Amaranth Seeds and Products – the Source of Bioactive Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Amaranth Seeds and Products – the Source of Bioactive Compounds Pol. J. Food Nutr. Sci., 2014, Vol. 64, No. 3, pp. 165-170 DOI: 10.2478/v10222-012-0095-z http://journal.pan.olsztyn.pl Original article Section: Food Chemistry Amaranth Seeds and Products – The Source of Bioactive Compounds Dorota Ogrodowska1, Ryszard Zadernowski1, Sylwester Czaplicki1*, Dorota Derewiaka2, Beata Wronowska1 1Chair of Food Plant Chemistry and Processing, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10–726 Olsztyn, Poland 2Division of Food Quality Evaluation, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02–787 Warsaw, Poland Key words: amaranth, expanded seeds, fl akes, tocopherols, sterols, squalene In recent years, new products obtained from amaranth seeds have entered the food market including expanded “popping” seeds and fl akes. Lipids and biologically-active substances dissolved in these products are susceptible to changes. Additionally, due to the fact that fat quality has high dietary importance, there is a need to conduct detailed quality and quantity studies on the lipid composition of Amaranthus cruentus. For the samples under analysis, protein, fat, starch and ash content were determined. Fatty acids and sterols were analysed by gas chromatogra- phy. The analysis of tocopherols and squalene content was carried out with the application of high-performance liquid chromatography coupled with photodiode array and fl uorescence detectors (HPLC-DAD-FLD). Protein, fat and starch content did not change during seed processing. However in the case of tocopherols, the total tocopherol content was 10.6 mg/100 g for seeds, while in “popping” and in fl akes it was reduced by approximately 35%. The squalene content ranged from 469.96 mg/100 g for seeds to 358.9 mg/100 g for fl akes. No signifi cant differences were observed in the fatty acid profi le of seeds and products, but differences were observed in the sterol content. INTRODUCTION amaranth seeds instead of amaranth fl our might be used to improve the nutritional value of bread [Bodroža-Solarov “Pseudocereals” is a term which has not been properly et al., 2008]. Amaranth is rich in minerals including: magne- defi ned in the literature to date. This term covers plants such sium, calcium, potassium and phosphorus, iron and sodium as amaranth, quinoa, tartary buckwheat, buckwheat and mil- [Shukla et al., 2006; Gajewska et al., 2002]. Moreover, ama- let. Unlike plants that are recognised as true cereals, which ranth seeds and their products are a rich source of bioactive are monocotyledonous plants, these are dicots. Owing to substances showing antioxidant properties [Worobiej et al., their chemical composition, seeds of these plants, just like 2009; Klim czak et al., 2002]. The non-saponifi able substanc- cereal grains, are used for human nutrition [Ceglińska & es of the grain lipid fraction include: squalene, tocopherols, Cacak-Pietrzak, 1999]. sterols and others [Gamel et al., 2007; Gorinstein et al., 2007; Amaranthus cruentus, a member of the Amaranthaceae León-Camacho et al., 2001; Sun et al., 1997]. family, is an unconventional plant that has gained popularity, The scope of this study was to examine the content of se- both among consumers and farmers. The use of its seeds has lected nutrients in the seeds, popped seeds and fl akes of am- also increased; it is now used as a source of lipids and a mate- aranth. Moreover, due to the importance of the fat quality rial for the production of fl our, fl akes, popped seeds, several on the products’ dietary value and its infl uence on shelf life, sorts of bread [Januszewska-Jóźwiak & Synowiecki, 2008] a detailed examination of the lipid content was carried out and confectionery [Sindhuja et al., 2005]. The amaranth- to