Agonist-Induced Calcium Regulation in Freshly Isolated Renal Microvascular Smooth Muscle Cells

Total Page:16

File Type:pdf, Size:1020Kb

Agonist-Induced Calcium Regulation in Freshly Isolated Renal Microvascular Smooth Muscle Cells Agonist-Induced Calcium Regulation in Freshly Isolated Renal Microvascular Smooth Muscle Cells EDWARD W. INSCHO,* MICHAEL J. MASON,* ALAN C. SCHROEDER,t PAUL C. DEICHMANN,* KARL D. STIEGLER, and JOHN D. IMIG* Departments of *physiology and tSurgerv, tTulane University School of Medicine, New Orleans, Louisiana. Abstract. The studies presented here were performed to deter- modest transient increase in [Ca211 during the response to 30 mine the effect of agonist stimulation on the cytosolic free mM K and had no detectable effect on responses to 90 mM Ca2 concentration ([Ca2]1) in single smooth muscle cells, K. Studies were also performed to establish whether freshly freshly isolated from afferent arterioles and interlobular arter- isolated renal MVSMC exhibit appropriate responses to recep- ies averaging between 10 to 40 m in diameter. Microvessels tor-dependent physiological agonists. Angiotensin II (100 nM) were obtained from male Sprague-Dawley rats using an iron increased cell Ca2 from 97 ± 10 nM to 265 ± 47 nM (N = oxide collection technique followed by collagenase digestion. 12 cells). Similarly, 100 j.M ATP increased MVSMC 1Ca2]1 Freshly isolated microvascular smooth muscle cells (MVSMC) from a control level of7l ± 14 nM to 251 ± 47 nM (N =11 were loaded with fura 2 and studied using fluorescence pho- cells). Norepinephrine administration caused [Ca2]1 to in- tometry techniques. The resting [Ca2]1 averaged 67 ± 3 nM crease from 63 ± 4 nM to 212 ± 47 nM (N =six cells), and (N =82 cells). Increasing the extracellular K concentration vasopressin increased [Ca2i1 from 86 ± 10 nM to 352 ± 79 significantly increased [Ca2]1 dose-dependently (P < 0.05). nM (N =five cells). These data demonstrate that receptor- Involvement of extracellular Ca2 in the response to KC1- dependent and -independent vasoconstrictor agonists increase induced depolarization was also evaluated. Resting [Ca2]1 [Ca2]1 in MVSMC, freshly isolated from rat preglomerular increased approximately 132% from 40 ± 5 nM to 93 ± 26 nM vessels. Furthermore, the ability to measure tCa2i1 in re- in response to 90 mM extracellular KC1. This change was sponses to physiological stimuli in these single cells permits abolished in nominally Ca2-free conditions and markedly investigation of signal transduction mechanisms involved in attenuated by diltiazem. Inhibition of K channels with regulating renal microvascular resistance. (J Am Soc Nephrol charybdotoxin or tetraethylammonium chloride produced a 8: 569-579, 1997) Control of renal hemodynamics, glomerular capillary pressure, such as angiotensin II or ATP, or receptor-independent vaso- and GFR is achieved through the regulation of interlobular constrictor stimuli, such as KC1, stimulate afferent arteriolar arterial and afferent arteriolar tone (1 ,2). Active tension devel- vasoconstriction through activation of L-type Ca2 channels opment in the renal microvasculature is a function of complex leading to voltage-dependent Ca2 influx (6,8 - 12,14,15,17). agonistlreceptor interactions, which are communicated to con- Vasoconstriction of afferent arterioles by angiotensin II, ATP, tractile proteins through generation of intracellular second or KC1 can be blocked with L-type Ca2 channel blockers such messengers. One of the more prominent second messengers as diltiazem, verapamil, or nifedipine (8-10,12,14). influenced by agonist/receptor interactions is intracellular Specific studies into the cellular mechanisms of renal mi- 2± ‘± Ca ([Ca ]) (3-5). Smooth muscle cells making up the crovascular control have been hampered by the inaccessibility preglomerular microvasculature are equipped with ion chan- of renal microvascular tissue and the difficulty in obtaining nels capable of