From 99% to 99% SERGIO LOPEZ-PINEIRO Temple University

Total Page:16

File Type:pdf, Size:1020Kb

From 99% to 99% SERGIO LOPEZ-PINEIRO Temple University 310 THE ART OF ARCHITECTURE/THE SCIENCE OF ARCHITECTURE From 99% to 99% SERGIO LOPEZ-PINEIRO Temple University This work analyzes how the world’s computer net- cific location and at any given moment. The world’s work changed in a 15-year period, from 1977 to computer network has now been commonly ac- 1992. In 1977, 99 percent of the world’s comput- cepted and constitutes a new landscape definitively ing power resided on mainframes. By 1992, the added to our environment. For this reason, our percentages had flipped: 99 percent of computing everyday life is to some extent influenced—in some power sat collectively on the world’s desktop and places more than in others and some times more laptop computers. 1 than others—by the structural qualities defined by this network. As previously mentioned, its influ- At a certain moment in time, between 1977 and ence will be rendered visible by the analyses of 1992, the world’s computer network ‘exploded’, four different aspects: Time Attributes, Spatial shifting from total concentration into complete dis- Qualities, Social Networks, and Control Tactics. persion. This shift from one intensity to another brought along new space-time relationships alter- TIME ATTRIBUTES ing our social networks and their ordering prin- From Time Slots to Time Vectors ciples. By doing so, it defined a new landscape. In picturing it, this paper will map out the above- On June 27th 1962, Ross Perot founded Electronic mentioned shift by analyzing the following aspects Data Systems (EDS). of each of these moments in time: • Time Attributes or how geographically located “EDS began by doing business on other computer-time, back in the 70’s, has been con- people’s computers. From the start, the verted into ubiquitous computer-time by contem- company’s vision was not to make com- porary computer networks. puters but to help customers get the most • Spatial Qualities or how geometric layout design, out of them. Without computers of its own, as the main concern when designing computer EDS first processed customers’ data by networks, made its way for connection bandwidth, using other companies’ mainframes, which or speed connection capability, as the main con- often sat idle during the middle of the night. cern when using computer networks. By exploiting that excess capacity, EDS put • Social Networks or how a cross section of a con- nection between computer network nodes, instead tremendous computing power within the of a plan defining their exact position, can better reach of clients whom otherwise could not describe contemporary social networks. afford it.” 2 • Control Tactics or how regulating has necessarily been given priority over organizing as the main Even though in 1965 EDS acquired its first com- ordering social principle. puter, an IBM 1401, the company continued rent- We simultaneously inhabit different landscapes. ing time on other companies’ mainframes until the Although each of them shows specific and distinct late 60’s. This was done with employees filling up characteristics, they influence each other to the “[…] their car trunks with forms, computer tapes point at which our medium cannot be clearly de- and programs, frequently driving to different loca- fined with a unique set of parameters. Our me- tions to process work in the middle of the night.” 3 dium is defined, in fact, by the local relationships Each employer, therefore, would take with him the occurring between these landscapes at any spe- exact amount of information that could be pro- FROM 99% TO 99% 311 cessed in the slot of time that he had been allo- of Sputnik in particular, President Dwight cated. It is evident, nevertheless, that this amount Eisenhower created both the Interstate of information would very rarely coincide with the Highway System and the Advanced Re- whole amount of work to be done for a certain job. search Projects Agency, or ARPA. One For this reason, packages of information—person- project sponsored by ARPA was a network alizing EDS’s employers—would travel through the of computers that could interact with each Interstate Highway System for being processed on other, even though they were not manu- different mainframes. Back at EDS’s headquarters, factured by the same company. Further, and before it was delivered to the client, the dif- this network must be capable of surviving ferent information packages would have to be or- a nuclear attack and still function in an ef- ganized into their original order. This way of fective manner.” 