Production of Α- and Β-Galactosidases from Bifidobacterium Longum Subsp

Total Page:16

File Type:pdf, Size:1020Kb

Production of Α- and Β-Galactosidases from Bifidobacterium Longum Subsp J. Microbiol. Biotechnol. (2014), 24(5), 675–682 http://dx.doi.org/10.4014/jmb.1402.02037 Research Article jmb Production of α- and β-Galactosidases from Bifidobacterium longum subsp. longum RD47 Yoo Ri Han1, So Youn Youn1, Geun Eog Ji1,2*, and Myeong Soo Park3* 1Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul 151-742, Republic of Korea 2Research Center, BIFIDO Co., Ltd., Hongcheon 205-804, Republic of Korea 3Department of Hotel Culinary Arts, Yeonsung University, Anyang 430-749, Republic of Korea Received: February 19, 2014 Revised: March 7, 2014 Approximately 50% of people in the world experience abdominal flatulence after the intake of Accepted: March 8, 2014 foods containing galactosides such as lactose or soybean oligosaccharides. The galactoside hydrolyzing enzymes of α- and β-galactosidases have been shown to reduce the levels of galactosides in both the food matrix and the human gastrointestinal tract. This study aimed to First published online optimize the production of α- and β-galactosidases of Bifidobacterium longum subsp. longum March 10, 2014 RD47 with a basal medium containing whey and corn steep liquor. The activities of both o *Corresponding authors enzymes were determined after culturing at 37 C at pH 6.0 for 30 h. The optimal production of G.E.J. α- and β-galactosidases was obtained with soybean oligosaccharides as a carbon source and Phone: +82-2-880-8749; proteose peptone no. 3 as a nitrogen source. The optimum pH for both α- and β-galactosidases Fax: +82-2-884-0305; E-mail: [email protected] was 6.0. The optimum temperatures were 35oC for α-galactosidase and 37oC for β- M.S.P. galactosidase. They showed temperature stability up to 37oC. At a 1 mM concentration of Phone: +82-31-441-1347; Fax: +82-31-441-1347; metal ions, CuSO4 inhibited the activities of α- and β-galactosidases by 35% and 50%, E-mail: [email protected] respectively. On the basis of the results obtained in this study, B. longum RD47 may be used for the production of α- and β-galactosidases, which may reduce the levels of flatulence factors. pISSN 1017-7825, eISSN 1738-8872 Copyright© 2014 by Keywords: Bifidobacteria, α- and β-galactosidases, soybean oligosaccharides, proteose peptone The Korean Society for Microbiology no. 3, whey and corn steep liquor and Biotechnology Introduction catalyze the hydrolysis of terminally joined galactosidic residues in simple galactose-including oligosaccharides as There has been a growing interest in probiotics, prebiotics, well as in complex polysaccharides [20]. Because α- or their combined use as synbiotics to enhance human galactosidase is not synthesized by humans, the presence health [25]. Probiotics is defined as “living microbial diet of oligosaccharides can impede the digestion of nutrients supplements which beneficially affect the host by improving and lead to flatulence [6]. Therefore, α-galactosidase can be its intestinal balance” [7]. Among them, bifidobacteria have useful for eliminating the α-galactosyl residue in the some potential health-promoting properties in that they soybean oligosaccharides and thus promote the nutrition of maintain the intestinal microbial balance by regulating legume and bean foods. antimicrobial activity [3], preventing diarrheal diseases [26] β-Galactosidase, known as a lactase that hydrolyzes and upper gastrointestinal tract diseases [17], alleviating lactose into glucose and galactose, is a commercially lactose-intolerance symptoms, and stimulating immune important enzyme in the food industry for alleviating the responses [21]. problems associated with lactose crystallization in frozen Bifidobacteria possess glycohydrolases, including α- and concentrated desserts [16]. A half of the world’s population β-galactosidases, which are capable of metabolizing lacks this