translocating extracellular Ca2 into the cell pure preparations of intrarenal microvascular segments for interior (6-16). Increasing [Ca2i1 in this way represents an study. Several different approaches have been utilized in an important mechanism by which preglomerular tone and thus effort to unfold the mechanisms involved in the regulation of glomerular capillary pressure is regulated. renal microvascular function, including micropuncture (18), A major pathway by which afferent arterioles increase the blood perfused juxtamedullary nephron technique (19,20), [Ca2]1 is through activation of voltage-dependent Ca2 chan- the hydronephrotic kidney technique ( 14- 16), and isolated nels (6,8 -1 2, 14, 15). Receptor-dependent vasoactive agonists, afferent and efferent arterioles (8,9, 1 1 ,2 1); however, each of these techniques suffers from the disadvantage of being a multicellular preparation of varying complexity. The multicel- Received October 14, 1996. Accepted December 19, 1996. lular nature of these preparations makes it difficult to assess Correspondence to Dr. Edward W. Inscho, Department of Physiology SL#39. specific vascular smooth muscle cell responses to vasoactive Tulane University School of Medicine. 1430 Tulane Avenue, New Orleans, LA 70112. agents without having to consider the potential confounding influence of endothelial or tubular cells in the response. For 1046-6673/0804-0569$03.00/0 Journal of the American Society of Nephrology this reason, we began to prepare suspensions of single vascular Copyright C) 1997 by the American Society of Nephrology smooth muscle cells derived from interlobular arteries and 570 Journal of the American Society of Nephrology afferent arterioles, which are intrarenal microvessels averaging Diego, CA) dissolved in low Ca2 P55. The vascular tissue was between 10 and 40 jtm in diameter. Vessels of this size have incubated in the enzyme solution for 20 mm at 37#{176}Cbefore the tissue ( since been successfully prepared for the evaluation of receptor was gently triturated with a Pasteur pipette. The dissociation flask was placed on a magnet to adhere the iron-containing microvascular binding (22) and biochemical assay analysis (23). More re- segments while the dissociation medium containing tubules, epithelial cently, smooth muscle cells have been isolated from such cells, and cellular debris was decanted. Fresh enzyme solution was microvessels for patch clamp studies directed at K channel added to the flask, and the tissue was incubated at 37#{176}Cforanother 20 activity (24). mm. Iron-containing microvascular segments were washed for 10 mm The purpose of the study presented here was to prepare in an ice-cold, enzyme-free, recovery solution of the following com- freshly isolated microvascular smooth muscle cells (MVSMC) position (in mM): 80.0 KC1, 30.0 KH,P04, 5.0 MgSO4, 20.0 glucose, from rat interlobular arteries and afferent arterioles for the 5.0 Na2ATP, 5.0 phosphocreatine, 3.0 EGTA, and 10.0 MOPS (pH measurement of [Ca2i1 and to determine the effect of agonist 7.3) (7). The tissue was gently triturated, and the undispersed tissue stimulation on the tCa211 in these cells. Receptor-independent was transferred to a new aliquot of fresh buffer solution. This cycle of alterations in [Ca2]1 were measured in response to membrane trituration and transfer was repeated four to five times, after which the depolarization. Receptor-dependent responses were assessed remaining tissue was discarded. Healthy viable cells were most often found in the second and third fractions; therefore, these cells were by measuring changes in [Ca2]1 in response to the established pooled and cleaned of any residual iron by magnetic separation. The vasoconstrictor agonists angiotensin II, ATP, norepinephrine, cells were collected by centrifugation (5,800 Xg) for 30 s, and the and vasopressin. supernatant was discarded. The cell pellet was resuspended in ice-cold medium 199 (Sigma) containing 100 U/ml