Chapter 8: Lighting and Shading

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 8: Lighting and Shading Chapter 8: Lighting and Shading This chapter introduces the next level beyond color for creating improved computer graphics images. It focuses on two related areas that give improved representations of how images look: lighting that is based on a simple model of the interaction of lights and surfaces, and shading that is based on a simple model of how color changes across a graphics surface primitive. The lighting model is based on three simple components of light that model indirect, direct, and reflective lighting, and introduces both the idea of a light and of the light properties of an object’s materials. The shading model is based on the idea of averaging the color of the vertices of a polygon to get the color of the interior of the polygon. Between them, you will be able to make images that look much more realistic than the images you could make with simple color. This chapter needs you to have an understanding of color at the level of the earlier chapter on color, an observation of the way lights work in the world around you, and an understanding of the concept of polygons and of simple averaging across a polygon. Lighting There are two ways to think of how we see things. The first is that things have an intrinsic color and we simply see the color that they are. The color is set by defining a color in RGB space and simply instructing the graphics system to draw everything with that color until a new color is chosen. This approach is synthetic and somewhat simplistic, but it’s very easy to create images this way because we must simply set a color when we define and draw our geometry. In fact, when objects don’t have an intrinsic color but we use their color to represent something else, as we did sometimes in the science examples in an earlier chapter, then this is an appropriate approach to color for images. However, it’s clear that things in the real world don’t simply have a color that you see; the color you see is strongly influenced by the lighting conditions in which you see them, so it’s inaccurate not to take the light into account in presenting a scene. So the second way to think of how we see things is to realize that we see things because of light that reaches us after a physical interaction between light in the world and the objects we see. Light sources emit energy that reaches the objects and the energy is then re-sent to us by reflections that involve both the color of the light and the physical properties of the objects. In computer graphics, this approach to lighting that considers light that comes only from lights in the scene is called the local illumination model. It is handled by having the graphics programmer define the lights in the scene. In this chapter we will discuss how this approach to light allows us to model how we see the world, and how computer graphics distills that into fairly simple definitions and relatively straightforward computations to produce images that seem to have a relationship to the lights and materials present in the scene. A first step in developing graphics with the local illumination model depends on modeling the nature of light. In the simplified but workable model of light that we will use, there are three fundamental components of light: the ambient, diffuse, and specular components. We can think of each of these as follows: ambient : light that is present in the scene because of the overall illumination in the space. This can include light that has bounced off objects in the space and that is thus independent of any particular light. diffuse : light that comes directly from a particular light source to an object, where it is then sent directly to the viewer. Normal diffuse light comes from an object that reflects a subset of the wavelengths it receives and that depends on the material that makes up an object, with the effect of creating the color of the object. specular : light that comes directly from a particular light source to an object, where it is then reflected directly to the viewer because the object reflects the light without interacting with it and giving the light the color of the object. This light is generally the color of the light source, not the object that reflects the light. These three components are computed based on properties of the lights, properties of the materials that are in your scene, and the geometric relationship between the lights and the objects. All three of these components contribute to the overall light as defined by the RGB light components, and the graphics system models this by applying them to the RGB components separately. The sum of these three light components is the light that is actually seen from an object. Just as the light is modeled to create an image, the materials of the objects that make up the scene are modeled in terms of how they contribute to the light. Each object will have a set of properties that defines how it responds to each of the three components of light. The ambient property will define the behavior (essentially, the color) of the object in ambient light, the diffuse property in diffuse light, and the specular property in specular light. As we noted above, our simple models of realistic lighting