enzyme, leading to the development of lactose various carbohydrates [4]. These galactosidase enzymes intolerance or maldigestion [28]. The principle symptoms May 2014 ⎪ Vol. 24⎪ No. 5 676 Han et al. of lactose intolerance are flatulence, bloating, diarrhea, and Enzyme Preparation and Assay abdominal pain. The incubated bacteria were collected by centrifugation (10,000 ×g Several studies have shown an effect of α- and β- for 3 min at 4oC) and the harvested pellet was washed twice with galactosidase administration on intestinal gas production 50 mM sodium phosphate buffer (pH 6.0). The pellet was and the occurrence of gas-related symptoms [5, 19]. Di resuspended in the phosphate buffer (pH 6.0) and disrupted with a cell sonicator (VCX 400; Sonics & Material Inc., Newtown, CT, Stefano et al. [5] reported that the oral administration of α- USA) for 10 min to extract intracellular enzymes. The disrupted galactosidase was proved to be effective for controlling bacterial solution was centrifuged at 10,000 ×g for 10 min at 4oC excessive gas production and reducing gas-related symptoms and the supernatant was used as crude enzyme extract for assay after a meal rich in fermentable carbohydrates. Lin et al. of α- or β-galactosidase. Eighty microliters of the crude enzyme [19] also showed that the intake of β-galactosidase solution was added to 20 µl of 5 mM p-nitrophenyl- α- or β- improves the in vivo digestion of lactose through the galactopyranoside substrate and the mixture was incubated at o enhanced gastrointestinal digestion of lactose and the 37 C. The reaction was stopped by adding 100 µl of 1 M Na2CO3. reduced production of gas. Therefore, the efficient production Enzyme activities were determined by monitoring the amount of of α- and β-galactosidases from microorganisms would be the released p-nitrophenol (pNP) from p-nitrophenyl- α- or β- valuable for industrial, biotechnological, and further galactopyranoside at 405 nm in a spectrophotometer at 37oC. One medicinal applications. unit (U) of enzyme activity was defined as the amount of enzyme o Previous studies have demonstrated that bifidobacteria that liberated 1 µmol of pNP per minute at 37 C and pH 6.0. can produce α- or β-galactosidases [10, 12, 13, 18, 22]. Van Effects of Carbon and Nitrogen Sources Laere et al. [27] reported that β-galactosidase from B. To investigate the effects of various carbon sources on the adolescentis preferentially hydrolyzes galactooligosaccharides. production of α- and β-galactosidases, glucose, galactose, fructose, However, the production of both α- and β-galactosidases maltose, arabinose, sucrose (all from Sigma), lactose (Trade TCI by the same strain has not yet been reported. Considering Mark, Japan), or soybean oligosaccharides (Xian Rongsheng the economic aspects as well as the efficiency of the Biotechnology Co., Ltd, China) at 2% concentration was added production of the two enzymes, the utilization of a medium into the basal medium. For the assessment of nitrogen source, the with a renewable source would reduce the cost of industrial basal medium containing 2% soybean oligosaccharides (SBO applications. medium) was supplemented with various nitrogen sources (at 2%). The aim of this paper was to assess the optimal culture Yeast extract, malt extract, proteose peptone no. 3, beef extract (all conditions and obtain high levels of α- and β-galactosidase Difco products), and gelatin (Sigma) were used as nitrogen sources. activities from B. longum RD47 in a low-cost medium and then to characterize these enzymes. Effects of pH and Temperature on the Activities and Stability of α- and β-Galactosidases For determination of the effect of pH on the crude enzyme Materials and Methods activities, assay was done at a pH range of 5.0-7.5 with 50 mM sodium phosphate buffer (pH 5.0-7.5) at 37oC. The effect of Microorganisms and Culture Conditions temperature was evaluated at 30oC to 55oC in 50 mM sodium B. longum RD47, which was shown to produce the