penicillin and 200 j.g/ml Methods streptomycin and supplemented with 10% (vol/vol) fetal calf serum Tissue Preparation and Renal Microvascular Smooth (M-l99; Whittaker Bioproducts, Walkersville, MD). Cell suspensions Muscle Cell Isolation were stored on ice until used. Studies were performed in accordance with the guidelines and practices put forth by the Tulane University Advisory Committee for Animal Resources. Suspensions of preglomerular microvessels were Fluorescence Measurements in Single Microvascular prepared using a modification of the methods of Chaudhari and Smooth Muscle Cells Kirschenbaum (25), Chatziantoniou and Arendshorst (22), and Ge- Experiments were performed using a monochrometer-based fluo- bremedhin et al. (24). Each male Sprague-Dawley rat (250 to 375 g) rescence spectrophotometer equipped with a 75-watt xenon bulb and was anesthetized with pentobarbital sodium (40 mg/kg; iv) and its chopper wheel (Photon Technology International, South Brunswick, abdominal cavity exposed via a midline incision. The superior mes- NJ). Excitation wavelengths of 340 and 380 nm were delivered to the enteric artery was cannulated, and the cannula tip was advanced to the sample chamber by means of a fiber optic cable attached to the base lumen of the abdominal aorta. Ligatures were placed around the of the microscope, and the emitted light passed through a 5 10 ± 20 abdominal aorta at sites proximal and distal to the left and right renal barrier filter before detection by the photometer (Photon). Slit widths arteries, respectively. The kidneys were cleared of blood by perfusion of 3 nm were set for both excitation monochrometers. The optical path of the isolated aortic segment with an ice-cold, low Ca24 physiolog- included a 40X objective (Nikon Fluor 40, NA = 1.3; Nikon Instru- ical salt solution (low Ca2 P55) of the following composition (in
Recommended publications
  • Effect of Hypercholesterolaemia on Voltage-Operated Calcium Channel Currents in Rabbit Arterial Smooth Muscle Cells
    Journal of Human Hypertension (1999) 13, 849–853 1999 Stockton Press. All rights reserved 0950-9240/99 $15.00 http://www.stockton-press.co.uk/jhh Effect of hypercholesterolaemia on voltage-operated calcium channel currents in rabbit arterial smooth muscle cells GF Clunn, S Wijetunge and AD Hughes Clinical Pharmacology, NHLI, St. Mary’s Hospital, Imperial College of Science, Technology and Medicine, South Wharf Road, London, W2 1NY, UK Cholesterol is a major component of cell membranes capacitance was also greater in NZ cells. Consequently, and influences membrane fluidity. Watanabe heritable there was no significant difference in current density hyperpercholesterolaemic rabbits (WHHL) possess between NZ and WHHL cells either in the absence of defective receptors for low density lipoprotein leading drug or in the presence of the calcium channel agonist to increased plasma cholesterol, accumulation of chol- (+)202 791. Current voltage-relationships, kinetics of esterol in the arterial wall and atherosclerosis. In this fast inactivation and steady-state inactivation of IBa also study calcium channel currents (IBa) were compared did not differ significantly between WHHL and NZ. These using conventional whole cell voltage clamp techniques findings suggest that hypercholesterolaemia in WHHL in ear artery cells isolated from control New Zealand has no direct effect on calcium channel current density White rabbits (NZ) with those from WHHL. IBa were larger or voltage-modulation in arterial smooth muscle cells. in cells isolated from NZ than from WHHL, however cell Keywords: calcium channel; cholesterol; vascular smooth muscle; Watanabe hypercholesterolaemic rabbit Introduction atic cholesterol toxicity or other organ damage which develops in cholesterol-fed rabbits.15 WHHL Cholesterol is a major component of cell membranes 1,2 has therefore been proposed to be a model of human and influences membrane structure and fluidity.