8 managing information by fragmenting it into pack- ages can be perceived as a precedent of how con- For this, EDS’s information management opera- temporary computer networks work. tions—a distribution of employers traveling in a distributed highway system—can be regarded as Paul Baran, researcher at RAND Corporation in the the ‘real’ version of Paul Baran’s ‘virtual’ commu- 4 1960’s, conceived the ARPANET’s layout design nication network—distributed information packages and its communication system so it would continue traveling in a distributed computer network. It is 5 to function under any kind of attack. In doing so, necessary to note that both versions happened at he established the foundations for the communi- the same moment in time when 99 percent of the cation system of contemporary computer networks. world’s computing power still resided on main- Oddly enough, this communication system uses an frames. identical information management strategy as the one used by EDS. “By dividing each message into In very simple terms, Ross Perot’s company was parts, you could flood the network with what he merely renting slots of computer-time—as we all called“‘message blocks’, all racing over different know, “Time is money”. But this computer-time is paths to their destination. Upon their arrival, a re- a synchronous one. The user’s presence is essen- ceiving computer would reassemble the message tial for the system to work: the user has to be bits into readable form.” 6 present at the right moment for being able to make profit out of the slot of time. For this reason, these It is very interesting to note that ARPANET and the vacant slots of computer-time could be understood Interstate Highway System were conceived at the as a Real Estate value in a computer-time geogra- same moment in time and designed following the phy—in a similar way to how vacant lots are con- 7 same principles. sidered Real Estate values in a spatial geography. “In 1957, while responding to the threat “[…] There are important differences be- of the Soviets in general and the success tween the way people talk to each other Interstate Highway System. Walter Gropius, Diagrams of the various possibilities of subdivision of an area of rectangular shape destined for building construction. 9 312 THE ART OF ARCHITECTURE/THE SCIENCE OF ARCHITECTURE and the way computer converse. In a tele- ARPANET’s most essential aspect, back in 1977, phone conversation, people tend to talk while connection bandwidth began to be the most continuously, or even both at once. For that important aspect of any computer network de- reason, the electronic link between them signed from the 90’s onwards. is reserved exclusively for them and re- mains open for as long as they wish to In 1969, when the first two computers were con- speak. Computer conversation, on the nected, it was already clear what kind of computer other hand, is a rather more staccato af- network ARPANET should be. Not only because of fair. […] Information is bundled up into dis- Paul Baran’s—now very famous—memorandum crete packages and a line is held open just RAND RM-3420-PR written in 1964, On Distributed Communications, but also because there had al- ready been an interest—back at the times of the Second World War—in knowing which would be the Molecular chaos. 11 organizational network model with the highest probabilities of surviving an attack. As a matter of fact, RAND Corporation had been set up in 1946 to preserve the nation’s operations research capabil- ity developed during World War II. 12 Among the several infrastructures that were con- sidered vulnerable, the telecommunications net- work was found to be a very sensitive one. The United States’ telephone network was, at the time, centralized in Omaha: a popular place for long- distance telephone switches just because it lay at long enough for the package to be sent. the nation’s geographic center. Once the message has been received, the connection is closed and the message can be digested ‘off-line’.” 10 “At the time, the nation’s long-distance communications networks were indeed In 1992, when the percentages reversed, computer extremely vulnerable and unable to with- networks had already established a non-synchro- stand a nuclear attack. Yet the president’s nous reliable communication system. For this, the ability to call for, or call off, the launch of geography of computer-time was transformed from American missiles (called ‘minimal essen- a series of vacant and occupiable slots of com- tial communication’), relied heavily on the puter-time into a series of computer-time vectors nation’s vulnerable communications sys- that measured how fast information could reach tems. So Baran felt that working on the its destination. However, and although this com- problem of building a more stable commu- munication system is a non-synchronous one, time nications infrastructure—namely a tougher, is still money. But in this case, money is no longer more robust network—was the most im- 13 a vacant and occupiable slot: money is now a vec- portant work he could be doing.” tor that can be located in the cross section of a computer network cable.
