Influence of Microfibril Angle on Within-Tree Variations in the Mechanical Properties of Chinese Fir (Cunninghamia Lanceolata)

Total Page:16

File Type:pdf, Size:1020Kb

Influence of Microfibril Angle on Within-Tree Variations in the Mechanical Properties of Chinese Fir (Cunninghamia Lanceolata) IAWA Journal, Vol. 32 (4), 2011: 431–442 INFLUENCE OF MICROFIBRIL ANGLE ON WITHIN-TREE VARIATIONS IN THE MECHANICAL PROPERTIES OF CHINESE FIR (CUNNINGHAMIA LANCEOLATA) Yafang Yin1, Mingming Bian1,2, Kunlin Song1, Fuming Xiao3 and Jiang Xiaomei1,* SUMMARY Radial variations in microfibril angle (MFA) and their effect on the mechanical properties of plantation-grown Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) were investigated with the aim of achiev- ing an effective utilization of the wood. Correlations between MFA and mechanical properties, including longitudinal modulus of elastic- ity (MOEL), static bending strength (MOR) and compression strength parallel-to-the-grain (CS), were analyzed for predicting the quality of timber. The results indicated that MFA had a greater variation in juvenile wood than in mature wood. The biggest change occurred close to the pith in Chinese fir. The outer-rings (rings 9–30 from the pith) have a relatively low MFA, together with high mechanical properties and high density, when compared with the inner-rings (rings 1–8 from the pith). The MFA had significant negative curvilinear correlations with all the mechanical properties (MOEL, MOR and CS) of Chinese fir, with the value of r2 being 0.88, 0.69 and 0.74 respectively. The correlation between the MFA and basic density (BD) was strong in certain consecutive rings (rings 5–30 from the pith), but this did not apply across the whole billet, i.e. from the pith to the bark. Key words: Cunninghamia lanceolata, MFA, mechanical properties, basic density. INTRODUCTION Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is one of the most important, fast growing and major commercial plantation species that mainly occurs in 17 prov- inces of the central and southern regions of temperate China. The wood of Chinese 1) Wood Anatomy and Utilization Department, Chinese Research Institute of Wood Industry, Chinese Academy of Forestry, No.1 Dongxiaofu, Beijing, CN 100091, China. 2) State Academy of Forestry Administration, No. 8 Linxiao North Road, Beijing, CN 102600, China. 3) Jiangxi Academy of Forestry, No. 1629 Fenglin Street, Nanchang, Jiangxi Province, CN 330032, China. *) Corresponding author [E-mail: [email protected]]. Associate Editor: Lloyd Donaldson Downloaded from Brill.com10/01/2021 02:19:26PM via free access 432 IAWA Journal, Vol. 32 (4), 2011 fir has traditionally been used for furniture making, bridge and boat building, general carpentry and timber constructions. However, plantation-grown Chinese fir has not been effectively and fully utilized, due to a high proportion of juvenile wood and large variations in wood properties. With a decrease in natural wood resources and an increase in the demand for wood materials, the wood supply from this tree species is undergoing a recent increased demand in China. As a result, there is an urgent need for much more detailed information on wood quality to ensure the production of high value wood products from this species. As is generally known, when wood properties are analyzed transversely across the radius, around the perimeter or longitudinally along the stem, the wood of Chinese fir varies in its chemical, mechanical, and anatomical properties (Bao & Jiang 1998; Savidge 2003). Therefore, in order to achieve the best utilization of this wood, it is essential that research work should be carried out on the radial and longitudinal vari- ations in wood properties of the tree. Correlations among wood properties may be of help in effectively predicting the quality of the wood. A few studies have been conducted on the variation of MFA within or between trees (Donaldson 1992; Donaldson & Burdon 1995; Zhang et al. 2007; Yin et al. 2011). The variation of MFA between growth rings indicates a consistently decreasing trend from pith to bark at all heights. MFA between heights shows greater values at breast height of the stem and a trend of general decline within the stem with height (Zhang et al. 2007; Donaldson 