    [Show full text]
  • Siteand Mechanism of Action of Resin Acids on Voltage-Gated Ion Channels
    Linköping University Medical Dissertation No. 1620 Site and Mechanism of Action of Resin Acids on Voltage-Gated Ion Channels Malin Silverå Ejneby Department of Clinical and Experimental Medicine Linköping University, Sweden Linköping 2018 © Malin Silverå Ejneby, 2018 Cover illustration: “The Charged Pine Tree Anchored to the Ground” was designed and painted by Daniel Silverå Ejneby. Printed in Sweden by LiU-Tryck, Linköping, Sweden, 2018 ISSN: 0345-0082 ISBN: 978-91-7685-318-4 TABLE OF CONTENTS ABSTRACT ............................................................................................................................... 1 POPULÄRVETENSKAPLIG SAMMANFATTNING ................................................................. 3 LIST OF ARTICLES .................................................................................................................. 5 INTRODUCTION ....................................................................................................................... 7 Ions underlie the electrical activity in the heart and brain .................................................. 7 A mathematical model for the nerve impulse - Hodgkin and Huxley ............................... 7 Cardiac action potentials – a great diversity of shapes ...................................................... 9 Voltage-gated ion channels ......................................................................................................... 9 General structure ....................................................................................................................
    [Show full text]
  • Niflumic Acid Hyperpolarizes Smooth Muscle Cells Via Calcium-Activated Potassium Channel in Spiral Modiolar Artery of Guinea Pigs1
    Acta Pharmacol Sin 2008 Jul; 29 (7): 789–799 Full-length article Niflumic acid hyperpolarizes smooth muscle cells via calcium-activated potassium channel in spiral modiolar artery of guinea pigs1 Li LI2,3, Ke-tao MA3,4, Lei ZHAO3, Jun-qiang SI3,4,5, Zhong-shuang ZHANG3, He ZHU3, Jing LI3 2Departmeng of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China; 3Labo- ratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Xinjiang 832002, China; 4Fundamental Medical School of Wuhan University, Wuhan 430071, China Key words Abstract spiral modiolar artery; smooth muscle cells; Aim: The influence of niflumic acid (NFA), a Cl– channel antagonist, on the mem- 2+ niflumic acid; hyperpolarization; Ca - brane potentials in smooth muscle cells (SMC) of the cochlear spiral modiolar activated potassium channels; cochlea artery (SMA) in guinea pigs was examined. Methods: The intracellular recording 1This work was supported by the National and whole-cell recording technique were used to record the NFA-induced re- Natural Science Foundation of China (No sponse on the acutely-isolated SMA preparation. Results: The SMC had 2 stable 30460043); the Scientific and Technological Program for Overseas Personnel, the but mutually convertible levels of resting potentials (RP), that is, one was near –45 Ministry of Personnel, China (2006); and the mV and the other was approximately –75 mV, termed as low and high RP, Key Program of Scientific and Technological respectively. The bath application of NFA could cause a hyperpolarization in all Research, the Ministry of Education, China (Local Universities; No 207134). the low RP cells, but had little effect on high RP cells.
    [Show full text]
  • Potentiation of Large Conductance Kca Channels by Niflumic, Flufenamic, and Mefenamic Acids
    2272 Biophysical Journal Volume 67 December 1994 2272-2279 Potentiation of Large Conductance KCa Channels by Niflumic, Flufenamic, and Mefenamic Acids M. Ottolia and L. Toro Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 USA ABSTRACT Large conductance calcium-activated K+ (Kca) channels are rapidly activated by niflumic acid dose- dependently and reversibly. External niflumic acid was about 5 times more potent than internal niflumic acid, and its action was characterized by an increase in the channel affinity for [Ca2l], a parallel left shift of the voltage-activation curve, and a decrease of the channel long-closed states. Niflumic acid applied from the external side did not interfere with channel block by charybdotoxin, suggesting that its site of action is not at or near the charybdotoxin receptor. Accordingly, partial tetraethylammonium blockade did not interfere with channel activation by niflumic acid. Flufenamic acid and mefenamic acid also stimulated KCa channel activity and, as niflumic acid, they were more potent from the external than from the internal side. Fenamates applied from the external side displayed the following potency sequence: flufenamic acid niflumic acid >> mefenamic acid. These results indicate that KCa channels possess at least one fenamatereceptor whose occupancy leads to channel opening. INTRODUCTION Large conductance calcium-activated K channels are present quently purified in a sucrose gradient. Membranes obtained from the of cell types (Latorre et al., 1989; McManus, 1991). 20%:25% and 25%:30% (w/w) sucrose interface were used. Lipid bi- in a variety layers were cast from a phospholipid solution in n-decane containing a In neurons they may regulate cell firing (Gola and Crest, 1993), 5:2:3 mixture of phosphatidylethanolamine/phosphatidylserine/phos- and in smooth muscle they seem to play an important role in phatidylcholine (25 mg/ml).