determine the fatty acid profi le and the content of lipid- -based products are a valuable source of nutrients and miner- -soluble bioactive substances. als. In addition, the amino acid profi le of amaranth makes it an attractive source of protein. If consumed with other MATERIALS AND METHODS cereals, it is a balanced source of proteins; therefore, ama- ranth fl our is often used in mixtures with maize or wheat Materials [Alvarez-Jubete et al., 2010; Escudero et al., 2004]. It has Amaranth (Amaranthus cruentus) seeds and commercially also been reported that the addition of 10–20% expanded available products (expanded seeds - popping and fl akes) were obtained from “Szarłat” company (Łomża, Poland). Seeds, popping and fl akes were produced from the same lot * Corresponding Author: Tel./Fax: +48 89 523 34 66; E-mail: [email protected] (S. Czaplicki) of material. © Copyright by Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences © 2014 Author(s). This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/). 166 Amaranth Seeds and Products – The Source of Bioactive Compounds Proximate chemical composition the same manufacturer. Separations were performed on a Li- Assessment of the nutritional value of amaranth seeds Chrospher Si60 column (250 mm 4 mm 5 m, Merck). included determination of starch content by the polarimet- Next, 20 μL of sample was injected into the chromatographic ric method in a hydrochloric acid solution, in accordance column. A solution of 0.7% iso-propyl alcohol in hexane was to the procedure of the AOAC, following the guidelines pro- used as a mobile phase at a fl ow rate of 1 mL/min. Excitation vided by Bagdach, detailed in Rutkowska [1981]. Dry matter, and emission wavelengths were set at 296 nm and 330 nm, protein and ash contents were determined following AACC respectively. Peaks were identifi ed on the basis of retention methods 44–15, 46–10 and 08–03 [AACC, 1994], respectively. times determined for -, -, - and -tocopherol standards Protein content was calculated on the basis of total nitrogen (Calbiochem, UK) analysed separately, and their content was using a 6.25 multiplication factor. Total fat was determined calculated using external calibration curves prepared for all by the method described by Folch et al. [1957]. analysed tocopherols. Analysis of the lipid fraction of amaranth seeds and ama- ranth products obtained as total lipids using the method de- Determination of phytosterols scribed by Folch et al. [1957] involved characterisation of fat- Sterol content in oils was determined by gas chroma- ty acids, squalene, tocopherols and sterols. tography coupled with mass spectrometry (GC-MS) ac- cording to the method described by Vlahakis & Hazebroek Determination of fatty acids [2000]. The unsaponifi ables were extracted with diethyl Fatty acid methyl esters were prepared according to ether, and the extract was subsequently evaporated with ro- the method described by Zadernowski & Sosulski [1978]. tary evaporator type R210 (Büchi Labortechnik AG, Post- The methyl esters were dried under a nitrogen stream, purifi ed fach, Switzerland) under nitrogen. Dry residues were re- by hexane extraction and analysed by gas liquid chromatog- dissolved in 1.5 mL of n-hexane, and 0.2 mL (0.4 mg/mL) raphy (GLC) on a Fisons 8000 gas chromatograph equipped of 5-cholestane internal standard solution was used. The ex- with a fl ame ionization detector (FID) (Carlo Erba, Italy). tract was transferred into a vial and evaporated with a ni- Separations were performed on a J&W Scientifi c DB-225 trogen stream. The residues were re-dissolved in 100 μL capillary column (30 m 0.25 mm 0.15 μm) using helium of pyridine and 100 μL of BSTFA (N,O-bis (trimethylsilyl) as a carrier gas. The GC oven was operated isothermally at trifl uoroacetamide) with 1% TMCS (trimethylchlorosilane) 190oC. Peaks were identifi ed on