2008; Yin et al. 2011). Significant variation among trees and growth rings was also indicated in Pinus radiata D. Don (Donaldson & Burdon 1995). The MFA of the S2 layer in the cell wall is known to be one of the main determi- nants affecting the mechanical wood properties in different species (Cave & Walker 1994; Walker & Butterfield 1996; Treacy et al. 2000; Deresse et al. 2003). A strong correlation between MFA and MOEL (longitudinal modulus of elasticity) was obtained, when the distribution along the stem of butt logs of Pinus radiata was studied (Xu & Walker 2004). The MFA was also significantly related to the modulus of rupture (MOR) in small clear wood samples from different species (Bendtsen & Senft 1986; Treacy et al. 2000; Deresse et al. 2003). Using clear wood samples of Pinus radiata, high correlations among MOEL, MFA and density (r = -0.78 and 0.69 respectively) were obtained, while path analysis showed that MFA was the only significant causal factor for MOE per unit of mass (Booker et al. 1998). Cown et al. (2004), in a study of the relative effects of MFA and basic density on MOEL in boards of Pinus radiata clones, found only a low contribution from MFA, when compared to other factors, such as spiral grain and knot area ratio. The correlation between MFA and CS of small clear wood has rarely been inves- tigated (Donaldson 2008). Nevertheless, micromechanical properties parallel-to-the- grain have been obtained using microtomed sections, single fibers or the nano-indenta- tion of cell walls. A high correlation was observed between MFA and the extensibility of wood microtomed sections (Reiterer et al. 1999), whereas single fibers with a larger MFA showed greater extensibility (Mott et al. 2002). Hardness obtained using the nano- indentation of cell wall regions displayed no strong correlation with MFA (Gindl et al. 2004). Downloaded from Brill.com10/01/2021 02:19:26PM via free access Yin, Bian, Song, Xiao & Jiang — Microfibril angle in Cunninghamia 433 Previous research work has indicated that there is still uncertainty regarding the relationship between MFA and mechanical properties in different species, or at different positions in the tree, and the level of correlation between MFA and specific mechani- cal properties. Only a few reports on the wood properties of Chinese fir are available and, consequently, correlations between MFA and mechanical properties still need to be ascertained. The aim of this paper is to assess the radial variations in MFA and mechanical properties of plantation-grown Chinese fir, in order to achieve an effective utilization of this wood, and to investigate whether and to what degree the mechanical properties (bending modulus of elasticity (MOE), the bending modulus of rupture (MOR) and the compression strength parallel-to-grain (CS)) of this species are affected by its MFA properties. MATERIALS AND METHODS Sample preparation Twenty vigorous sample trees were randomly collected from a 36-year-old Chinese fir plantation at the Shanxia Forestry Centre (114° 30' E, 27° 30' N), in Dagangshan in the Jiangxi Province, which is located at the Experimental Centre of Subtropical For- estry of the Chinese Academy of Forestry. The plantation was cultivated from seedlings, planted at a spacing of 4 by 6 m. Small clear specimen 10 mm (R) × 10 mm (T) a L/15 mm South North b L/20 mm c L/30 mm L/300 mm 8 ... 1 1 ... 8 a - MFA d L/150 mm b - CS c - BD d - MOEL and MOR A B C Figure 1. A schematic diagram of the sampling. – MFA = microfibril angle; CS = compression strength; BD = basic density; MOE = modulus of elasticity; MOR = modulus of rupture. A stem disk (billet) sample with a thickness of 300 mm was taken from each tree, at a height of 1.3 to 1.6 m from ground level (Fig. 1A). After marking the north and the south facing stem surfaces, a radial section 10 mm thick and including the pith, was taken from each billet in the north-south direction of the tree stem. A series of longitudinal wood strips were then sawn from the pith to the bark in each section (Fig. 1B). Each strip was subsequently cut into four blocks for measuring MFA, basic density (BD) and mechanical properties (MOE, MOR and CS) respectively (Fig. 1C). No significant variations of selected properties were observed between north and south