    [Show full text]
  • Molecular Properties of Drugs Interacting with SLC22 Transporters OAT1, OAT3, OCT1, and OCT2: a Machine-Learning Approach S
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2016/08/03/jpet.116.232660.DC1 1521-0103/359/1/215–229$25.00 http://dx.doi.org/10.1124/jpet.116.232660 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 359:215–229, October 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Molecular Properties of Drugs Interacting with SLC22 Transporters OAT1, OAT3, OCT1, and OCT2: A Machine-Learning Approach s Henry C. Liu, Anne Goldenberg, Yuchen Chen, Christina Lun, Wei Wu, Kevin T. Bush, Natasha Balac, Paul Rodriguez, Ruben Abagyan, and Sanjay K. Nigam Departments of Bioengineering (H.C.L.), Pediatrics (A.G., Y.C., C.L., K.T.B., S.K.N.), Medicine (W.W., S.K.N.), Cellular and Molecular Medicine (S.K.N.), and Pharmacology (R.A.), and the San Diego Supercomputer Center (N.B., P.R.), University of California San Diego, La Jolla, California Downloaded from Received February 2, 2016; accepted July 20, 2016 ABSTRACT Statistical analysis was performed on physicochemical descrip- ligands; this was confirmed by quantitative atomic property field tors of ∼250 drugs known to interact with one or more SLC22 analysis. Virtual screening with this pharmacophore, followed by “drug” transporters (i.e., SLC22A6 or OAT1, SLC22A8 or OAT3, transport assays, identified several cationic drugs that selectively jpet.aspetjournals.org SLC22A1 or OCT1, and SLC22A2 or OCT2), followed by applica- interact with OAT3 but not OAT1. Although the present analysis tion of machine-learning methods and wet laboratory testing of may be somewhat limited by the need to rely largely on inhibition novel predictions.
    [Show full text]
  • Live Horses, Asses, Mules, and Hinnies: - - Horses: 0101.21.0000 - - - Purebred Breeding Animals No
    Schedule B No. Second Commodity Description Unit of and Headings Quantity Quantity 01 Live Animals 0101 - Live horses, asses, mules, and hinnies: - - Horses: 0101.21.0000 - - - Purebred breeding animals No. 0101.29.0000 - - - Other No. 0101.30.0000 - - Asses No. 0101.90.0000 - - Other No. 0102 - Live bovine animals: - - Cattle: 0102.21 - - - Purebred breeding animals: - - - - Dairy: 0102.21.0010 - - - - - Male No. 0102.21.0020 - - - - - Female No. - - - - Other: 0102.21.0030 - - - - - Male No. 0102.21.0050 - - - - - Female No. 0102.29.0000 - - - Other No. - - Buffalo: 0102.31.0000 - - - Purebred breeding animals No. 0102.39.0000 - - - Other No. 0102.90.0002 - - Other No. 0103 - Live swine: 0103.10.0000 - - Purebred breeding animals No. - - Other: 0103.91.0000 - - - Weighing less than 50 kg (110.23 lb.) each No. 0103.92.0000 - - - Weighing 50 kg (110.23 lb.) or more each No. 0104 - Live sheep and goats: 0104.10.0000 - - Sheep No. 0104.20.0000 - - Goats No. 0105 - Live poultry of the following kinds: chickens, ducks, geese, turkeys and guineas: - - Weighing not more than 185 g (6.53 oz.) each: 0105.11 - - - Chickens: - - - - Breeding stock, whether or not purebred: 0105.11.0010 - - - - - Layer-type (egg-type) No. 0105.11.0020 - - - - - Broiler-type (meat-type) No. 0105.11.0040 - - - - Other No. 0105.12.0000 - - - Turkeys No. 0105.13.0000 - - - Ducks No. 0105.14.0000 - - - Geese No. 0105.15.0000 - - - Guinea fowls No. - - Other: 0105.94.0000 - - - Chickens No. Schedule B No. Second Commodity Description Unit of and Headings Quantity Quantity 0105.99.0000 - - - Other No. 0106 - Other live animals: - - Mammals: 0106.11.0000 - - - Primates No. 0106.12.0100 - - - Whales, dolphins and porpoises (mammals of the order Cetacea); manatees and dugongs (mammals of the order Sirenia); seals, sea lions and walruses (mammals of the suborder Pinnipedia) No.
