The Homotopy Type of the Space of Diffeomorphisms. I
transactions of the american mathematical society Volume 196, 1974 THE HOMOTOPYTYPE OF THE SPACE OF DIFFEOMORPHISMS.I by dan burghelea(l) and richard lashof(2) ABSTRACT. A new proof is given of the unpublished results of Morlet on the relation between the homeomorphism group and the diffeomorphism group of a smooth manifold. In particular, the result Diff(Dn, 3 ) ä Bn+ (Top /0 ) is obtained. Themain technique is fibrewise smoothing, n n 0. Introduction. Throughout this paper "differentiable" means C°° differenti- able. By a diffeomorphism, homeomorphism, pi homeomorphism, pd homeomor- phism /: M —»M, identity on K, we will mean a diffeomorphism, homeomorphism, etc., which is homotopic to the identity among continuous maps h: (¡A, dM) —* (M, dM), identity in K. Given M a differentiable compact manifold, one considers Diff(Mn, K) and Homeo(M", K) the topological groups of all diffeomorphisms (homeomorphisms) which are the identity on K endowed with the C00- (C )-topology. If K is a compact differentiable submanifold with or without boundary (possi- bly empty), Diff(Mn, K) is a C°°-differentiable Frechet manifold, hence (a) Diff(M", K) has the homotopy type of a countable CW-complex, (b) as a topological space Diff(M", K) is completely determined (up to home- omorphism) by its homotopy type (see [4] and [13j). In order to compare Diff(M", K) with Homeo(M", K) (as also with the com binatorial analogue of Homeo(Mn, K)), it is very convenient to consider the semi- simplicial version of Diff(* • •) and Homeo(- • •), namely, the semisimplicial groups Sd(Diff(Mn, K)) the singular differentiable complex of Diff(M", K) and S HomeoOW", K) the singular complex of Homeo(M'\ K).
[Show full text]