greatest level phosphate buffer. To determine the thermostability at various of α- and β-galactosidases in a preliminary study, was used in the temperatures, the enzyme solution in 50 mM sodium phosphate present study. B. longum RD47 was activated by two successive buffer (pH 6.0) was incubated at different temperatures (37oC, precultures in MRS medium (Difco, USA) with 0.05% (w/v) L- 45oC, and 50oC) for 1, 1.5, and 2 h and then subjected to α- and cysteine-HCl (Sigma, USA) and was grown under anaerobic β-galactosidase activity assay at 37oC. conditions at 37oC for 18 h. Then, the activated bacteria were again cultured at 37oC and pH 6.5 for 30 h in the basal medium containing Effects of Metal Ions on the Activities of α- and β-Galactosidases 10% whey, 10% corn steep liquor (CSL), and 0.05% cysteine-HCl. Enzyme assays were performed in the presence of various Preparation of Media metal ions (1 mM), including KCl, NaCl, Na2SO4, MgSO4, MnCl2, Ten percent (w/v) whey solution was prepared and the pH was ZnSO4, CuSO4, FeSO4, CaCl2, MnSO4, and MgCl2. The relative activity of the enzyme was compared with the activity obtained in adjusted to 5.4 with 95% H2SO4 (Samchun, Seoul, Korea). In order o to precipitate proteins, it was heated at 121oC for 15 min and 50 mM sodium phosphate buffer (pH 6.0) at 37 C for 30 min. filtered through a Whatman No. 1 filter paper. The deproteinized whey solution was then supplemented with 10% CSL (Sigma) and Hydrolysis of Substrates 0.05% L-cysteine-HCl and the pH was adjusted to 6.5 with 5 M The reaction mixture containing α- or β-galactosidase from NaOH. Then, it was sterilized in an autoclave at 121oC for 15 min. B. longum RD47 and 10 mM raffinose or lactose in 50 mM sodium J. Microbiol. Biotechnol. Production of α- and β-Galactosidases from Bifidobacterium longum 677 phosphate buffer (pH 6.0) was incubated at 37oC for 0.5-24 h. Thin layer chromatography (TLC) was performed on a precoated silica gel plate (Silica gel 60F; Merck, Darmstadt, Germany).
Recommended publications
  • Biochemical Characterization of Three Aspergillus Niger Β-Galactosidases
    Electronic Journal of Biotechnology 27 (2017) 37–43 Contents lists available at ScienceDirect Electronic Journal of Biotechnology Research article Biochemical characterization of three Aspergillus niger β-galactosidases Dandan Niu a,b,⁎, Xiaojing Tian b, Nokuthula Peace Mchunu c,ChaoJiab, Suren Singh c, Xiaoguang Liu d, Bernard A. Prior e, Fuping Lu b a Fujian Provincial Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China b College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China c Department of Biotechnology and Food Technology, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa d Department of Biological Chemical Engineering, College of Chemical Engineering and Material Sciences, Tianjin University of Science and Technology, Tianjin 300457, China e Department of Microbiology, Stellenbosch University, Matieland, South Africa article info abstract Article history: Background: β-Galactosidases catalyze both hydrolytic and transgalactosylation reactions and therefore have Received 30 October 2016 many applications in food, medical, and biotechnological fields. Aspergillus niger has been a main source of Accepted 3 March 2017 β-galactosidase, but the properties of this enzyme are incompletely studied. Available online 10 March 2017 Results: Three new β-galactosidases belonging to glycosyl hydrolase family 35 from A. niger F0215 were cloned, expressed, and biochemically characterized. In addition to the known activity of LacA encoded by lacA, three Keywords: putative β-galactosidases, designated as LacB, LacC, and LacE encoded by the genes lacB, lacC,andlacE, Biochemical properties Food biotechnology respectively, were successfully cloned, sequenced, and expressed and secreted by Pichia pastoris. These three Fungal β-galactosidases proteins and LacA have N-terminal signal sequences and are therefore predicted to be extracellular enzymes.