    [Show full text]
  • Effect of Cholesterol on the Organic Cation Transporter OCTN1
    International Journal of Molecular Sciences Article Effect of Cholesterol on the Organic Cation Transporter OCTN1 (SLC22A4) Lorena Pochini, Gilda Pappacoda, Michele Galluccio , Francesco Pastore, Mariafrancesca Scalise and Cesare Indiveri * Department of Biology, Ecology and Earth Sciences (DiBEST), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, via P. Bucci 4c, 87036 Arcavacata di Rende, Italy; [email protected] (L.P.); [email protected] (G.P.); [email protected] (M.G.); [email protected] (F.P.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +39-0984-492939 Received: 18 December 2019; Accepted: 3 February 2020; Published: 6 February 2020 Abstract: The effect of cholesterol was investigated on the OCTN1 transport activity measured as [14C]-tetraethylamonium or [3H]-acetylcholine uptake in proteoliposomes reconstituted with native transporter extracted from HeLa cells or the human recombinant OCTN1 over-expressed in E. coli. Removal of cholesterol from the native transporter by MβCD before reconstitution led to impairment of transport activity. A similar activity impairment was observed after treatment of proteoliposomes harboring the recombinant (cholesterol-free) protein by MβCD, suggesting that the lipid mixture used for reconstitution contained some cholesterol. An enzymatic assay revealed the presence of 10 µg cholesterol/mg total lipids corresponding to 1% cholesterol in the phospholipid mixture used for the proteoliposome preparation. On the other way around, the activity of the recombinant OCTN1 was stimulated by adding the cholesterol analogue, CHS to the proteoliposome preparation. Optimal transport activity was detected in the presence of 83 µg CHS/ mg total lipids for both [14C]-tetraethylamonium or [3H]-acetylcholine uptake.
    [Show full text]
  • Effect of K+ Channel Openers on K+ Channel in Cultured Human Dermal Papilla Cells
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Tokushima University Institutional Repository 73 Effect of K+ channel openers on K+ channel in cultured human dermal papilla cells Hiroyasu Hamaoka*, Kazuo Minakuchi*, Hirokazu Miyoshi‡, Seiji Arase†, Chun-He Chen‡ and Yutaka Nakaya‡ *The Department of Pharmacy ; †The Department of Dermatology ; and ‡The Department of Nutrition, The University of Tokushima School of Medicine, Tokushima, Japan Abstract : Minoxidil sulfate and pinacidil, well-known activators of the ATP-sensitive K+ (KATP) channel, induce hair growth in clinical studies. The opening of K+ channels is thought to be an important mechanism in the regulation of hair follicles. In the present study, we used the patch clamp technique to characterize the K+ channels and tested the effect of K+ channel openers on K+ 2+ + channels in cultured human dermal papilla cells. In dermal papilla cells, the Ca -activated K (KCa) channel with large conductance (179.3±13.1 pS in symmetrical 150 mM K+ solutions, n=9) was dominant and we could not observe KATP channels in cell-attached and inside-out patches. In addition, minoxidil and pinacidil failed to activate KATP or KCa channels. In inside-out membrane patches, the channel was blocked by 10 mM tetraethylammonium ion, 2 mM 4-aminopyridine to the cytosolic face of the membrane or by lowering Ca2+ using 10 mM EGTA, but not by glibenclamide. In the cell-attached patch configurations, extracellular application of 1 mM sodium nitroprusside, a nitrovasodilator, activated the KCa channel. Methylene blue (2 mM) inhibited channel activation by sodium nitroprusside.