Recommended publications
  • THE FUTURE of IDEAS This Work Is Licensed Under a Creative Commons Attribution-Noncommercial License (US/V3.0)
    less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page i THE FUTURE OF IDEAS This work is licensed under a Creative Commons Attribution-Noncommercial License (US/v3.0). Noncommercial uses are thus permitted without any further permission from the copyright owner. Permissions beyond the scope of this license are administered by Random House. Information on how to request permission may be found at: http://www.randomhouse.com/about/ permissions.html The book maybe downloaded in electronic form (freely) at: http://the-future-of-ideas.com For more permission about Creative Commons licenses, go to: http://creativecommons.org less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page iii the future of ideas THE FATE OF THE COMMONS IN A CONNECTED WORLD /// Lawrence Lessig f RANDOM HOUSE New York less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page iv Copyright © 2001 Lawrence Lessig All rights reserved under International and Pan-American Copyright Conventions. Published in the United States by Random House, Inc., New York, and simultaneously in Canada by Random House of Canada Limited, Toronto. Random House and colophon are registered trademarks of Random House, Inc. library of congress cataloging-in-publication data Lessig, Lawrence. The future of ideas : the fate of the commons in a connected world / Lawrence Lessig. p. cm. Includes index. ISBN 0-375-50578-4 1. Intellectual property. 2. Copyright and electronic data processing. 3. Internet—Law and legislation. 4. Information society. I. Title. K1401 .L47 2001 346.04'8'0285—dc21 2001031968 Random House website address: www.atrandom.com Printed in the United States of America on acid-free paper 24689753 First Edition Book design by Jo Anne Metsch less_0375505784_4p_fm_r1.qxd 9/21/01 13:49 Page v To Bettina, my teacher of the most important lesson.
    [Show full text]
  • Paul Baran, Network Theory, and the Past, Present, and Future of the Internet
    PAUL BARAN, NETWORK THEORY, AND THE PAST, PRESENT, AND FUTURE OF THE INTERNET CHRISTOPHER S. YOO* Paul Baran’s seminal 1964 article “On Distributed Communications Networks” that first proposed packet switching also advanced an underappreciated vision of network architecture: a lattice-like, distributed network, in which each node of the Internet would be homogeneous and equal in status to all other nodes. Scholars who have embraced the concept of a flat network have largely overlooked the extent to which it is inconsistent with network theory, which emphasizes the importance of short cuts and hubs in enabling networks to scale. The flat network is also inconsistent with the actual way the Internet was deployed, which relied on a three- tiered, hierarchical architecture resembling what Baran called a decentralized network. However, empirical studies reveal that the Internet’s architecture is changing; as large content providers build extensive wide area networks and undersea cables to connect directly to last-mile networks, it is in the process of becoming flatter and less hierarchical. This change is making the network become more centralized rather than more distributed. As a result, this article suggests that the standard reference model that places backbones at the center of the architecture may need to be replaced with a radically different vision: a stack of centralized star networks, each centered on one of the leading content providers. INTRODUCTION................................................................................. 162 I. BARAN’S UNREALIZED VISION OF A DISTRIBUTED NETWORKS 164 A. Baran’s Vision of a Distributed Network ........................ 164 B. The Partial Reception of Baran’s Vision ......................... 167 II. NETWORK SCIENCE’S INSIGHTS INTO THE BENEFITS OF NETWORKS ............................................................................