    [Show full text]
  • Comparative Characterization of Arabidopsis Subfamily III Β-Galactosidases
    Comparative characterization of Arabidopsis Subfamily III β-galactosidases Dashzeveg Gantulga Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirement for the degree of Doctor of Philosophy In Biological Sciences Dr. Brenda S.J. Winkel Committee Chair Dr. David R. Bevan Committee member Dr. Richard A. Walker Committee member Dr. Zhaomin Yang Committee member December 5, 2008 Blacksburg, Virginia Keywords: Arabidopsis, β-galactosidase, cell wall Comparative characterization of Arabidopsis Subfamily III β-galactosidases Dashzeveg Gantulga Abstract The Arabidopsis genome encodes 17 putative β−galactosidases belonging to Glycosyl Hydrolase (GH) family 35, which have been classified into seven subfamilies based on sequence homology. The largest of these, Subfamily III, consists of six genes, Gal-1 (At3g13750), Gal-2 (At3g52840), Gal-3 (At4g36360), Gal-4 (At5g56870), Gal-5 (At1g45130), and Gal-12 (At4g26140) that share 60-81% sequence identity at the amino acid level. All six proteins have a signal peptide that may target them to the cell exterior. We report purification and biochemical characterization of all six members of Subfamily III, each expressed as a recombinant protein in Pichia pastoris and one also in native form, purified from Arabidopsis leaves, with a special emphasis on substrate specificities. Organ specific expression of the six Gal genes was examined by analysis of the microarray databases and by semi-quantitative RT-PCR. The relative abundance and size of the Gal-1, Gal-2, Gal-5, and Gal-12 proteins was studied by immunoblotting using isoform-specific anti-peptide antibodies. The protein expression patterns of the Gal genes were generally consistent with microarray and RT-PCR data, though some discrepancies were observed suggesting distinct mechanisms of regulation for transcription and translation.
    [Show full text]
  • Alteration of Hexosaminidaseisozymesin
    ICANCER RESEARCH 39, i 829-i 834, May 1979] 0008-5472/79/0039-0000502.00 Alterationof HexosaminidaseIsozymesin HumanRenalCarcinoma' Toshikazu Okochi,2 Hiromasa Seike, Kazuya Higashino, Toshikazu Hada, Shinichiro Watanabe, Yuichi Yamamura, Fumlo Ito, Minoru Matsuda, Masao Osafune, Toshihiko Kotake, and Takao Sonoda TheThirdDepartmentofInternalMedicine(T.0., H. S., K. H., T.H., S. W.,V. V.)andDepartmentofUrology(M.M., M. 0., T.K.. T.S.],OsakaUniversityMedical School, Fukushima-ku, Osaka 553, and Health Administration Center (T. 0. , F. I.], Osaka University, Toyonaka, Osaka 560. Japan ABSTRACT been well studied to our knowledge. Consequently, the present study was undertaken in order to compare the isozyme patterns The activity and isozyme patterns of hexosaminidase in of hexosaminidase and the enzymatic properties of human human renal carcinoma were studied in comparison with those renal carcinoma with those of normal kidney. of normal kidney. Hexosaminidase in extracts from normal kidney and renal carcinoma tissue could be separated into two MATERIALSAND METHODS major forms [hexosaminidase A (Hex A) and hexosaminidase B (Hex B)] by Ceilogel electrophoresis or by diethylaminoethyl Materials. The renal carcinoma tissues obtained at operation cellulose column chromatography. All of i 0 renal carcinoma from the Department of Urology, Osaka University Hospital, tissues showed a low activity ratio of Hex A to Hex B, as were frozen immediately after removal. Normal human kidneys compared with the ratio in normal kidney; the ratio in renal were postmortem specimens obtained within 8 hr after death carcinoma tissue was between O.6i and 2.2i (mean, 1.30), at the Department of Forensic Pathology, Osaka University while that in normal kidney was between 2.50 and 4.52 (mean, Medical School.