the basis of retention times and left in the dark for 24 h to complete the derivatization re- determined for fatty acids standards mixture (Supelco® action. This was followed by the addition of 1 mL of hexane, 37 Component FAME Mix) (Milwaukee, WI, USA). and 1 μL of obtained mixture was used for GC-MS analysis. Analyses were conducted on a GCMS-QP2010S gas Determination of squalene chromatograph coupled with mass spectrometer manufac- The squalene content was determined with high perfor- tured by Shimadzu Corporation (Japan). A DB-5ms (30 m mance liquid chromatography (HPLC), according to meth- 0.25 mm 0.25 μm fi lm thickness) Agilent J&W Scientifi c od described by Czaplicki et al. [2009] with modifi cations. (Perlan Technologies, Poland) capillary column was used Briefl y, 0.01 g of oil (±0.0001 g) was transferred into a 10 mL for separation of phytosterols with helium as a carrier gas measuring fl ask, and fi lled up with n-hexane. Next, 20 mL at a fl ow rate of 0.9 mL/min. The injector temperature was of diluted oil sample was injected into the chromatograph- 230°C, and the column temperature was programmed as ic system. Analyses were conducted on a 1200 series high follows: 50ºC for 2 min, a subsequent increase to 230ºC at performance liquid chromatograph, manufactured by Agi- the rate of 15ºC/min, to 310ºC at the rate of 3ºC/min, 10 min lent Technologies (Palo Alto, CA, USA) and equipped with hold. The interface temperature of GC-MS was 240°C. Tem- a photodiode detector (PDA). Chromatographic separations perature of the ion source was 220°C and the electron energy were conducted on a LiChrospher RP-18 column (250 mm was 70 eV. The total ion current (TIC) mode was used for 4.6 mm 5 m, Merck, Germany), at 30oC. The mobile phase quantifi cation (100–600 m/z range). contained acetonitrile, isopropyl alcohol and hexane at a fl ow rate of 1 mL/min. An analytical wavelength was set at 218 nm.
Recommended publications
  • TRP Channel Transient Receptor Potential Channels
    TRP Channel Transient receptor potential channels TRP Channel (Transient receptor potential channel) is a group of ion channels located mostly on the plasma membrane of numerous human and animal cell types. There are about 28 TRP channels that share some structural similarity to each other. These are grouped into two broad groups: Group 1 includes TRPC ("C" for canonical), TRPV ("V" for vanilloid), TRPM ("M" for melastatin), TRPN, and TRPA. In group 2, there are TRPP ("P" for polycystic) and TRPML ("ML" for mucolipin). Many of these channels mediate a variety of sensations like the sensations of pain, hotness, warmth or coldness, different kinds of tastes, pressure, and vision. TRP channels are relatively non-selectively permeable to cations, including sodium, calcium and magnesium. TRP channels are initially discovered in trp-mutant strain of the fruit fly Drosophila. Later, TRP channels are found in vertebrates where they are ubiquitously expressed in many cell types and tissues. TRP channels are important for human health as mutations in at least four TRP channels underlie disease. www.MedChemExpress.com 1 TRP Channel Inhibitors, Antagonists, Agonists, Activators & Modulators (-)-Menthol (E)-Cardamonin Cat. No.: HY-75161 ((E)-Cardamomin; (E)-Alpinetin chalcone) Cat. No.: HY-N1378 (-)-Menthol is a key component of peppermint oil (E)-Cardamonin ((E)-Cardamomin) is a novel that binds and activates transient receptor antagonist of hTRPA1 cation channel with an IC50 potential melastatin 8 (TRPM8), a of 454 nM. Ca2+-permeable nonselective cation channel, to 2+ increase [Ca ]i. Antitumor activity. Purity: >98.0% Purity: 99.81% Clinical Data: Launched Clinical Data: No Development Reported Size: 10 mM × 1 mL, 500 mg, 1 g Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg, 100 mg (Z)-Capsaicin 1,4-Cineole (Zucapsaicin; Civamide; cis-Capsaicin) Cat.