    [Show full text]
  • Marconi Society - Wikipedia
    9/23/2019 Marconi Society - Wikipedia Marconi Society The Guglielmo Marconi International Fellowship Foundation, briefly called Marconi Foundation and currently known as The Marconi Society, was established by Gioia Marconi Braga in 1974[1] to commemorate the centennial of the birth (April 24, 1874) of her father Guglielmo Marconi. The Marconi International Fellowship Council was established to honor significant contributions in science and technology, awarding the Marconi Prize and an annual $100,000 grant to a living scientist who has made advances in communication technology that benefits mankind. The Marconi Fellows are Sir Eric A. Ash (1984), Paul Baran (1991), Sir Tim Berners-Lee (2002), Claude Berrou (2005), Sergey Brin (2004), Francesco Carassa (1983), Vinton G. Cerf (1998), Andrew Chraplyvy (2009), Colin Cherry (1978), John Cioffi (2006), Arthur C. Clarke (1982), Martin Cooper (2013), Whitfield Diffie (2000), Federico Faggin (1988), James Flanagan (1992), David Forney, Jr. (1997), Robert G. Gallager (2003), Robert N. Hall (1989), Izuo Hayashi (1993), Martin Hellman (2000), Hiroshi Inose (1976), Irwin M. Jacobs (2011), Robert E. Kahn (1994) Sir Charles Kao (1985), James R. Killian (1975), Leonard Kleinrock (1986), Herwig Kogelnik (2001), Robert W. Lucky (1987), James L. Massey (1999), Robert Metcalfe (2003), Lawrence Page (2004), Yash Pal (1980), Seymour Papert (1981), Arogyaswami Paulraj (2014), David N. Payne (2008), John R. Pierce (1979), Ronald L. Rivest (2007), Arthur L. Schawlow (1977), Allan Snyder (2001), Robert Tkach (2009), Gottfried Ungerboeck (1996), Andrew Viterbi (1990), Jack Keil Wolf (2011), Jacob Ziv (1995). In 2015, the prize went to Peter T. Kirstein for bringing the internet to Europe. Since 2008, Marconi has also issued the Paul Baran Marconi Society Young Scholar Awards.
    [Show full text]
  • The First Amendment, Common Carriers, and Public Accommodations: Net Neutrality, Digital Platforms, and Privacy
    University of Pennsylvania Carey Law School Penn Law: Legal Scholarship Repository Faculty Scholarship at Penn Law 2021 The First Amendment, Common Carriers, and Public Accommodations: Net Neutrality, Digital Platforms, and Privacy Christopher S. Yoo University of Pennsylvania Carey Law School Follow this and additional works at: https://scholarship.law.upenn.edu/faculty_scholarship Part of the Communication Technology and New Media Commons, Digital Communications and Networking Commons, First Amendment Commons, Internet Law Commons, Law and Economics Commons, Policy History, Theory, and Methods Commons, Science and Technology Law Commons, and the Science and Technology Policy Commons Repository Citation Yoo, Christopher S., "The First Amendment, Common Carriers, and Public Accommodations: Net Neutrality, Digital Platforms, and Privacy" (2021). Faculty Scholarship at Penn Law. 2576. https://scholarship.law.upenn.edu/faculty_scholarship/2576 This Article is brought to you for free and open access by Penn Law: Legal Scholarship Repository. It has been accepted for inclusion in Faculty Scholarship at Penn Law by an authorized administrator of Penn Law: Legal Scholarship Repository. For more information, please contact [email protected]. THE FIRST AMENDMENT, COMMON CARRIERS, AND PUBLIC ACCOMMODATIONS: NET NEUTRALITY, DIGITAL PLATFORMS, AND PRIVACY Christopher S. Yoo* Recent prominent judicial opinions have assumed that common car- riers have few to no First Amendment rights and that calling an actor a common carrier or public accommodation could justify limiting its right to exclude and mandating that it provide nondiscriminatory access. A re- view of the history reveals that the underlying law is richer than these simple statements would suggest. The principles for determining what constitutes a common carrier or a public accommodation and the level of First Amendment protection both turn on whether the actor holds itself out as serving all members of the public or whether it asserts editorial dis- cretion over whom to carry or host.