Downloaded from Brill.com10/01/2021 02:19:26PM via free access 434 IAWA Journal, Vol. 32 (4), 2011 sections. Therefore, it was assumed that the average value of samples that had been collected from both the north and south sections at the same growth ring from the pith would represent the average properties. X-ray diffraction for MFA measurement Tangential sections, approximately 1 mm thick and containing latewood, were ob- tained from wood blocks using a stereo microscope. The method for measuring MFA using X-ray diffraction was similar to that described in an earlier paper (Yin et al. 2011). In brief, a tangential section was attached to a holder in an X-ray scattering system (Dmax-3BX). When the sample was rotated, the intensity curve was measured as a function of the rotation angle φ at a step of 0.5° and a measuring time of 180 s per point. The radiation source was a nickel-filtered radiation of 40 kV, and 30 mA. The mean MFA of the tracheid cell wall layer was then calculated, according to the measuring method of the 002 peak made in transmission, developed by Cave (1966) and Meylan (1967), using 0.6T, where T is the half-width of the peak, taken from the tangents drawn at the points of inflection (Anderssonet al. 2000). Mechanical testing The mechanical properties, i.e. bending MOE, MOR and CS, were used for evalu- ating the quality of the wood using small clear wood samples without any defects.
Recommended publications
  • Weathering Behaviour of Cunninghamia Lanceolata (Lamb.) Hook
    Article Weathering Behaviour of Cunninghamia lanceolata (Lamb.) Hook. under Natural Conditions Xinjie Cui 1 and Junji Matsumura 2,* 1 Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; [email protected] 2 Laboratory of Wood Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan * Correspondence: [email protected]; Tel.: +81-092-802-4656 Received: 18 July 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: Information on the weathering behaviour of Cunninghamia lanceolata (Lamb.) Hook. is needed to provide references for wood weatherproof pre-treatment and to improve wood utilization. Therefore, this study was conducted to understand the variation in the intrinsic weathering behaviour of Cunninghamia lanceolata (Chinese fir) under natural conditions. Wood samples from 15 Cunninghamia lanceolata trees aged 26–30 years old were used. The structural degradation and discoloration of wood surfaces before and after exposure were compared. The results show that the weathering behaviour of wood was weakened from heartwood to sapwood and enhanced from the bottom to the top. This study provided information for weatherability research and improved wood utilization of Cunninghamia lanceolata. Keywords: Cunninghamia lanceolata; weathering; density; colour change; wood structure 1. Introduction Cunninghamia lanceolata (Lamb.) Hook. is a member of the family Cupressaceae. It is an evergreen tree that can grow up to 50 m in height and over 3 m in diameter. It forms mixed broad-leaved forests or small, pure stands, rocky hillsides, roadsides, with altitudes ranging from 200 to 2800 m [1].
    [Show full text]
  • Cunninghamia Lanceolata (China-Fir) China-Fir Is Best Used As a Specimen, at the Corner of a Large Building, Or As a Large-Scale Screen Planted 15 to 20 Feet Apart
    Cunninghamia lanceolata (China-Fir) China-Fir is best used as a specimen, at the corner of a large building, or as a large-scale screen planted 15 to 20 feet apart. It works well in oriental gardens and the foliage keeps well indoors in a vase of water. Not a tree you would use everywhere. It is too big for a residential landscape but useful on campuses and other large-scale landscapes. China- Fir should be grown in full sun or partial shade on moist, well-drained, acid soil. China-Fir is extremely drought tolerant and grows well in poor, compacted clay soil. It is very adapted to urban soils except those poorly drained. Landscape Information Pronounciation: kunn-ning-HAM-ee-uh lan- see-oh-LAY-tuh Plant Type: Tree Origin: China Heat Zones: 6, 7, 8, 9 Hardiness Zones: 6, 7, 8, 9 Uses: Screen, Hedge, Specimen, Pollution Tolerant / Urban Size/Shape Growth Rate: Moderate Tree Shape: Pyramidal, Columnar, Upright Canopy Symmetry: Symmetrical Canopy Density: Open Canopy Texture: Coarse Height at Maturity: 3 to 5 m, 5 to 8 m Spread at Maturity: Over 15 meters Time to Ultimate Height: 20 to 50 Years Plant Image Cunninghamia lanceolata (China-Fir) Botanical Description Foliage Leaf Arrangement: Spiral Leaf Venation: Parallel Leaf Persistance: Evergreen Leaf Type: Simple Leaf Blade: Less than 5 Leaf Shape: Lanceolate Leaf Margins: Ciliate Leaf Scent: No Fragance Color(growing season): Green Color(changing season): Green Flower Flower Showiness: False Flower Scent: No Fragance Trunk Trunk Has Crownshaft: False Trunk Susceptibility to Breakage: Generally