    [Show full text]
  • Regulation of TRP Channels by Steroids
    General and Comparative Endocrinology xxx (2014) xxx–xxx Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review Regulation of TRP channels by steroids: Implications in physiology and diseases ⇑ Ashutosh Kumar, Shikha Kumari, Rakesh Kumar Majhi, Nirlipta Swain, Manoj Yadav, Chandan Goswami School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India article info abstract Article history: While effects of different steroids on the gene expression and regulation are well established, it is proven Available online xxxx that steroids can also exert rapid non-genomic actions in several tissues and cells. In most cases, these non-genomic rapid effects of steroids are actually due to intracellular mobilization of Ca2+- and other ions Keywords: suggesting that Ca2+ channels are involved in such effects. Transient Receptor Potential (TRP) ion TRP channels channels or TRPs are the largest group of non-selective and polymodal ion channels which cause Ca2+- Steroids influx in response to different physical and chemical stimuli. While non-genomic actions of different Non-genomic action of steroids steroids on different ion channels have been established to some extent, involvement of TRPs in such Ca2+-influx functions is largely unexplored. In this review, we critically analyze the literature and summarize how Expression different steroids as well as their metabolic precursors and derivatives can exert non-genomic effects by acting on different TRPs qualitatively and/or quantitatively. Such effects have physiological repercus- sion on systems such as in sperm cells, immune cells, bone cells, neuronal cells and many others.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,906,307 B2 S0e Et Al
    US007906307B2 (12) United States Patent (10) Patent No.: US 7,906,307 B2 S0e et al. (45) Date of Patent: Mar. 15, 2011 (54) VARIANT LIPIDACYLTRANSFERASES AND 4,683.202 A 7, 1987 Mullis METHODS OF MAKING 4,689,297 A 8, 1987 Good 4,707,291 A 11, 1987 Thom 4,707,364 A 11/1987 Barach (75) Inventors: Jorn Borch Soe, Tilst (DK); Jorn 4,708,876 A 1 1/1987 Yokoyama Dalgaard Mikkelson, Hvidovre (DK); 4,798,793 A 1/1989 Eigtved 4,808,417 A 2f1989 Masuda Arno de Kreij. Geneve (CH) 4,810,414 A 3/1989 Huge-Jensen 4,814,331 A 3, 1989 Kerkenaar (73) Assignee: Danisco A/S, Copenhagen (DK) 4,818,695 A 4/1989 Eigtved 4,826,767 A 5/1989 Hansen 4,865,866 A 9, 1989 Moore (*) Notice: Subject to any disclaimer, the term of this 4,904.483. A 2f1990 Christensen patent is extended or adjusted under 35 4,916,064 A 4, 1990 Derez U.S.C. 154(b) by 0 days. 5,112,624 A 5/1992 Johna 5,213,968 A 5, 1993 Castle 5,219,733 A 6/1993 Myojo (21) Appl. No.: 11/852,274 5,219,744 A 6/1993 Kurashige 5,232,846 A 8, 1993 Takeda (22) Filed: Sep. 7, 2007 5,264,367 A 11/1993 Aalrust (Continued) (65) Prior Publication Data US 2008/OO70287 A1 Mar. 20, 2008 FOREIGN PATENT DOCUMENTS AR 331094 2, 1995 Related U.S. Application Data (Continued) (63) Continuation-in-part of application No.