    [Show full text]
  • MICROBIAL BETA-GALACTOSIDASE: a SURVEY for NEUTRAL Ph OPTIMUM ENZYMES
    ]. Milk Food Technol, Vol. 37, No. 4 (1974) 199 MICROBIAL BETA-GALACTOSIDASE: A SURVEY FOR NEUTRAL pH OPTIMUM ENZYMES L. C. BLANKENsHIP1 AND P. A. WELLS Dairy Foods Nutrition Laboratory, Nutrition Institute Agricultural Research Center, ARS, U. S. Departmant of Agriculture Beltsville, Maryland 20705 (Received for publication November 19, 1973) ABSTRACT MATERIALS AND METHODS Downloaded from http://meridian.allenpress.com/jfp/article-pdf/37/4/199/2399667/0022-2747-37_4_199.pdf by guest on 02 October 2021 Pure cultures of yeast, molds, and bacteria were screened Cultures and media for neutral pH optimum .B-galactosidases ( lactases) that would One hundred twenty-five ·identified yeasts, molds, and bac­ be suitable in dairy l;lroducts applications. Only 2 of 125 teria were obtained from the culture collection of the North­ identified and 10 of 250 unidentified cultures warranted fur­ em Regional Research Center, Peoria, Illinois. Cultures of ther study. These cultures produced high levels of· .a-galacto­ the following genera were included: Penicillium, Aspergillus, sidase with moderate galactose product inhibition. Character­ Absidia, Cunninghamella, Mucor, Rhizopus, CircineUa, Blake­ ization of the partially purified enzymes from unidentified cul­ slea, Chlamydamucor, Streptomyces, Actinomyces, Actinopyc­ hwes revealed that all required either Na+, K+ or Mg++ nidium, Debaryomyces, Kluyveromyces, Pichia, Schwanniomy­ c::ation activation, were inhibited by Cu + +, Mn + +, and ces, Bullera, Brettanomyces, Candida, Cryptococcus, Rhoda­ Fe+ + +, were most active around pH 6.8, and were unstable torula, Torulopsis, Escherichia, and Bacillus. Additionally, during storage (at either - 196 C or 4 C} . except in the 250 unidentified organisms were isolated by enrichment cul­ presence of 0.5 M ammonium sulfate.
    [Show full text]
  • Insight Into the Ecology of Vaginal Bacteria Through Integrative Analyses of Metagenomic and Metatranscriptomic Data
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448822; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Insight into the ecology of vaginal bacteria through integrative analyses of metagenomic and metatranscriptomic data M. T. France1, L. Fu1, L. Rutt1, H. Yang1, M. Humphrys1, S. Narina1, P. Gajer1, B. Ma1, L. J. Forney2, J. Ravel1* 1Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD USA. 2Institute for Bioinformatics and Evolutionary Studies and Department of Biology, University of Idaho, Moscow, ID USA *Corresponding author, address correspondence to [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448822; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Vaginal bacterial communities dominated by Lactobacillus species are associated with a reduced risk to various adverse health outcomes. However, somewhat unexpectedly many healthy women have microbiota that are not dominated by lactobacilli. To determine the factors that drive vaginal community composition we characterized the genetic composition and transcriptional activities of vaginal microbiota in healthy women. We demonstrated that the abundance of a species is not always indicative of its transcriptional activity and that impending changes in community composition can be predicted from metatranscriptomic data.