    [Show full text]
  • I: the Conception
    Excerpt from: Mayo, Keenan and Newcomb, Peter. “How the Web Was Won,” Vanity Fair, July 2008. I: The Conception Paul Baran, an electrical engineer, conceived one of the Internet’s building blocks—packet switching— while working at the Rand Corporation around 1960. Packet switching breaks data into chunks, or “packets,” and lets each one take its own path to a destination, where they are re-assembled (rather than sending everything along the same path, as a traditional telephone circuit does). A similar idea was proposed independently in Britain by Donald Davies. Later in his career, Baran would pioneer the airport metal detector. Paul Baran: It was necessary to have a strategic system that could withstand a first attack and then be able to return the favor in kind. The problem was that we didn’t have a survivable communications system, and so Soviet missiles aimed at U.S. missiles would take out the entire telephone- communication system. At that time the Strategic Air Command had just two forms of communication. One was the U.S. telephone system, or an overlay of that, and the other was high-frequency or shortwave radio. So that left us with the interesting situation of saying, Well, why do the communications fail when the bombs were aimed, not at the cities, but just at the strategic forces? And the answer was that the collateral damage was sufficient to knock out a telephone system that was highly centralized. Well, then, let’s not make it centralized. Let’s spread it out so that we can have other paths to get around the damage.
    [Show full text]
  • Features of the Internet History the Norwegian Contribution to the Development PAAL SPILLING and YNGVAR LUNDH
    Features of the Internet history The Norwegian contribution to the development PAAL SPILLING AND YNGVAR LUNDH This article provides a short historical and personal view on the development of packet-switching, computer communications and Internet technology, from its inception around 1969 until the full- fledged Internet became operational in 1983. In the early 1990s, the internet backbone at that time, the National Science Foundation network – NSFNET, was opened up for commercial purposes. At that time there were already several operators providing commercial services outside the internet. This presentation is based on the authors’ participation during parts of the development and on literature Paal Spilling is studies. This provides a setting in which the Norwegian participation and contribution may be better professor at the understood. Department of informatics, Univ. of Oslo and University 1 Introduction Defense (DOD). It is uncertain when DoD really Graduate Center The concept of computer networking started in the standardized on the entire protocol suite built around at Kjeller early 1960s at the Massachusetts Institute of Technol- TCP/IP, since for several years they also followed the ogy (MIT) with the vision of an “On-line community ISO standards track. of people”. Computers should facilitate communica- tions between people and be a support for human The development of the Internet, as we know it today, decision processes. In 1961 an MIT PhD thesis by went through three phases. The first one was the Leonard Kleinrock introduced some of the earliest research and development phase, sponsored and theoretical results on queuing networks. Around the supervised by ARPA. Research groups that actively same time a series of Rand Corporation papers, contributed to the development process and many mainly authored by Paul Baran, sketched a hypotheti- who explored its potential for resource sharing were cal system for communication while under attack that permitted to connect to and use the network.
    [Show full text]
  • The People Who Invented the Internet Source: Wikipedia's History of the Internet
    The People Who Invented the Internet Source: Wikipedia's History of the Internet PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 22 Sep 2012 02:49:54 UTC Contents Articles History of the Internet 1 Barry Appelman 26 Paul Baran 28 Vint Cerf 33 Danny Cohen (engineer) 41 David D. Clark 44 Steve Crocker 45 Donald Davies 47 Douglas Engelbart 49 Charles M. Herzfeld 56 Internet Engineering Task Force 58 Bob Kahn 61 Peter T. Kirstein 65 Leonard Kleinrock 66 John Klensin 70 J. C. R. Licklider 71 Jon Postel 77 Louis Pouzin 80 Lawrence Roberts (scientist) 81 John Romkey 84 Ivan Sutherland 85 Robert Taylor (computer scientist) 89 Ray Tomlinson 92 Oleg Vishnepolsky 94 Phil Zimmermann 96 References Article Sources and Contributors 99 Image Sources, Licenses and Contributors 102 Article Licenses License 103 History of the Internet 1 History of the Internet The history of the Internet began with the development of electronic computers in the 1950s. This began with point-to-point communication between mainframe computers and terminals, expanded to point-to-point connections between computers and then early research into packet switching. Packet switched networks such as ARPANET, Mark I at NPL in the UK, CYCLADES, Merit Network, Tymnet, and Telenet, were developed in the late 1960s and early 1970s using a variety of protocols. The ARPANET in particular led to the development of protocols for internetworking, where multiple separate networks could be joined together into a network of networks. In 1982 the Internet Protocol Suite (TCP/IP) was standardized and the concept of a world-wide network of fully interconnected TCP/IP networks called the Internet was introduced.