    [Show full text]
  • SANTOS, GABRIELA TREVISAN DOS.Pdf (5.044Mb)
    UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS: BIOQUÍMICA TOXICOLÓGICA CARACTERIZAÇÃO DO ESTERÓIDE α-ESPINASTEROL COMO UM NOVO ANTAGONISTA DO RECEPTOR TRPV1 COM EFEITO ANTINOCICEPTIVO DISSERTAÇÃO DE MESTRADO Gabriela Trevisan dos Santos Santa Maria, RS, Brasil 2011 α CARACTERIZAÇÃO DO ESTERÓIDE -ESPINASTEROL COMO UM NOVO ANTAGONISTA DO RECEPTOR TRPV1 COM EFEITO ANTINOCICEPTIVO Por Gabriela Trevisan dos Santos Dissertação apresentada ao curso de Mestrado do Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de Mestre em Ciências Biológicas: Bioquímica Toxicológica. Orientador: Prof. Dr. Juliano Ferreira Santa Maria, RS, Brasil 2011 Universidade Federal de Santa Maria Centro de Ciências Naturais e Exatas Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica A comissão examinadora, abaixo assinada, Aprova a Dissertação de Mestrado CARACTERIZAÇÃO DO ESTERÓIDE α-ESPINASTEROL COMO UM NOVO ANTAGONISTA DO RECEPTOR TRPV1 COM EFEITO ANTINOCICEPTIVO elaborada por Gabriela Trevisan dos Santos Como requisito parcial para obtenção do grau de Mestre em Ciências Biológicas: Bioquímica Toxicológica COMISSÃO EXAMINADORA ___________________________________ Juliano Ferreira, Dr. (Orientador) ________________________________ Maria Rosa Chitolina Schetinger, Dra. (UFSM) ___________________________________ Roselei Fachinetto, Dra. (UFSM) Santa Maria, 1 de Setembro de 2011 AGRADECIMENTOS Agradeço a Deus por iluminar meu caminho e me dar forças para seguir sempre em frente. Aos meus familiares, em especial, a meus pais Joaquim e Claudia, e ao meu irmão Guilherme, pelo apoio incondicional, o que contribuiu para que todos os momentos difíceis se tornassem passageiros. Ao meu orientador, Juliano Ferreira, pela oportunidade oferecida, pelos conselhos, ensinamentos e principalmente pelo bom convívio em todos estes anos de trabalho.
    [Show full text]
  • Iminosugar-Steroid Conjugates As Potential Α-Glycosidase Inhibitors and Antiproliferative Agents
    UNIVERSIDADE DA BEIRA INTERIOR Ciências Iminosugar-steroid conjugates as potential α-glycosidase inhibitors and antiproliferative agents Sara Cristina Nobre Garcia Dissertação para obtenção do Grau de Mestre em Química Medicinal (2º ciclo de estudos) Orientador: Prof. Doutor Samuel Martins Silvestre Co-orientador: Prof. Doutor Carmen Ortiz Mellet Covilhã, junho de 2016 ii À minha irmã, a minha versão mais velha, mas o (meu) modelo a seguir. iii iv Agradecimentos/Acknowledgements Em primeiro lugar gostaria de agradecer ao Professor Doutor Samuel Silvestre por ter possibilitado o desenvolvimento deste projeto, e ainda toda a orientação, paciência, confiança e disponibilidade ao longo de todo o ano. Also, I want to thank to Cathedratic Professor Carmen Ortiz Mellet for allowing to carry out the organic synthesis of this project in her investigation group on Departamento de Quimica Organica of Universidad de Sevilla, and to Doctor Elena Sáchez-Fernández for the assisting and help during the whole period. I am grateful for the reception and mutual aid that I found in the group. Especially, I want to thank to Doctor Rita Pereira who always was present from the first year of my bachelor until this moment, even more in the course of this project, helping me as much as possible. Agradeço a todas as minhas colegas de laboratório no Centro de Investigação em Ciências da Saúde-UBI, principalmente à Mariana Matias, Sandrina Maçãs, Elisabete Alves, Mafalda Catarro, Ângela Gonçalves e Vanessa de Brito por tudo o que ensinaram e auxiliaram e claro, pelos bons momentos passados. Agradeço aos meus pais, avó e irmãos que tornaram todo este caminho possível, e ainda a todos os outros familiares e amigos que me apoiaram durante todo o meu percurso académico.
    [Show full text]
  • WO 2010/067327 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 17 June 2010 (17.06.2010) WO 2010/067327 Al (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, C08B 37/00 (2006.01) A61K 8/73 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/IB2009/055663 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 10 December 2009 (10.12.2009) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (25) Filing Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 0858501 11 December 2008 ( 11.12.2008) FR GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): SEDER- TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, MA [FR/FR]; 29 rue du Chemin Vert, F-78610 Le Perray ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, en Yvelines (FR).