    [Show full text]
  • Pitfalls in the Use of Artificial Substrates for the Diagnosis of Gaucher's Disease
    J Clin Pathol: first published as 10.1136/jcp.31.11.1091 on 1 November 1978. Downloaded from Journal of Clinical Pathology, 1978, 31, 1091-1093 Pitfalls in the use of artificial substrates for the diagnosis of Gaucher's disease YOAV BEN-YOSEPH AND HENRY L. NADLER From the Department of Pediatrics, Northwestern University Medical School, Division of Genetics, Children's Memorial Hospital, Chicago, Ill, USA SUMMARY A patient with Gaucher's disease is described, in whom the disease could not be diagnosed enzymically in liver and leucocytes using artificial substrate 4-methylumbelliferyl P-glucoside. Normal activity was found in the liver, and about 600% of control activity was determined in the patient's leucocytes. In contrast, when [I4C]-N-stearoyl glucocerebroside was employed as a sub- strate, activity as low as 50% of control has been found in all the proband's tissues, and carrier levels were determined in the proband's parents and maternal uncle. Gaucher's disease is an autosomal recessive disorder In the present report a case of Gaucher's disease of glucolipid metabolism characterised clinically by is described in which 4-methylumbelliferyl fl- hepatosplenomegaly, anaemia, and thrombocyto- glucosidase activity in leucocytes and liver was penia (Brady, 1978). It is probably the most com- normal, while deficient glucocerebroside activity monly recognised disorder of sphingolipid meta- using [14C]-N-stearoyl glucocerebroside was docu- copyright. bolism. Accumulation of glucosylceramide (gluco- mented. The purpose of this report is to call to the cerebroside) is found in reticuloendothelial cells of attention of clinicians and pathologists the potential these patients, particularly in cells of the spleen, bone unreliability of artificial substrates to establish the marrow, and liver (Brady, 1978).
    [Show full text]
  • Plant and Microbial Xyloglucanases
    Plant and microbial xyloglucanases: Function, Structure and Phylogeny Jens Eklöf Doctoral thesis Royal Institute of Technology School of Biotechnology Division of Glycoscience Stockholm 2011 Plant and microbial xyloglucanases: Function, Structure and Phylogeny ISBN 978‐91‐7415‐932‐5 ISSN 1654‐2312 Trita‐BIO Report 2011:7 ©Jens Eklöf, Stockholm 2011 Universitetsservice US AB, Stockholm ii Jens Eklöf Jens Eklöf (2011): Plant and microbial xyloglucanases: Function, Structure and Phylogeny School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden Abstract In this thesis, enzymes acting on the primary cell wall hemicellulose xyloglucan are studied. Xyloglucans are ubiquitous in land plants which make them an important polysaccharide to utilise for microbes and a potentially interesting raw material for various industries. The function of xyloglucans in plants is mainly to improve primary cell wall characteristics by coating and tethering cellulose microfibrils together. Some plants also utilise xyloglucans as storage polysaccharides in their seeds. In microbes, a variety of different enzymes for degrading xyloglucans have been found. In this thesis, the structure‐function relationship of three different microbial endo‐xyloglucanases from glycoside hydrolase families 5, 12 and 44 are probed and reveal details of the natural diversity found in xyloglucanases. Hopefully, a better understanding of how xyloglucanases recognise and degrade their substrate can lead to improved saccharification processes of plant matter, finding uses in for example biofuel production. In plants, xyloglucans are modified in muro by the xyloglucan transglycosylase/hydrolase (XTH) gene products. Interestingly, closely related XTH gene products catalyse either transglycosylation (XET activity) or hydrolysis (XEH activity) with dramatically different effects on xyloglucan and on cell wall characteristics.
