Project #: DJO - 0308 Design of a One Kilowatt Scale Kite Power System A Major Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science In Aerospace Engineering SUBMITTED BY: __________________________ __________________________ Ryan Buckley Max Hurgin
[email protected] [email protected] __________________________ __________________________ Chris Colschen Erik Lovejoy
[email protected] [email protected] __________________________ __________________________ Nick Simone Michael DeCuir
[email protected] [email protected] rd Date: April 23 , 2008 __________________________________ Professor David Olinger, Project Advisor 1 Abstract The goal of this project was to design and build a one-kilowatt scale system for generating power using a kite. Kite power has the potential to be more economical than using wind turbines because kites can fly higher than turbines can operate. At higher altitudes, wind speeds and available power are increased. In the developed system, a large windboarding kite pulls the end of a long rocking arm which turns a generator and creates electricity. This motion is repeated using a mechanism that changes the angle of attack of the kite during each cycle, thus varying its lift force and allowing a rocking motion of the arm. The end of the arm turns a shaft with a flywheel attached and spins a mounted generator, whose output then gets stored in batteries for later use. A Matlab simulation was used to predict a power output for the system of approximately one kilowatt. All sub-components of the system (power conversion mechanism, angle of attack mechanism, and kite control mechanism) have been lab tested.