    [Show full text]
  • Patent Application Publication (10) Pub. No.: US 2009/0131395 A1 Antonelli Et Al
    US 20090131395A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0131395 A1 Antonelli et al. (43) Pub. Date: May 21, 2009 (54) BIPHENYLAZETIDINONE CHOLESTEROL Publication Classification ABSORPTION INHIBITORS (51) Int. Cl. (75) Inventors: Stephen Antonelli, Lynn, MA A 6LX 3L/397 (2006.01) (US); Regina Lundrigan, C07D 205/08 (2006.01) Charlestown, MA (US); Eduardo J. A6IP 9/10 (2006.01) Martinez, St. Louis, MO (US); Wayne C. Schairer, Westboro, MA (52) U.S. Cl. .................................... 514/210.02:540/360 (US); John J. Talley, Somerville, MA (US); Timothy C. Barden, Salem, MA (US); Jing Jing Yang, (57) ABSTRACT Boxborough, MA (US); Daniel P. The invention relates to a chemical genus of 4-biphenyl-1- Zimmer, Somerville, MA (US) phenylaZetidin-2-ones useful in the treatment of hypercho Correspondence Address: lesterolemia and other disorders. The compounds have the HESLN ROTHENBERG EARLEY & MEST general formula I: PC S COLUMBIA. CIRCLE ALBANY, NY 12203 (US) (73) Assignee: MICROBIA, INC., Cambridge, MA (US) “O O (21) Appl. No.: 11/913,461 o R2 R4 X (22) PCT Filed: May 5, 2006 R \ / (86). PCT No.: PCT/USO6/17412 S371 (c)(1), (2), (4) Date: May 30, 2008 * / Related U.S. Application Data (60) Provisional application No. 60/677,976, filed on May Pharmaceutical compositions and methods for treating cho 5, 2005. lesterol- and lipid-associated diseases are also disclosed. US 2009/013 1395 A1 May 21, 2009 BPHENYLAZETIONONE CHOLESTEROL autoimmune disorders, (6) an agent used to treat demylena ABSORPTION INHIBITORS tion and its associated disorders, (7) an agent used to treat Alzheimer's disease, (8) a blood modifier, (9) a hormone FIELD OF THE INVENTION replacement agent/composition, (10) a chemotherapeutic 0001.
    [Show full text]
  • Lessons Learned
    Prevention and Reversal of Chronic Disease Copyright © 2019 RN Kostoff PREVENTION AND REVERSAL OF CHRONIC DISEASE: LESSONS LEARNED By Ronald N. Kostoff, Ph.D., School of Public Policy, Georgia Institute of Technology 13500 Tallyrand Way, Gainesville, VA, 20155 [email protected] KEYWORDS Chronic disease prevention; chronic disease reversal; chronic kidney disease; Alzheimer’s Disease; peripheral neuropathy; peripheral arterial disease; contributing factors; treatments; biomarkers; literature-based discovery; text mining ABSTRACT For a decade, our research group has been developing protocols to prevent and reverse chronic diseases. The present monograph outlines the lessons we have learned from both conducting the studies and identifying common patterns in the results. The main product of our studies is a five-step treatment protocol to reverse any chronic disease, based on the following systemic medical principle: at the present time, removal of cause is a necessary, but not necessarily sufficient, condition for restorative treatment to be effective. Implementation of the five-step treatment protocol is as follows: FIVE-STEP TREATMENT PROTOCOL TO REVERSE ANY CHRONIC DISEASE Step 1: Obtain a detailed medical and habit/exposure history from the patient. Step 2: Administer written and clinical performance and behavioral tests to assess the severity of symptoms and performance measures. Step 3: Administer laboratory tests (blood, urine, imaging, etc) Step 4: Eliminate ongoing contributing factors to the chronic disease Step 5: Implement treatments for the chronic disease This individually-tailored chronic disease treatment protocol can be implemented with the data available in the biomedical literature now. It is general and applicable to any chronic disease that has an associated substantial research literature (with the possible exceptions of individuals with strong genetic predispositions to the disease in question or who have suffered irreversible damage from the disease).
