 160-169. LUCAS AND HECKERT MESOZOIC STRATIGRAPHY AT DURANGO, COLORADO SPENCER G. LUCAS AND ANDREW B. HECKERT New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104 ABSTRACT.—A nearly 3-km-thick section of Mesozoic sedimentary rocks is exposed at Durango, Colorado. This section con- sists of Upper Triassic, Middle-Upper Jurassic and Cretaceous strata that well record the geological history of southwestern Colorado during much of the Mesozoic. At Durango, Upper Triassic strata of the Chinle Group are ~ 300 m of red beds deposited in mostly fluvial paleoenvironments. Overlying Middle-Upper Jurassic strata of the San Rafael Group are ~ 300 m thick and consist of eolian sandstone, salina limestone and siltstone/sandstone deposited on an arid coastal plain. The Upper Jurassic Morrison Formation is ~ 187 m thick and consists of sandstone and mudstone deposited in fluvial environments. The only Lower Cretaceous strata at Durango are fluvial sandstone and conglomerate of the Burro Canyon Formation. Most of the overlying Upper Cretaceous section (Dakota, Mancos, Mesaverde, Lewis, Fruitland and Kirtland units) represents deposition in and along the western margin of the Western Interior seaway during Cenomanian-Campanian time. Volcaniclastic strata of the overlying McDermott Formation are the youngest Mesozoic strata at Durango. INTRODUCTION Durango, Colorado, sits in the Animas River Valley on the northern flank of the San Juan Basin and in the southern foothills of the San Juan and La Plata Mountains. Beginning at the northern end of the city, and extending to the southern end of town (from north of Animas City Mountain to just south of Smelter Moun- tain), the Animas River cuts in an essentially downdip direction through a homoclinal Mesozoic section of sedimentary rocks about 3 km thick (Figs.
    [Show full text]