    [Show full text]
  • Relaxant Effects of Matrine on Aortic Smooth Muscles of Guinea Pigs1
    BIOMEDICAL AND ENVIRONMENTAL SCIENCES 22, 327-332 (2009) www.besjournal.com Relaxant Effects of Matrine on Aortic Smooth Muscles of Guinea Pigs1 # # * # # + #, +, 2 JIE ZHENG , PING ZHENG , XU ZHOU , LIN YAN , RU ZHOU , XUE-YAN FU , AND GUI-DONG DAI #Department of Pharmacology; *Department of Physiology, School of Basic Medical Science; +Ningxia Research Institute of Medicine & Pharmacy, Ningxia Medical University, Yinchuan 750004, Ningxia, China Objective To determine whether matrine, a kind of traditional Chinese medicinal alkaloid, can relax the aortic smooth muscles isolated from guinea pigs and to investigate the mechanism of its relaxant effects. Methods Phenylephrine or potassium chloride concentration-dependent relaxation response of aortic smooth muscles to matrine was studied in the precontracted guinea pigs. Results Matrine (1×10-4 mol/L -3.3×10-3 mol/L) relaxed the endothelium-denuded aortic rings pre-contracted sub-maximally with phenylephrine, in a concentration-dependent manner, and its pre-incubation (3.3×10-3 mol/L) produced a significant rightward shift in the phenylephrine dose-response curve, but had no effects on the potassium chloride-induced contraction. The anti-contractile effect of matrine was not reduced by the highly selective ATP-dependent K+ -5 + -3 channel blocker glibenclamide (10 mol/L), either by the non-selective K channel blocker tetraethylammonium (10 mol/L), or by the β-antagonist propranolol (10-5 mol/L). In either “normal” or “Ca2+-free” bathing medium, the phenylephrine-induced contraction was attenuated by matrine (3.3×10-3 mol/L), indicating that the vasorelaxation was due to inhibition of intracellular and extracellular Ca2+ mobilization.
    [Show full text]
  • Recorded in the Presence of 120 Mm-Tetraethylammonium-Methanesulphonate and 10 Mm-Ca2+
    J. Physiol. (1986), 370, pp. 151-163 151 With 6 text-figures Printed in Great Brutain A FAST-ACTIVATED INWARD CALCIUM CURRENT IN TWITCH MUSCLE FIBRES OF THE FROG (RANA MONTEZUME) BY G. COTA* AND E. STEFANIt From the Department of Physiology and Biophysics, Centro de Investigacion y de Estudios Avanzados del I.P.N., Apartado Postal 14-740, Mexico, D.F. 07000, Mexico (Received 1 May 1985) SUMMARY 1. Voltage-clamp experiments were performed at 180C in intact twitch muscle fibres of the frog using the three micro-electrode technique. Membrane currents were recorded in the presence of 120 mM-tetraethylammonium-methanesulphonate and 10 mM-Ca2+. The recording solution was made hypertonic by adding 350 mM-sucrose to avoid contraction. 2. Two components of inward current in the absence of external Na+ were observed. Depolarization induced a fast-activated inward current of small amplitude in addition to the well-known slow, transient Ca2+ current (ICa, s) 3. Both components of inward current persisted in the presence of tetrodotoxin. They practically disappeared on replacing external Ca2+ with Mg2+ and were blocked by millimolar additions of Cd2+ to the bath. Thus, the fast-activated component of inward current was also carried by Ca2+ (ICa, f). Neither ICa, f nor ICa, s were reduced by 5 ,SM-diltiazem. 4. During 400 ms depolarizations Ica f was detected at approximately -60 mV, 30 mV more negative than the membrane potentials at which Ica s appeared. At about 0 mV the time constant for activation was 5 ms for Ica and 150 ms for ICa, s ca f did not significantly decline during depolarizations up to 2 s in duration at membrane potentials between -60 and -30 mV.