    [Show full text]
  • Chromatographic Sterol Analysis As Applied to the Investigation of Milk Fat and Other Oils and Fats
    CHROMATOGRAPHIC STEROL ANALYSIS AS APPLIED TO THE INVESTIGATION OF MILK FAT AND OTHER OILS AND FATS ACADEMISCH PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE UNIVERSITEIT VAN AMSTERDAM, OP GEZAG VAN DE RECTOR MAGNIFICUS DR. J. KOK, HOOGLERAAR IN DE FACULTEIT DER WISKUNDE EN NATUURWETENSCHAPPEN IN HET OPENBAAR TE VERDEDIGEN IN DE AULA DER UNIVERSITEIT (TIJDELIJK IN DE LUTHERSE KERK, INGANG SINGEL 411, HOEK SPUl) OP WOENSDAG 23 OKTOBER 1963, DES NAMIDDAGS TE 16 UUR DOOR JAN WILLEM COPIUS PEEREBOOM GEBOREN TE 'S-GRAVENHAGE qP CENTRUM VOOR LANDBOUWPUBLIKATIES EN LANDBOUWDOCUMENTATIE WAGENINGEN 1963 1"%-! .••: i PROMOTOR:PROF .DR .W .VA NTONGERE N Es ist nichtgenug zu wissen Manmuss auch anwenden Es ist nichtgenug zu wollen Manmuss auch tun. GOETHE Bij de voltooiing van dit proefschrift betuig ik in de eerste plaats gaarne mijn dank aan alle hoogleraren en lectoren, die tot mijn wetenschappelijke vorming hebben bijgedragen. Hooggeleerde WIBAUT, naar U gaat mijn dank uit voor het inzicht in de organische chemie, dat ik van U mocht ontvangen. Van mijn blijvende belangstelling voor klassieke onderwerpen uit de organische chemie als de sterolchemie, mogen vele gedeelten van dit proefschrift getuigen. Hooggeleerde VAN TONGEREN, Hooggeschatte Promotor, met gevoelens van grote erkentelijkheid richt ik mij tot U om dank te zeggen voor het onderricht in de ana­ lytische chemie en voor de grote steun, die ik bij de bewerking van dit proefschrift van U mocht ondervinden. Het geduld waarmede U steeds weer talloze onvolkomen­ heden in de Engelse tekst signaleerde, heeft mijn grote bewondering. Het onderzoek werd in zijn geheel uitgevoerd op het RIJKSZUIVELSTATION.
    [Show full text]
  • Spinasterol to Mimic the Membrane Properties of Natural Cholesterol
    molecules Article The Potential of α-Spinasterol to Mimic the Membrane Properties of Natural Cholesterol Ivan Haralampiev 1,†, Holger A. Scheidt 2,†, Daniel Huster 2 and Peter Müller 1,* 1 Department of Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, D-10115 Berlin, Germany; [email protected] 2 Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16–18, D-04107 Leipzig, Germany; [email protected] (H.A.S.); [email protected] (D.H.) * Correspondence: [email protected]; Tel.: +49-30-2093-8830 † These authors contributed equally to this work. Received: 28 July 2017; Accepted: 19 August 2017; Published: 22 August 2017 Abstract: Sterols play a unique role for the structural and dynamical organization of membranes. The current study reports data on the membrane properties of the phytosterol (3β,5α,22E)-stigmasta-7,22-dien-3-β-ol (α-spinasterol), which represents an important component of argan oil and have not been investigated so far in molecular detail. In particular, the impact of α-spinasterol on the structure and organization of lipid membranes was investigated and compared with those of cholesterol. Various membrane parameters such as the molecular packing of the phospholipid fatty acyl chains, the membrane permeability toward polar molecules, and the formation of lateral membrane domains were studied. The experiments were performed on lipid vesicles using methods of NMR spectroscopy and fluorescence spectroscopy and microscopy. The results show that α-spinasterol resembles the membrane behavior of cholesterol to some degree. Keywords: cholesterol; α-spinasterol; membrane structure; membrane permeability; lateral domains; NMR; fluorescence 1.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,955,813 B2 De Kreijet Al