    [Show full text]
  • The Metagenome of an Anaerobic Microbial Community Decomposing Poplar
    1 The metagenome of an anaerobic microbial community decomposing poplar 2 wood chips 3 4 Daniel van der Lelie1,2,3*, Safiyh Taghavi1,2,3, Sean M. McCorkle1,2, Luen-Luen Li1,2, 5 Stephanie A. Malfatti4, Denise Monteleone1,2, Bryon S. Donohoe2,5, Shi-You Ding2,5, 6 William S. Adney2,3,5, Michael E. Himmel2,5, and Susannah G. Tringe4 7 8 1 Biology Department, Brookhaven National Laboratory, Upton, NY, USA 9 2 Oak Ridge National Laboratory, BioEnergy Science Center, Oak Ridge, TN, USA 10 3Center for Agricultural and Environmental Biotechnology, RTI International, Research Triangle 11 Park, NC, USA 12 4 DOE Joint Genome Institute, Walnut Creek, CA, USA 13 5 National Renewable Energy Laboratory, Golden, CO, USA 14 15 16 * Correspondence should be addressed to DvdL: 17 E-mail: [email protected]; Phone: +1-919.316.3532 18 1 1 ABSTRACT 2 This study describes the composition and metabolic potential of a lignocellulosic biomass 3 degrading community that decays poplar wood chips under anaerobic conditions. We examined 4 the community that developed on poplar biomass in a non-aerated bioreactor over the course of a 5 year, with no microbial inoculation other than the naturally occurring organisms on the woody 6 material. The composition of this community contrasts in important ways with biomass- 7 degrading communities associated with higher organisms, which have evolved over millions of 8 years into a symbiotic relationship. Both mammalian and insect hosts provide partial size 9 reduction, chemical treatments (low or high pH environments), and complex enzymatic 10 ‘secretomes’ that improve microbial access to cell wall polymers.
    [Show full text]
  • Genomic, Transcriptomic and Enzymatic Insight Into Lignocellulolytic System of a Plant Pathogen Dickeya Sp
    biomolecules Article Genomic, Transcriptomic and Enzymatic Insight into Lignocellulolytic System of a Plant Pathogen Dickeya sp. WS52 to Digest Sweet Pepper and Tomato Stalk 1, 2, 3, 2 2 Ying-Jie Yang y, Wei Lin y, Raghvendra Pratap Singh * , Qian Xu , Zhihou Chen , Yuan Yuan 1 , Ping Zou 1, Yiqiang Li 1 and Chengsheng Zhang 1,* 1 Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; [email protected] (Y.-J.Y.); [email protected] (Y.Y.); [email protected] (P.Z.); [email protected] (Y.L.) 2 Tobacco Research Institute of Nanping, Nanping, Fujian 353000, China; [email protected] (W.L.); [email protected] (Q.X.); [email protected] (Z.C.) 3 Department of Research & Development, Biotechnology, Uttaranchal University, Dehradun 248007, India * Correspondence: [email protected] (R.P.S.); [email protected] (C.Z.) These authors contributed equally to this work. y Received: 31 October 2019; Accepted: 18 November 2019; Published: 20 November 2019 Abstract: Dickeya sp., a plant pathogen, causing soft rot with strong pectin degradation capacity was taken for the comprehensive analysis of its corresponding biomass degradative system, which has not been analyzed yet. Whole genome sequence analysis of the isolated soft-rotten plant pathogen Dickeya sp. WS52, revealed various coding genes which involved in vegetable stalk degradation-related properties. A total of 122 genes were found to be encoded for putative carbohydrate-active enzymes (CAZy) in Dickeya sp. WS52. The number of pectin degradation-related genes, was higher than that of cellulolytic bacteria as well as other Dickeya spp.
    [Show full text]
  • Glucocerebrosidase: Functions in and Beyond the Lysosome
    Journal of Clinical Medicine Review Glucocerebrosidase: Functions in and Beyond the Lysosome Daphne E.C. Boer 1, Jeroen van Smeden 2,3, Joke A. Bouwstra 2 and Johannes M.F.G Aerts 1,* 1 Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Faculty of Science, 2333 CC Leiden, The Netherlands; [email protected] 2 Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Faculty of Science, 2333 CC Leiden, The Netherlands; [email protected] (J.v.S.); [email protected] (J.A.B.) 3 Centre for Human Drug Research, 2333 CL Leiden, The Netherlands * Correspondence: [email protected] Received: 29 January 2020; Accepted: 4 March 2020; Published: 9 March 2020 Abstract: Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme. Keywords: glucocerebrosidase; lysosome; glucosylceramide; skin; Gaucher disease 1.