    [Show full text]
  • Meclofenamic Acid and Diclofenac, Novel Templates of KCNQ2/Q3 Potassium Channel Openers, Depress Cortical Neuron Activity and Exhibit Anticonvulsant Properties
    0026-895X/05/6704-1053–1066$20.00 MOLECULAR PHARMACOLOGY Vol. 67, No. 4 Copyright © 2005 The American Society for Pharmacology and Experimental Therapeutics 7112/1197210 Mol Pharmacol 67:1053–1066, 2005 Printed in U.S.A. Meclofenamic Acid and Diclofenac, Novel Templates of KCNQ2/Q3 Potassium Channel Openers, Depress Cortical Neuron Activity and Exhibit Anticonvulsant Properties Asher Peretz, Nurit Degani, Rachel Nachman, Yael Uziyel, Gilad Gibor, Doron Shabat, and Bernard Attali Department of Physiology and Pharmacology, Sackler Faculty of Medical Sciences (A.P., N.D., R.N., Y.U., G.G., B.A.) and School of Chemistry, Faculty of Exact Sciences (D.S.), Tel Aviv University, Tel Aviv, Israel Received September 10, 2004; accepted December 9, 2004 ABSTRACT The voltage-dependent M-type potassium current (M-current) hamster ovary cells. Both openers activated KCNQ2/Q3 chan- plays a major role in controlling brain excitability by stabilizing nels by causing a hyperpolarizing shift of the voltage activation the membrane potential and acting as a brake for neuronal curve (Ϫ23 and Ϫ15 mV, respectively) and by markedly slowing firing. The KCNQ2/Q3 heteromeric channel complex was iden- the deactivation kinetics. The effects of the drugs were stronger tified as the molecular correlate of the M-current. Furthermore, on KCNQ2 than on KCNQ3 channel ␣ subunits. In contrast, the KCNQ2 and KCNQ3 channel ␣ subunits are mutated in they did not enhance KCNQ1 Kϩ currents. Both openers in- families with benign familial neonatal convulsions, a neonatal creased KCNQ2/Q3 current amplitude at physiologically rele- form of epilepsy. Enhancement of KCNQ2/Q3 potassium cur- vant potentials and led to hyperpolarization of the resting mem- rents may provide an important target for antiepileptic drug brane potential.
    [Show full text]
  • Effects of Tetraethylammonium on Potassium Currents in a Molluscan Neuron
    Effects of Tetraethylammonium on Potassium Currents in a Molluscan Neuron A. HERMANN and A. L. F. GORMAN From the Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 021 t8. A. Hermann's present address is Department of Biology, University of Konstanz, D-7750 Konstanz, Federal Republic of Germany. ABSTRACT The effects of tetraethylammonium (TEA) on the delayed K + current and on the Ca2+-activated K + current of the Aplysia pacemaker neurons R-15 and L-6 were studied. The delayed outward K + current was measured in Ca2+-free ASW containing tetrodotoxin (TTX), using brief depolarizing clamp pulses. External TEA blocks the delayed K + current reversibly in a dose- dependent manner. The experimental results are well fitted with a Michaelis- Menten expression, assuming a one-to-one reaction between TEA and a receptor site, with an apparent dissociation constant of 6.0 raM. The block depends on membrane voltage and is reduced at positive membrane potentials. The Ca 2+- activated K + current was measured in Ca2+-free artificial seawater (ASW) containing TTX, using internal Ca 2+ ion injection to directly activate the K + conductance. External TEA and a number of other quaternary ammonium ions block the Ca2+-activated K + current reversibly in a dose-dependent manner. TEA is the most effective blocker, with an apparent dissociation constant, for a one-to-one reaction with a receptor site, of 0.4 raM. The block decreases with depolarization. The Caa+-activated K + current was also measured after intra- cellular iontophoretic TEA injection. Internal TEA blocks the Ca2+-activated K + current (but the block is only apparent at positive membrane potentials), is increased by depolarization, and is irreversible.
    [Show full text]