tend to assume that objects behave the same in ambient and diffuse light, and that objects simply take on the light color in specular light, but because of the kind of calculations that are done to display a lighted image, it is as easy to treat each of the light and material properties separately. So in order to use lights in a scene, you must define your lights in terms of the three kinds of color they provide, and you must define objects not in simple terms of their color, but in terms of their material properties. This will be different from the process we saw in the earlier module on color and will require more thought as you model the objects in your scenes, but the changes will be something you can handle without difficulty. Graphics APIs have their own ways to specify the three components of light and the three components of materials, and we will also discuss this below when we talk about implementing lighting for your work. Definitions Ambient, diffuse, and specular light Ambient light is light that comes from no apparent source but is simply present in a scene. This is the light you would find in portions of a scene that are not in direct light from any of the lights in the scene, such as the light on the underside of an object, for example. Ambient light can come from each individual light source, as well as from an overall ambient light value, and you should plan for each individual light to contribute to the overall brightness of a scene by contributing something to the ambient portion of the light. The amount of diffuse light reflected by an object from a single light is given simply by A = LA *CA for a constant CA that depends on the material of the object and the ambient light LA present in the scene, where the light LA and constant CA are to be thought of as RGB triples, not simple constants, and the calculation is to yield another RGB value. If you have multiple lights, the total diffuse light is A = å LA * CA , where the sum is over all the lights. If you want to emphasize the effect of the lights, you will probably want to have your ambient light at a fairly low level (so you get the effect of lights at night or in a dim room) or you can use a fairly high ambient level if you want to see everything in the scene with a reasonably uniform light. If you want to emphasize shapes, use a fairly low ambient light so the shading can bring out the variations in the surface. Diffuse light comes from specific light sources and is reflected by the surface of the object at a particular wavelength depending on properties of the object’s material. The general model for diffuse light, used by OpenGL and other APIs, is based on the idea of brightness, or light energy per unit area. A light emits a certain amount of energy per unit area in the direction it is shining, and when this falls on a surface, the intensity of light seen on the surface is proportional to the surface area illuminated by the unit area of the light. As the diagram in Figure 8.1 shows, one unit of area as seen by the light, or one unit of area perpendicular to the light direction, illuminates an 2/13/03 Page 8.2 area of 1/cos(Q) in the surface. So if we have LD light energy per unit of area in the light direction, we have LD cos(Q) units of light energy per unit of area on the surface if the cosine is positive. As the angle of incidence of the light on the surface decreases, the amount of light at the surface becomes reduced, going to zero when the light is parallel to the surface. Because it is impossible to talk about “negative light,” we replace any negative value of the cosine with zero, which eliminates diffuse light on surfaces facing away from the light.
Recommended publications
  • Lighting and Shading
    Chapter 8 Lighting and Shading When we think that we \see" an object in the real world, we are not actually seeing the object itself. Instead, we are seeing light either emitted from or reflected off of that object. The pattern of the light reaching our eyes allows us to reconstruct, in our minds, the form of the object that we are looking at. Consequently, in order to simulate this image formation process in a computer, we need to be able to model lights, materials and geometry. Lights provide a source of illumination, materials determine how light is reflected off of a surface made of this material, and geometry provides the shape of the surface. 47 48 CHAPTER 8. LIGHTING AND SHADING 8.1 Point and parallel lights In the real world, all lights have a finite size and shape, and a location in space. However, we will see later that modeling the surface area of the light in a lighting algorithm can be difficult. It turns out to be much easier, and generally quite effective, to model lights as either being geometric points or as being infinitely far away. A point light has a single location in 3D space, and radiates light equally in all directions. An infinite light is considered to be so far away that all of its light rays are parallel to each other. Thus, an infinite light has no position, but there is a fixed direction for all of its rays. Such a light is sometimes called a parallel light source. uL xL cL cL Point Light Parallel Light A point light is specified by its position xL, and a parallel light is specified by its light direction vector uL.