    [Show full text]
  • Morphology and Morphogenesis of the Seed Cones of the Cupressaceae - Part I Cunninghamioideae, Athrotaxoideae, Taiwanioideae, Sequoioideae, Taxodioideae
    1 2 Bull. CCP 3 (3): 117-136. (12.2014) A. Jagel & V.M. Dörken Morphology and morphogenesis of the seed cones of the Cupressaceae - part I Cunninghamioideae, Athrotaxoideae, Taiwanioideae, Sequoioideae, Taxodioideae Summary Seed cone morphology of the basal Cupressaceae (Cunninghamia, Athrotaxis, Taiwania, Metasequoia, Sequoia, Sequoiadendron, Cryptomeria, Glyptostrobus and Taxodium) is presented at pollination time and at maturity. These genera are named here taxodiaceous Cupressaceae (= the former family Taxodiaceae, except for Sciadopitys). Some close relationships exist between genera within the Sequoioideae and Taxodioideae. Seed cones of taxodiaceous Cupressaceae consist of several bract-/seed scale-complexes. The cone scales represent aggregation of both scale types on different levels of connation. Within Cunninghamia and Athrotaxis the bulges growing out of the cone scales represents the distal tip of the seed scale, which has been fused recaulescent with the adaxial part of the bract scale. In Athrotaxis a second bulge, emerging on the distal part of the cone scale, closes the cone. This bulge is part of the bract scale. Related conditions are found in the seed cones of Taiwania and Sequoioideae, but within these taxa bract- and seed scales are completely fused with each other so that vegetative parts of the seed scale are not recognizable. The ovules represent the only visible part of the seed scale. Within taxodiaceous Cupressaceae the number of ovules is increased compared to taxa of other conifer families. It is developed most distinctly within the Sequoioideae, where furthermore more than one row of ovules appears. The rows develop centrifugally and can be interpreted as short-shoots which are completely reduced to the ovules in the sense of ascending accessory shoots.
    [Show full text]
  • Assessing the Effects of Vegetation Types on Carbon Storage Fifteen
    Forest Ecology and Management 258 (2009) 1437–1441 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Assessing the effects of vegetation types on carbon storage fifteen years after reforestation on a Chinese fir site Qinkui Wang a, Silong Wang a,b,*, Jianwei Zhang c a Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China b Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences, Huitong 418307, PR China c USDA Forest Service, Pacific Southwest Research Station, 3644 Avtech Parkway, Redding, CA 96002, USA ARTICLE INFO ABSTRACT Article history: Forest ecosystems play a significant role in sequestering carbon (C) in biomass and soils. Plantations Received 13 April 2009 established in subtropical China since the 1980s, mainly of Chinese fir (Cunninghamia lanceolata (Lamb.) Received in revised form 9 June 2009 Hook) in monocultures, have proved to be major C sinks. However, information is lacking about whether Accepted 27 June 2009 mixing Chinese fir with broadleaved tree species will increase stand growth and C sequestration. We address this question by comparing a pure Chinese fir plantation and two mixed plantations established Keywords: in 1990 at Huitong Experimental Station of Forest Ecology, Hunan Province, China. The mixed Carbon storage plantations include Chinese fir and either Kalopanax septemlobus (Thunb.) Koidz or Alnus cremastogyne Mixed plantation Burk., planted at 4:1 ratios. We found that total C storage was 123, 131 and 142 Mg haÀ1 in the pure Broadleaved tree Coniferous plantation plantation, mixed plantation with K. septemlobus, and mixed plantation with A. cremastogyne, respectively.