    US007955813B2 (12) United States Patent (10) Patent No.: US 7,955,813 B2 De Kreijet al. (45) Date of Patent: *Jun. 7, 2011 (54) METHOD OF USING LIPID 3,939,350 A 2f1976 Kronicket al. ACYLTRANSFERASE 3,973,042 A 8, 1976 Kosikowski 3.996,345 A 12/1976 Ullman et al. 4,034,124 A 7, 1977 Van Dam (75) Inventors: Arno De Kreij, Papendrecht (NL); 4,065,580 A 12/1977 Feldman Susan Mampusti Madrid, Vedbaek 4,160,848 A T. 1979 Vidal 4,202,941 A 5/1980 Terada (DK); Jorn Dalgaard Mikkelsen, 4,275,149 A 6/1981 Litman et al. Hvidovre (DK); Jorn Borch Soe, Tilst 4,277.437 A 7/1981 Maggio (DK) 4,366,241 A 12/1982 Tom et al. 4,399.218 A 8, 1983 Gauhl (73) Assignee: Danisco, A/S, Copenhagen (DK) 4,567.046 A 1/1986 Inoue 4,683.202 A 7, 1987 Mullis 4,689,297 A 8, 1987 Good (*) Notice: Subject to any disclaimer, the term of this 4,707,291 A 11, 1987 Thom patent is extended or adjusted under 35 4,707,364 A 11/1987 Barach U.S.C. 154(b) by 1056 days. 4,708,876 A 1 1/1987 Yokoyama 4,798,793 A 1/1989 Eigtved This patent is Subject to a terminal dis 4,808,417 A 2f1989 Masuda claimer. 4,810,414 A 3/1989 Huge-Jensen 4,814,331 A 3, 1989 Kerkenaar 4,816,567 A 3/1989 Cabilly et al. (21) Appl. No.: 11/483,345 4,818,695 A 4/1989 Eigtved 4,826,767 A 5/1989 Hansen (22) Filed: Jul.
    [Show full text]
  • Effects of Dietary Sterol/Steroid Structure, Mixture and Ratio
    Insect Biochemistry and Molecular Biology 43 (2013) 580e587 Contents lists available at SciVerse ScienceDirect Insect Biochemistry and Molecular Biology journal homepage: www.elsevier.com/locate/ibmb Sterol/steroid metabolism and absorption in a generalist and specialist caterpillar: Effects of dietary sterol/steroid structure, mixture and ratio Xiangfeng Jing a,b,*, Robert J. Grebenok c, Spencer T. Behmer a a Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843, USA b Department of Entomology, Cornell University, Ithaca, NY 14853, USA c Department of Biology, Canisius College, 2001 Main St., Buffalo, NY 14208, USA article info abstract Article history: Insects cannot synthesize sterols de novo, so they typically require a dietary source. Cholesterol is the Received 7 January 2013 dominant sterol in most insects, but because plants contain only small amounts of cholesterol, plant- Received in revised form feeding insects generate most of their cholesterol by metabolizing plant sterols. Plants almost always 23 March 2013 contain mixtures of different sterols, but some are not readily metabolized to cholesterol. Here we Accepted 26 March 2013 explore, in two separate experiments, how dietary phytosterols and phytosteroids, in different mixtures, ratios, and amounts, affect insect herbivore sterol/steroid metabolism and absorption; we use two cat- Keywords: erpillars species e one a generalist (Heliothis virescens), the other a specialist (Manduca sexta). In our first Cholesterol e fi Phytosterols experiment caterpillars were reared on two tobacco lines one expressing a typical phystosterol pro le, Stanols the other expressing high amounts/ratios of stanols and 3-ketosteroids. Caterpillars reared on the control Ketosteroids tobacco contained mostly cholesterol, but those reared on the modified tobacco had reduced amounts of Nutrition cholesterol, and lower total sterol/steroid body profiles.
    [Show full text]