    [Show full text]
  • The Magic Lantern Gazette a Journal of Research Volume 26, Number 1 Spring 2014
    ISSN 1059-1249 The Magic Lantern Gazette A Journal of Research Volume 26, Number 1 Spring 2014 The Magic Lantern Society of the United States and Canada www.magiclanternsociety.org 2 Above: Fig. 3 and detail. Right and below: Fig. 5 Color figures (see interior pages for complete captions) Cover Article 3 Outstanding Colorists of American Magic Lantern Slides Terry Borton American Magic-Lantern Theater P.O. Box 44 East Haddam CT 06423-0044 [email protected] They knocked the socks off their audiences, these colorists did. They wowed their critics. They created slides that shimmered like opals. They made a major contribution to the success of the best lantern presentations. Yet they received little notice in their own time, and have received even less in ours. Who were these people? Who created the best color for the commercial lantern slide companies? Who colored the slides that helped make the best lecturers into superstars? What were their secrets—their domestic and foreign inspirations, their hidden artistic techniques—the elements that made them so outstanding? What was the “revolution” in slide coloring, and who followed in the footsteps of the revolutionaries? When we speak of “colorists” we are usually referring to The lantern catalogs offered hundreds of pages of black and those who hand-colored photographic magic lantern slides white images—both photographs and photographed illustra- in the years 1850–1940. Nevertheless, for two hundred tions—to be used by the thousands of small-time showmen years, from the 1650s, when the magic lantern was in- operating in churches and small halls.
    [Show full text]
  • Shading Models
    15-462, Fall 2004 Nancy Pollard Mark Tomczak Shading Shading Concepts Shading Equations Lambertian, Gouraud shading Phong Illumination Model Non-photorealistic rendering [Shirly, Ch. 8] Announcements • Written assignment #2 due Tuesday – Handin at beginning of class • Programming assignment #2 out Tuesday Why Shade? • Human vision uses shading as a cue to form, position, and depth • Total handling of light is very expensive • Shading models can give us a good approximation of what would “really” happen, much less expensively • Average and approximate Outline • Lighting models (OpenGL oriented) – Light styles – Lambertian shading – Gouraud shading • Reflection models (Phong shading) • Non-Photorealistic rendering Common Types of Light Sources • Ambient light: no identifiable source or direction • Point source: given only by point • Distant light: given only by direction • Spotlight: from source in direction – Cut-off angle defines a cone of light – Attenuation function (brighter in center) • Light source described by a luminance – Each color is described separately T – I = [Ir Ig Ib] (I for intensity) – Sometimes calculate generically (applies to r, g, b) Ambient Light • Intensity is the same at all points • This light does not have a direction (or .. it is the same in all directions) Point Source • Given by a point p0 • Light emitted from that point equally in all directions • Intensity decreases with square of distance One Limitation of Point Sources • Shading and shadows inaccurate • Example: penumbra (partial “soft” shadow) Distant
    [Show full text]
  • Two-Color Double-Cloth Development in Alignment with Subtractive CMYK Color Theory by Deploying Digital Technology
    Volume 11, Issue 2, 2020 Two-color Double-cloth Development in Alignment with Subtractive CMYK Color Theory by Deploying Digital Technology Ken Ri Kim, Lecturer, Loughborough University Trence Kavanagh, Professor, Loughborough University, United Kingdom ABSTRACT This study aims to introduce new aesthetic values of modern double-cloth by resolving the current restriction in woven textile coloration. Previously, realizing pictorial images on both sides of a fabric was experimented with two weft yarns and further possibility was suggested to extend an applicable number of weft yarns for which a prototype of two-color double-cloth was tested and fabricated by employing four weft yarns. In this study, therefore, reproduction of highly complicated patterns in a two-color shading effect is aimed to further develop the current double- cloth design capability. The core principle lies on weave structure design to interweave two sets of warps and wefts into separate layers whilst two distinctive images are designed in alignment with CMYK color theory to enlarge a feasible weave color scope by using the subtractive primary yarn colors. Details of digital weave pattern design and weave structure development are explained based on empirical experiment results. Keywords: Two-color double-cloth, digital weave pattern design, subtractive color theory, double- cloth weave structure, new color expression Introduction number of color resources in weft is also Digital technology employed in modern constrained (Watson & Grosicki, 1997). As a weaving greatly enhanced production result, the color accuracy level to be able to efficiency and convenience (Ishida, 1994). In correspond to high-quality imagery designs modern digital weaving, however, an has been highly limited.