    [Show full text]
  • TAXODIACEAE.Publishe
    Flora of China 4: 54–61. 1999. 1 TAXODIACEAE 杉科 shan ke Fu Liguo (傅立国 Fu Li-kuo)1, Yu Yongfu (于永福)2; Robert R. Mill3 Trees evergreen, semievergreen, or deciduous, monoecious; trunk straight; main branches ± whorled. Leaves spirally arranged or scattered (decussate in Metasequoia), monomorphic, dimorphic, or trimorphic on same tree, lanceolate, subulate, scalelike, or linear. Microsporophylls and cone scales spirally arranged (decussate in Metasequoia). Pollen cones borne in panicles, or solitary or clustered at branch apices, or axillary, small; microsporangia with (2 or)3 or 4(–9) pollen sacs; pollen nonsaccate. Seed cones terminal or borne near apex of previous year’s growth, ripening in 1st year, persistent or late deciduous; cone scales developing after ovules originate in bract axils; bracts and cone scales usually spirally aranged (decussate in Metasequoia), sessile, opening when ripe (falling in Taxodium), semiconnate and free only at apex, or completely united; bracts occasionally rudimentary (in Taiwania); ovules 2–9 per bract axil, erect or pendulous; cone scales of mature cones flattened or shield-shaped, woody or leathery, 2–9-seeded on abaxial side. Seeds flat or triangular, wingless (in Taxodium), narrowly winged all round or on 2 sides, or with a long wing on proximal part. Cotyledons 2–9. 2n = 22*. Nine genera and 12 species: Asia, North America, and (Athrotaxis D. Don) Tasmania; eight genera (one endemic, three introduced) and nine species (one endemic, four introduced) in China. A merger of the Taxodiaceae and Cupressaceae is increasingly supported by both morphological and molecular evidence (see note under Cupressaceae). However, the two groups are kept as separate families here for pragmatic reasons.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE ORCID ID: 0000-0003-0186-6546 Gar W. Rothwell Edwin and Ruth Kennedy Distinguished Professor Emeritus Department of Environmental and Plant Biology Porter Hall 401E T: 740 593 1129 Ohio University F: 740 593 1130 Athens, OH 45701 E: [email protected] also Courtesy Professor Department of Botany and PlantPathology Oregon State University T: 541 737- 5252 Corvallis, OR 97331 E: [email protected] Education Ph.D.,1973 University of Alberta (Botany) M.S., 1969 University of Illinois, Chicago (Biology) B.A., 1966 Central Washington University (Biology) Academic Awards and Honors 2018 International Organisation of Palaeobotany lifetime Honorary Membership 2014 Fellow of the Paleontological Society 2009 Distinguished Fellow of the Botanical Society of America 2004 Ohio University Distinguished Professor 2002 Michael A. Cichan Award, Botanical Society of America 1999-2004 Ohio University Presidential Research Scholar in Biomedical and Life Sciences 1993 Edgar T. Wherry Award, Botanical Society of America 1991-1992 Outstanding Graduate Faculty Award, Ohio University 1982-1983 Chairman, Paleobotanical Section, Botanical Society of America 1972-1973 University of Alberta Dissertation Fellow 1971 Paleobotanical (Isabel Cookson) Award, Botanical Society of America Positions Held 2011-present Courtesy Professor of Botany and Plant Pathology, Oregon State University 2008-2009 Visiting Senior Researcher, University of Alberta 2004-present Edwin and Ruth Kennedy Distinguished Professor of Environmental and Plant Biology, Ohio
    [Show full text]
  • A Review of Paleobotanical Studies of the Early Eocene Okanagan (Okanogan) Highlands Floras of British Columbia, Canada and Washington, USA