    [Show full text]
  • OBJ (Application/Pdf)
    THE POLITICAL ECONOMY OF THE FREE FLOW OF INFORMATION IN THE NEW INTERNATIONAL ORDER A DISSERTATION SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY BY MARVIN HAIRE DEPARTMENT OF POLITICAL SCIENCE JULY 1986 Bu. T ABSTRACT Political Science Haire, Marvin B.A. Youngstown State University, 1976 M.A. Atlanta University, 1980 The Political Economy of the Free Flow of Information in the New International Order. Advisor: Professor William H. Boone Dissertation dated: July 1986 This dissertation analyzes the quest by the underdeveloped and non-aligned nations for a New World Information and Communication Order (NWICO). This is achieved by focusing on the evolution of the debate over the "free flow of information" within the United Nations Educational, Scientific and Cultural Organization (UNESCO), from its inception in 1946 to the present. The major assumption of this analy¬ sis is that the concept of "free flow" has served as a useful ideolo¬ gical weapon employed by the United States in fostering the emergence of American state, multinational corporate and banking interests as dominant actors in the arena of international communications and in¬ formation in the post-World War II era. This dominance has been achieved at the expense of both Western European allies and Third World nations. We note that until the decision by the Soviet Union to join UNESCO in the mid-1950s and the rise in the membership of Third World nations during the era of decolonization in the 1960s, the U.S. found very little opposition to its views and philosophy regarding the free flow of information.
    [Show full text]
  • Not the Internet, but This Internet
    Not The Internet, but This Internet: How Othernets Illuminate Our Feudal Internet Paul Dourish Department of Informatics University of California, Irvine Irvine, CA 92697-3440, USA [email protected] ABSTRACT built – the Internet, this Internet, our Internet, the one to What is the Internet like, and how do we know? Less which I’m connected right now? tendentiously, how can we make general statements about the Internet without reference to alternatives that help us to I ask these questions in the context of a burgeoning recent understand what the space of network design possibilities interest in examining digital technologies as materially, might be? This paper presents a series of cases of network socially, historically and geographically specific [e.g. 13, alternatives which provide a vantage point from which to 15, 36, 37]. There is no denying the central role that “the reflect upon the ways that the Internet does or does not digital,” broadly construed, plays as part of contemporary uphold both its own design goals and our collective everyday life. Wireless connectivity, broadband imaginings of what it does and how. The goal is to provide communications, and computational devices may be a framework for understanding how technologies embody concentrated in the urban centers of economically promises, and how these both come to evolve. privileged nations, but even in the most “remote” corners of the globe, much of everyday life is structured, organized, Author Keywords and governed by databases and algorithms, and “the digital” Network protocols; network topology; naming routing; still operates even in the central fact of its occasional media infrastructures.