    [Show full text]
  • Dental Lab White Paper.Pdf
    LIGHTING LABS DENTAL INDUSTRY’S SECRET ASSET Dental laboratories place high demands on light quality. The LED luminaire TANEO and the efficient TEVISIO magnifier are ideally suited for the needs of a dental laboratory workplace. High light quality The advanced reflection and light control technology produces a diffused, glare- free, even light, relieving the technician’s eyes from strain and fatigue. Lenses can be customized with a choice of the clear prismatic lens or a more translucent style, according to preference. Custom capabilities Dimming capabilities with memory function allow the light intensity to be adapted to the visual task at hand. TANEO also has a state-of-the-art arm system for user-friendly handling. It is easy to adjust, yet remains firmly in place. The most optimal setting can be locked if required. High-quality LED technology Compared with conventional fluorescents delivering the same light output, TANEO consumes 30% less energy thanks to its technically advanced LED technology and intelligent thermal management. Moreover, the long service life of the LEDs ensures up to 50,000 or more hours of maintenance-free operation. TANEO ensures ideal viewing conditions for the laboratory delivering light output of up to 3600 lux and color temperature of 5000K. With a color rendering index of 90 using the translucent lens, colors can be measured and compared, showing contrasts and shading especially well. 2 TANEO offers a robust aluminum arm system designed for years of trouble-free versatility. The spring-balanced arm can be effortlessly adjusted into any position and offers complete rotation without exposed springs or hardware.
    [Show full text]
  • Height and Gradient from Shading
    Massachusetts Institute of Technology The Artificial Intelligence Laboratory A.I. Memo No. 1105A May 1989 Height and Gradient from Shading Berthold K.P. Horn Abstract: The method described here for recovering the shape of a surface from a shaded image can deal with complex, wrinkled surfaces. Integrability can be enforced easily because both surface height and gradient are represented (A gra- dient field is integrable if it is the gradient of some surface height function). The robustness of the method stems in part from linearization of the reflectance map about the current estimate of the surface orientation at each picture cell (The reflectance map gives the dependence of scene radiance on surface orientation). The new scheme can find an exact solution of a given shape-from-shading prob- lem even though a regularizing term is included. The reason is that the penalty term is needed only to stabilize the iterative scheme when it is far from the correct solution; it can be turned off as the solution is approached. This is a reflection of the fact that shape-from-shading problems are not ill-posed when boundary conditions are available, or when the image contains singular points. This paper includes a review of previous work on shape from shading and photoclinometry. Novel features of the new scheme are introduced one at a time to make it easier to see what each contributes. Included is a discussion of im- plementation details that are important if exact algebraic solutions of synthetic shape-from-shading problems are to be obtained. The hope is that better perfor- mance on synthetic data will lead to better performance on real data.
    [Show full text]
  • Binary Shading Using Appearance and Geometry
    Authors Draft - Final version published in COMPUTER GRAPHICS forum Binary Shading using Appearance and Geometry Bert Buchholz+ Tamy Boubekeur+ Doug DeCarlo†;∗ Marc Alexa∗ + Telecom ParisTech - CNRS LTCI ∗ TU Berlin † Rutgers University Abstract In the style of binary shading, shape and illumination are depicted using two colors, typically black and white, that form coherent lines and regions in the image. We formulate the problem of assigning colors in the rendered image as an energy minimization, computed using graph cut on the image grid. The terms of this energy come from two sources: appearance (shading) and geometry (depth and curvature). Our contributions are in the use of geometric information in determining colors, and how this information is incorporated into a graph cut approach. This optimization yields boundaries between black and white regions that tend towards being shorter and to run along geometric features like creases. We show a range of results, and demonstrate that this approach produces more coherent images than simpler approaches that make local decisions when assigning colors, or that do not use geometry. Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism: Color, shading, shadowing, and texture back rendering of geometric features. As expected, large black or white regions in the drawing correspond to low and high levels of illumination, respectively. Furthermore, high local 1. Introduction contrast in illumination can override the absolute illumina- Depiction of an object requires at least one foreground and tion levels. For instance, a coherent area which is darker one background color.