    Canadian Journal of Earth Sciences A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) Highlands floras of British Columbia, Canada and Washington, USA. Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2015-0177.R1 Manuscript Type: Review Date Submitted by the Author: 02-Feb-2016 Complete List of Authors: Greenwood, David R.; Brandon University, Dept. of Biology Pigg, KathleenDraft B.; School of Life Sciences, Basinger, James F.; Dept of Geological Sciences DeVore, Melanie L.; Dept of Biological and Environmental Science, Keyword: Eocene, paleobotany, Okanagan Highlands, history, palynology https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 70 Canadian Journal of Earth Sciences 1 A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) 2 Highlands floras of British Columbia, Canada and Washington, USA. 3 4 David R. Greenwood, Kathleen B. Pigg, James F. Basinger, and Melanie L. DeVore 5 6 7 8 9 10 11 Draft 12 David R. Greenwood , Department of Biology, Brandon University, J.R. Brodie Science 13 Centre, 270-18th Street, Brandon, MB R7A 6A9, Canada; 14 Kathleen B. Pigg , School of Life Sciences, Arizona State University, PO Box 874501, 15 Tempe, AZ 85287-4501, USA [email protected]; 16 James F. Basinger , Department of Geological Sciences, University of Saskatchewan, 17 Saskatoon, SK S7N 5E2, Canada; 18 Melanie L. DeVore , Department of Biological & Environmental Sciences, Georgia 19 College & State University, 135 Herty Hall, Milledgeville, GA 31061 USA 20 21 22 23 Corresponding author: David R. Greenwood (email: [email protected]) 1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 70 24 A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) 25 Highlands floras of British Columbia, Canada and Washington, USA.
    [Show full text]
  • Planting List Update 2013 Table 1: Recommended Canopy Trees and Their Approved Uses
    Official Planting List Update 2013 Table 1: Recommended canopy trees and their approved uses Approved Uses 8' Treelawn, Evergreen Height Spread Street Tree Scientific Name Common Name or 4' 6' (Feet) (Feet) Easement, or Buffer Deciduous Treelawn Treelawn Parking Lot Island Aesculus x carnea Red horsechestnut 30-40 30-40 D x x x x Betula nigra River birch 40-70 25-50 D x x x x Carpinus betulus European 40-60 30-40 D x x x x hornbeam Cercidiphyllum japonicum Katsuratree 40-60 35-60 D x x x x Cryptomeria japonica Japanese 50-60 20-30 E x x x x cryptomeria Eucommia ulmoides Hardy rubber tree 40-60 25-35 D x x x x Ginkgo biloba (Male cultivars only) Ginkgo 50-80 50-60 D x x x x Halesia tetraptera (Halesia carolina) Carolina silverbell 30-40 20-35 D x x x x Ilex opaca American holly 40-50 18-40 E x x x x Juniperus virginiana Eastern red cedar 40-50 8-20 E x x x x Juniperus virginiana var. siliciola Southern red cedar 30-45 20-30 E x x x x Koelreuteria paniculata Goldenraintree 30-40 30-40 D x x x x Metasequoia glyptostroboides Dawn redwood 70- 15-25 D x x x x 100 Nyssa aquatica Water tupelo 75- 25-35 D x x x x 100 Nyssa ogeche Ogeechee tupelo 30-45 25-35 D x x x x Nyssa sylvatica Black gum 20-30 D x x x x 30-70 Ostrya carpinifolia Hophornbeam 50-65 25-35 D x x x x Ostrya virginiana American 25-40 20-40 D x x x x hophornbeam Parrotia persica Persian ironwood 20-40 20-35 D x x x x Quercus robur 'fastigiata' Upright English oak 50-60 10-18 D x x x x 40-50 40-50 D x x x x Sapindus drummondii Western soapberry Sassafras albidium Sassafras 30-60 25-40 D x x x x Taxodium ascendens (Taxodium Pondcypress 70-80 15-20 D x x x x distichum var.