    [Show full text]
  • Abbate Ch1-2
    6 Introductum Wide Web are prominent examples of informally created applications that became popular, not as the result of some central agency's mar­ Heat and ,-,UIH..4< keting plan, but through the spontaneous decisions of thousands of a.ndMeanings of Hacket(Switching independent users. In reconstructing the history of the Internet, I have been struck time and again by. the unexpected twists and turns its development has taken. Often a well-laid plan was abandoned after a short time and replaced by a new approach from an unexpected quarter..Rapid advances, such as the introduction of personal computers and the invention of local-area networks, continually threatened to make existing network technologies obsolete. In addition, responsibility for operating the Internet changed hands several times over the course Of all the ARPANET's technical innovations, perhaps the most cele­ of its first thirty years or so. How, in the face of all this change and brated was packet switching. Packet switching was an experimental, uncertainty, did the system survive and even flourish? I believe that even controversial method for transmitting data across a network. Its the key to the Internet's success was a commitment to flexibility and proponents claimed that it would increase the efficiency, reliability, and diversity, both in technical design and in organizational culture. No speed of data communications, butit was also quite complex to imple­ one could predict the specific changes that would revolutionize the ment, and some communications experts argued that the technique computing and communications industries at the end of the twentieth would never work.
    [Show full text]
  • Update 6: Internet Society 20Th Anniversary and Global INET 2012
    Update 6: Internet Society 20th Anniversary and Global INET 2012 Presented is the latest update (edited from the previous “Update #6) on the Global INET 2012 and Internet Hall of Fame. Executive Summary By all accounts, Global INET was a great success. Bringing together a broad audience of industry pioneers; policy makers; technologists; business executives; global influencers; ISOC members, chapters and affiliated community; and Internet users, we hosted more than 600 attendees in Geneva, and saw more than 1,300 participate from remote locations. Global INET kicked off with our pre‐conference programs: Global Chapter Workshop, Collaborative Leadership Exchange and the Business Roundtable. These three programs brought key audiences to the event, and created a sense of energy and excitement that lasted through the week. Of key importance to the program was our outstanding line‐up of keynotes, including Dr. Leonard Kleinrock, Jimmy Wales, Francis Gurry, Mitchell Baker and Vint Cerf. The Roundtable discussions at Global INET featured critical topics, and included more than 70 leading experts engaged in active dialogue with both our in‐room and remote audiences. It was truly an opportunity to participate. The evening of Monday 23 April was an important night of celebration and recognition for the countless individuals and organizations that have dedicated time and effort to advancing the availability and vitality of the Internet. Featuring the Internet Society's 20th Anniversary Awards Gala and the induction ceremony for the Internet Hall of Fame, the importance of the evening cannot be understated. The media and press coverage we have already received is a testament to the historic nature of the Internet Hall of Fame.
    [Show full text]
  • August 6Th Addresses to Distributed Name Word Document to a Record
    Service (DNS), which delegated has a glorious Web interface, the responsibility of assigning and a user can even attach a August 6th addresses to distributed name Word document to a record. servers. In its present form the system Postel’s law is "Be conservative manages roughly $1.3 trillion in Peter Jay in what you do; be liberal in obligations and 340,000 what you accept from others." It contracts. It runs on an IBM Weinberger comes from RFC 761 , where he 2098 model E-10 mainframe, Born: Aug. 6, 1942; summarized desirable that can carry out 398 million Pennsylvania (??) interoperability criteria for the instructions per second. Internet Alfred Aho [Aug 9], Weinberger, There have been several and Brian Kernighan [Jan 1] Postel attended the same high attempts to replace MOCAS, but developed the AWK language school (Van Nuys in Los they’ve floundered due to cost, (he's the “W”) in 1977, which Angeles) as two other Internet complexity, and transition was first distributed in UNIX pioneers, Steve Crocker [Oct 15] planning. Version 7. The acronym is and Vint Cerf [June 23]. pronounced in the same way as the "auk " bird, which also acts The WWW Virtual as the language's emblem. In 1985 they extended the Library language, most significantly by adding user-defined functions. Aug. 6, 1991 This version is sometimes called “new awk” or nawk. The WWW Virtual Library ( http://vlib.org/) is the When Weinberger was oldest Web directory, able to promoted to be the head of trace its venerable heritage back Computer Science Research at to Tim Berners-Lee’s [June 8] Bell Labs [Jan 1], his picture was WWW overview page [next merged with the AT&T “death entry] at CERN.
    [Show full text]