    [Show full text]
  • Discover More Information in Our Pure Undertones Flyer
    PURE UNDERTONES A sulfur bottoming system that brings a new layer of color creativity to your aniline-free* indigo denim THE ARCHROMA WAY TO A SUSTAINABLE WORLD PURE UNDERTONES Performance components of the system Denisol® Pure Indigo 30 liq Dekol® SN liq – chelating agent Pre-reduced Indigo Primasol® NF liq – wetting & • Aniline-free* indigo penetrating agent • This product has received Setamol® WS p – dispersing agent the Cradle to Cradle Products • Best in class indigo dyeing Innovation Institute’s Gold Level auxiliaries Material Health Certificate • These products have a Cradle • Same performance to Cradle material assessment as regular indigo statement, which permits its • Manufactured in our award- use in a Cradle to Cradle Certified winning Jamshoro certification at GOLD level production facility (Pakistan) Reducing Agent D p – reducing agent Leonil® EHC liq c – wetting agent • Selected dyeing auxiliaries Diresul® Smartdenim Blue liq & compatible with Diresul® RDT Diresul® Ocean Blues liq range sulfur dyes Pre-reduced sulfur dye selection for unique bottoming effects • These products have received the Cradle to Cradle Products Innovation Institute‘s Gold Level Material * Below limits of detection according Health Certificate to industry standard test methods PURE UNDERTONES Main benefits in a nutshell • Safe products from a reliable global ‘SAFE’ WITH: SAFE partner who applies international Archroma PURE UNDERTONES system safety standards ® • Complete denim package of dyes and dyeing auxiliaries that ensures ENHANCED consistency
    [Show full text]
  • YEAR 1: Elements of Art: Colour
    YEAR 1: Elements of Art: Colour Contents Include: Primary and Secondary Colours Warm and Cool Colours A Study of a Famous Artist Please Note: The activities included in this pack are suggestions only. Teachers should adapt the lessons to ensure they are pitched correctly for their pupils. For an outline of the content included in Year 1 Visual Arts, see the Visual Arts Sequence. Lesson 1: Introduction to Colour This lesson should be used to establish what the children know about colour. Children will learn the three primary colours (yellow, red and blue) and will begin to explore colour mixing. By the end of this lesson, children should be able to name the three primary colours and should have some ideas about how to mix primary colours to make various secondary colours, for example, mixing red and yellow to make orange. The colours red, yellow and blue are called primary colours in art because they cannot be made by mixing together any other colours. When two primary colours are mixed together, the colour created is called a secondary colour. In art, some colours can be used to create feelings of warmth (e.g. red, yellow or orange) or feelings of coldness (blue, green or grey). The works of art included in What Your Year 1 Child Needs to Know can be used to discuss this. See page 155-159 of What your Year 1 Child Needs to Know Learning Objective Core Knowledge Activities for Learning Related Assessment Questions Vocabulary Give children a blank piece of paper and a range of What can you tell me To show what I know To know that the primary coloured paints.