    [Show full text]
  • Conifers for Shade
    Conifers for Shade While most conifers prefer sun, there are some that will tolerate and even thrive in some shade. All conifers prefer a well-drained, somewhat organic soil and consistent water when first planted. Most are reasonably drought tolerant once established. Calocedrus decurrens—INCENSE CEDAR. Dappled sun to light shade. Large symmetrical tree to 60+ feet. Hardy to -20°F. Reddish bark. Bright green foliage, fragrant (especially when bruised). Makes a good screen. Cephalotaxus species—PLUM YEW. Light to partial shade. Varieties can be low and spreading or upright and narrow. Hardy to -5°F. Foliage is yew-like but larger and brighter green. Chamaecyparis lawsoniana—PORT ORFORD CEDAR. Dappled sun to filtered shade. Many forms, most pyramidal and compact. Many true dwarf. Hardy to -10°F. Colors range from blue green to steel blue, with some variegated and golden forms. All need excellent drainage and make great container plants. Chamaecyparis obtusa—HINOKI CYPRESS. Dappled sun to filtered shade. Many varieties—from dwarf forms under 2 feet to taller varieties reaching 20+ feet. Hardy to -20°F. All Hinokis are slow to moderate growers with attractive architectural foliage and structure. Golden and variegated forms are especially suited to a shadier site. Chamaecyparis pisifera--SAWARA CYPRESS. Filtered sun to partial shade. Hardy to -20°F. All Slow to moderate growers. Golden and variegated varieties tend to get brown in hot sun. ‘Boulevard’ is a bright blue-green that gets 6-8 feet tall and wide. ‘Filifera’ and its varieties (“thread leaf cypress”) have soft, thread-like foliage that drapes elegantly.
    [Show full text]
  • (Cupressaceae: Cunninghamioideae), Anatomically Preserved Pollen Cones from the Eocene of Vancouver Island, British Columbia, Canada
    Cunninghamia beardii sp. nov. (Cupressaceae: Cunninghamioideae), Anatomically Preserved Pollen Cones from the Eocene of Vancouver Island, British Columbia, Canada Buczkowski, E. L., Stockey, R. A., Atkinson, B. A., & Rothwell, G. W. (2016). Cunninghamia beardii sp. nov.(Cupressaceae: Cunninghamioideae), Anatomically Preserved Pollen Cones from the Eocene of Vancouver Island, British Columbia, Canada. International Journal of Plant Science, 177(1), 103-114. doi:10.1086/684106 10.1086/684106 University of Chicago Press Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Int. J. Plant Sci. 177(1):103–114. 2016. q 2015 by The University of Chicago. All rights reserved. 1058-5893/2016/17701-0009$15.00 DOI: 10.1086/684106 CUNNINGHAMIA BEARDII SP. NOV. (CUPRESSACEAE: CUNNINGHAMIOIDEAE), ANATOMICALLY PRESERVED POLLEN CONES FROM THE EOCENE OF VANCOUVER ISLAND, BRITISH COLUMBIA, CANADA Emma L. Buczkowski,* Ruth A. Stockey,1,* Brian A. Atkinson,* and Gar W. Rothwell*,† *Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; and †Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701, USA Editor: Patricia G. Gensel Premise of research. A large pollen cone cluster attached to a cunninghamioid twig and surrounded by leaves has been identified from Eocene calcium carbonate marine concretions from the Appian Way locality on Vancouver Island, British Columbia, Canada. The cluster preserves 18 cones but probably bore at least 24 pollen cones based on cone placement in the cluster. Methodology. Specimens were studied using the cellulose acetate peel technique, and reconstructions were made with ImageJ visualization software. Pollen was examined using SEM. Pivotal results. Cones are helically arranged around the tip of an ultimate leafy branch that terminates in scale leaves, each showing a central resin canal.