    [Show full text]
  • A Review of Natural and Engineered Enzymes Involved in Bioethanol Production
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2016 A Review of natural and engineered enzymes involved in bioethanol production Ines Cuesta Urena Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Biochemistry Commons, and the Biotechnology Commons Let us know how access to this document benefits ou.y Recommended Citation Cuesta Urena, Ines, "A Review of natural and engineered enzymes involved in bioethanol production" (2016). Graduate Student Theses, Dissertations, & Professional Papers. 4562. https://scholarworks.umt.edu/etd/4562 This Professional Paper is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. A REVIEW OF NATURAL AND ENGINEERED ENZYMES INVOLVED IN BIOETHANOL PRODUCTION By Inés Cuesta Ureña Bachelor’s of Science in [Biology], University of Barcelona, Barcelona, Spain, 2011 Professional Paper presented in partial fulfillment of the requirements for the degree of Master of Interdisciplinary Studies The University of Montana Missoula, MT December 2015 Approved by: Sandy Ross, Dean of The Graduate School Graduate School Michael Ceballos, Chair University of Minnesota Morris, Division of Science and Mathematics Sandy Ross, PhD Department of Chemistry Klara Briknarova, PhD Department of Chemistry Biswarup Mukhopadhyay, PhD VirginiaTech, Department of Biochemistry Cuesta Ureña, Inés, M.A., fall 2015 Interdisciplinary Studies A Review of natural and engineered enzymes involved in bioethanol production.
    [Show full text]
  • Gaucher Disease (Glucocerebrosidase/13-Xylosidase/F-Glucosidase/Sphingolipidosis/Glucocerebroside) Yu-BIN CHIAO*, GREGORY M
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 5, pp. 2448-2452, May 1978 Medical Sciences Multiple glycosidase deficiencies in a case of juvenile (type 3) Gaucher disease (glucocerebrosidase/13-xylosidase/f-glucosidase/sphingolipidosis/glucocerebroside) Yu-BIN CHIAO*, GREGORY M. HoYSON*, STEPHEN P. PETERS*, ROBERT E. LEE1, WARREN DIVENt, JEROME V. MURPHY1, AND ROBERT H. GLEW*§ Departments of *Biochemistry and t Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, and * Department of Neurology, Milwaukee Children's Hospital, Milwaukee, Wisconsin 53233 Communicated by Albert L. Lehninger, January 16, 1978 ABSTRACT Biochemical investigations were performed nervous system involvement, Gaucher cells in nonneural tissues on autopsy tissues obtained from an 11-year-old girl who died (7), and survival after the 2nd year of life. with the juvenile, subacute neuropathic form of Gaucher dis- ease. In addition to the expected deficiency of glucocerebro- The biochemical basis that distinguishes the three clinical sidase activity, extracts of both liver and kidney from this in- forms of Gaucher disease is unknown. Brady and King (8) have dividual displayed a profound (>90%) deficiency of "soluble" suggested that the severity of the disease is related to the degree P-glucosidase, ft-xylosidase, and P-galactosidase activities. Fi- of deficiency of glucocerebrosidase activity. However, a broblasts obtained from this individual also contained markedly number of laboratories have not found a correlation between reduced levels of ,-xylosidase activity but normal levels of ft- the degree of deficiency of glucocerebrosidase activity and the D-fucosidase and P-galactosidase activity. Because the soluble -glucosidase,,-xylosidase, and a portion of the fl-galactosidase extent of pathology or organ involvement in various forms of activities from control human liver all cochromatographed on Gaucher disease (11-13).
    [Show full text]