    [Show full text]
  • Illumination and Shading Illumination (Lighting)
    Illumination and Shading Illumination (Lighting) Model the interaction of light with surface points to determine their final color and brightness OpenGL computes illumination at vertices illumination Shading Apply the lighting model at a set of points across the entire surface Shading Illumination Model The governing principles for computing the illumination A illumination model usually considers: Light attributes (light intensity, color, position, direction, shape) Object surface attributes (color, reflectivity, transparency, etc) Interaction among lights and objects (object orientation) Interaction between objects and eye (viewing dir.) Illumination Calculation Local illumination: only consider the light, the observer position, and the object material properties θ Example: OpenGL Illumination Models Global illumination: take into account the interaction of light from all the surfaces in the scene object 4 object 3 object 2 object 1 Example: Ray Tracing (CIS681) Basic Light Sources sun Light intensity can be Point light Directional light independent or dependent of the distance between object and the light source Spot light Simple local illumination The model used by OpenGL – consider three types of light contribution to compute the final illumination of an object Ambient Diffuse Specular Final illumination of a point (vertex) = ambient + diffuse + specular Ambient light contribution Ambient light (background light): the light that is scattered by the environment A very simple approximation of global illumination object
    [Show full text]
  • Elements F17 Study Guide
    Elements Of Art Study Guide General • Elements of Art- “tools” artists use to create artwork; Line, shape, color, texture, value, space, form • Composition- the arrangement of elements of art to create a balanced unified piece of artwork • Design- the act of planning and arranging the elements of art in a piece of artwork • Outline- the line that forms the edge or any shape or form; also called contour lines • Overlap- to partly or completely cover one shape or form with another; can be used to show distance in artwork • Pattern- repetition of an element (or elements) in a work of artwork • Proportion- size differences Color • Color- Hue; color is created by the quality of light it reflects. Color has 3 properties; hue, value (shade (black), tint (white), tone (grey)), intensity (Bright vs. Dull) • Color Wheel- circular chart that illustrates progression through the color spectrum and relationships between colors • Black- the absence of ALL color • White- presence of ALL colors • Intensity- Bright vs. Dull • Primary Colors- Red, Yellow, Blue; colors from which all other colors are created. The primary colors cannot be made by mixing other colors together • Secondary Colors- Orange, Green and Violet; a color created by mixing 50% of one primary color and 50% of another primary color 50% red + 50% yellow = orange 50% yellow + 50% blue = green 50% red + 50% blue = violet • Tertiary Colors- colors that can be found between a primary color and a secondary color; these are created by mixing primary color with a secondary color (75% red + 25% orange= red-orange or mixed by Using 75% of a primary color and 25% of another primary color 75% red + 25% yellow= red-orange 25% red + 75% yellow= yellow- orange • Hue- another word for color • Intensity- the brightness or dullness of a color.
    [Show full text]
  • Technical Bulletin D-Core Thread Dyed As Indigo Used
    TECHNICAL BULLETIN D-CORE ® THREAD DYED AS INDIGO USED FOR EMBROIDERY March 25, 2009 (updated Jan. 11, 2011) D-Core® Indigo dyed threads were designed to be used as Seaming Threads in denim applications so the thread would wash-down similar to the indigo dyed denim it is sewn into. D-Core® Indigo is made by dyeing the cotton wrapper with actual Indigo dyes which are, by design, less stable and color fast. The result after package dyeing are cones that may have varying degrees of indigo shading prior to sewing and laundering, which is normal for indigo dyed threads. D-Core® Indigo dyed threads offer unique wash down properties, similar to what would be expected with the denim fabrics sewn into. Customer’s using Indigo should always test the threads under the wash process that production would be exposed to assure satisfactory end-results will be obtained. Customers have started using D-Core® Indigo as an embroidery thread, desiring the same type of wash-down appearance as with seaming applications where Indigo threads have been used for many years. However, it has been observed in isolated incidents where the embroidery pattern using D-Core® Indigo gave less than satisfactory results due to some inconsistencies in the wash-down throughout the pattern or from jean to jean. This occurs more on embroidery patterns because there is a concentration of stitches in a relatively small area. This concentration of stitches and the increased amount of Indigo dyes which may be trapped in the pattern and may cause the threads not to wash down consistently and will Before Bad Good also become more subject to the potential for "Cross Staining".
    [Show full text]