    [Show full text]
  • Conifers the World of Conifers Is Vast
    33 El Pueblo Road, Scotts Valley, CA 95066 (831) 438-4106 www.ScarboroughGardens.com Conifers The world of conifers is vast. Though it includes such familiar favorites as the juniper and Redwood tree, there are also many unusual selections that we love to stock. Collectors, Train Garden Enthusiast and Bonsai Specialist will all hopefully find varieties suitable for their hobby. If you’ve never been a “juniper” fan, don’t disregard this category. Our selections have characteristics that include blue, yellow, lime green, or deep green foliage color. Textures are often soft and billowy. Growth forms range from globes, mounds, pyramids, narrow columns, and flat groundcovers to tall stately trees. Visit our nursery to see the possibilities. However, our stock changes rapidly so call ahead if you need a specific variety. Abies cephalonica ‘Meyer’s Dwarf’ Chamaecyparis lawsoniana ‘Barry’s Silver’ Abies lasiocarpa Chamaecyparis lawsoniana ‘Elwoodii’ Abies pinsapo ‘Aurea’ Chamaecyparis lawsoniana ‘Golden King’ Abies pinsapo ‘Hortsmann Nana’ Chamaecyparis lawsoniana ‘Golden Showers’ Chamaecyparis lawsoniana ‘Ivonne’ Athrotaxis cupressiodes Chamaecyparis lawsoniana ‘Minima’ Chamaecyparis lawsoniana ‘Rimpelaar’ Calocedrus decurrens Chamaecyparis lawsoniana ‘Silberster’ Calocedrus decurrens ‘Aureovariegata’ Chamaecyparis lawsoniana ‘Snow White’ Calocedrus ‘Maupin Glow’ Chamaecyparis lawsoniana ‘Treasure Island’ Chamaecypairs lawsoniana ‘Van Pelt Blue’ Cedrus atlantica ‘Glauca Fastigata’ Chamaecyparis meroke Cedrus atlantica glauca ‘Pendula’ Chamaecyparis
    [Show full text]
  • Rutgers Home Gardeners School: Conifers Plant List
    Conifers For The Garden By Walter Cullerton 1 Abies alba 'Pyramadalis' (White fir) 2 Abies balsamea 'Hudsonia' (Balsam fir) 3 Abies koreana 'Horstmann Silberlocke' X3 (Korean Fir) 4 Abies koreana 'Green Carpet' (Korean Fir) 5 Abies koreana 'Blauwe Zwo' (Korean Fir) 6 Abies kpreana 'Ice Breaker' (Korean Fir) 7 Abies fraseri 'Stricta' (Fraser Fir) 8 Abies procera 'Silver' (Noble Fir) 9 Abies lasiocarpa 'Compacta' (Subalpine Fir) The Cedars 10 Cedrus deodara Aurea? (Himalayan Cedar) 11 Cedrus libanii cones (Cedar of Lebanon) 12 Cedrus atlantica 'Glauca' (Atlantic Cedar or Blue Atlas) 13 Cedrus atlantica 'Fastigiata 14 Cedrus atlantica 'Glauca Pendula' The Plum Yew 15 Cephalotaxus harringtonia 'Prostrata' (Plum Yew) 16 Cephalotaxus harringtonia 'Kelly's Gold' The False Cedars 17 Chamaecyparis nookatensis 'Green Arrow' X2 (Alaskan Cedar) 18 Chamaecyparis nookatensis 'Van Den Aker' 19 Chamaecyparis obtusa 'Lynn's Golden' (Hinoki Cypress) 20 Chamaecyparis obtusa Fernspray Gold' 21 Chamaecyparis obtusa 'Crippsii' 22 Chamaecyparis pisifera 'Snow' (Sawara Cypress) 23 Chamaecyparis pisifera 'Variegata' The Japanese Cedar 24 Cryptomeria japonica 'Gyokurya' (Japanese Cedar) Cryptomeria japonica 'Spiralis' (Japanese Cedar) The China Fir 25 Cunninghamia lanceolata 'Glauca' 26 Cunninghamia lanceolata needles Arizona Cypress 27 Cupressus arizonica var glabra 'Blue Ice' (Arizona Cypress) The Junipers 28 Juniperus communis 'Gold Cone' (Common Juniper) 29 Jumiperus rigida 'Pendula' (Temple Juniper) 30 Juniperus viginiana 'Gray Owl' a scene (Eastern Red Cedar)
    [Show full text]