Annals of Mathematics Relations Between Homology and Homotopy Groups of Spaces Author(s): Samuel Eilenberg and Saunders MacLane Reviewed work(s): Source: Annals of Mathematics, Second Series, Vol. 46, No. 3 (Jul., 1945), pp. 480-509 Published by: Annals of Mathematics Stable URL: http://www.jstor.org/stable/1969165 . Accessed: 23/02/2013 12:14 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact
[email protected]. Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to Annals of Mathematics. http://www.jstor.org This content downloaded on Sat, 23 Feb 2013 12:14:35 PM All use subject to JSTOR Terms and Conditions ANNALs OF MATHEMATICS Vol. 46, No. 3, July, 1945 RELATIONS BETWEEN HOMOLOGY AND HOMOTOPY GROUPS OF SPACES* BY SAMUEL EILENBERG AND SAUNDERS MACLANE (Received February 16, 1945) CONTENTS PAGE Introduction....................................................................... 480 Chapter I. Constructions on Groups ................................................. 484 Chapter II. The Main Theorems .................................................... 491 Chapter III. Products.............................................................. 502 Chapter IV. Generalization to Higher Dimensions ................................... 506 Bibliography....................................................................... 509 INTRODUCTION A. This paper is a continuationof an investigation,started by H. Hopf [5][6],studying the influenceof the fundamentalgroup 7r,(X) on the homology structureof the space X.