(12) Patent Application Publication (10) Pub. No.: US 2010/0068299 A1 Van Der Krieken Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2010/0068299 A1 Van Der Krieken Et Al US 2010.0068299A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0068299 A1 Van der Krieken et al. (43) Pub. Date: Mar. 18, 2010 (54) LIGNOSULFONATE COMPOSITIONS FOR of application No. 10/543,702, filed on Apr. 17, 2006, CONTROL OF PLANT PATHOGENS filed as application No. PCT/EP04/00742 on Jan. 27, 2004. (76) Inventors: Wilhelmus Maria van der Krieken, Wageningen (NL); (30) Foreign Application Priority Data Cornelis Johannes Kok, Elst (NL); Lucas Henricus Stevens, Utrecht Jan. 27, 2003 (EP). ... PCTAEPO3 FOO840 (NL); Evert Davelarr, Veenendaal Publication Classification (NL) (51) Int. Cl. Correspondence Address: AOIN 59/20 (2006.01) AGRAQUEST, INC. AOIN 6L/00 (2006.01) 1540. DREWAVENUE AOIP I/00 (2006.01) DAVIS, CA 95618 (US) (52) U.S. Cl. ........................................... 424/638: 514/22 (21) Appl. No.: 12/496,492 (57) ABSTRACT The present invention relates to a composition comprising a (22) Filed: Jul. 1, 2009 soluble combination comprising lignoSulfonate, a metal salt, and a phosphorus compound selected from the group consist Related U.S. Application Data ing of phosphorus acid and spontaneously soluble salts (63) Continuation-in-part of application No. PCT/NL2008/ thereof, and mixtures thereof. The present invention also 050796, filed on Dec. 12, 2008, Continuation-in-part relates to the use of Such compositions as pesticides. Patent Application Publication Mar. 18, 2010 Sheet 1 of 5 US 2010/0068299 A1 Figure 1 Patent Application Publication Mar. 18, 2010 Sheet 2 of 5 US 2010/0068299 A1 O 25 O 5 blA Figure 2 Patent Application Publication Mar. 18, 2010 Sheet 3 of 5 US 2010/0068299 A1 C 4 (6 days C 4 Q 12 days KOC de C6 days KOC de Q 12 days Figure 3 Patent Application Publication Mar. 18, 2010 Sheet 4 of 5 US 2010/0068299 A1 Figure 4 Patent Application Publication Mar. 18, 2010 Sheet 5 of 5 US 2010/0068299 A1 Kphosphite salt Figure 5 US 2010/0068299 A1 Mar. 18, 2010 LGNOSULFONATE COMPOSITIONS FOR precipitates from phosphorus compounds and metal salts that CONTROL OF PLANT PATHOGENS are dissolved in aqueous solvents before and during their combined application. The compositions of the present inven CROSS-REFERENCE TO RELATED tion are useful in the control of plant pathogens, i.e. as a APPLICATIONS fungicide or as a bactericide, and as a plant fertilizer. 0001. The present application claims priority to and is a 0009. The present invention provides compositions of Continuation-In-Part of International Patent Application No. plant protecting agents and/or plant fertilizing agents and PCT/NL2008/050796 filed Dec. 12, 2008, which claims pri methods which substantially prevent the formation of copper ority to European Patent Application No. 2007 123860.4 filed or metal phosphite precipitates from phosphorus acid, and/or on Dec. 20, 2007, and this application also claims priority to a salt and/or a hydrate and/or an ester thereof and metal salts U.S. patent application Ser. No. 10/543,702, which in turn that are dissolved in aqueous solvents before and during their claims priority as a National Stage Entry of International combined application. Hence, the methods ensure that after Patent Application No. PCT/EP2004/000742, filed Jan. 27, application, the active ingredients remain relatively immobile 2004, which in turn claims priority to International Patent Application No. PCT/EP2003/000840, filed Jan. 27, 2003. over the long term. Each of the foregoing applications is hereby incorporated by 0010. The present invention provides a composition com reference in its entirety. prising at least one soluble combination comprising at least one lignoSulfonate, at least one metal salt, and at least one TECHNICAL FIELD phosphorus compound, wherein the composition excludes a 0002. This invention relates to the technical field of for solubilizing amount of a chelator. In one embodiment, the mulation technology of plant protection agents and and/or composition is in liquid form. In one embodiment, the com plant fertilizing agents and to methods of preparing and using position is a solution. In other embodiments, the composition Such formulations. is a water soluble powder or a water Soluble granule. In one embodiment, the soluble composition further comprises at BACKGROUND least one compound as to form a composition with a pH 0003) Agricultural production worldwide is under perma within a range from about 4.8 to about 5.8. Alternatively, the nent threat from numerous phytopathogenic fungi and bacte composition further comprises a buffer salt with a pH within ria. For the protection of yield and quality of products and to a range from about 4.8 to about 5.8. avoid economic losses, the application of chemical agents 0011. The present invention also provides methods of pre that control plant diseases are an absolute requirement. venting formation of a metal phosphite precipitate in an aque Although the need for pesticides is generally acknowledged, ous solvent. there is an ongoing public concern about the possible negative 0012. The present invention also relates to methods for impact of pesticides on the environment and on human health. preparing an aqueous composition comprising at least one As a consequence, the demands with respect to Sustainability metal compound, at least one lignoSulfonate and at least one of chemical pest control are continually increasing, as are the phosphorus compound. costs to bring new pesticides to the market. 0013 The present invention further provides methods for 0004 EP A 249.566 discloses bactericide compositions controlling plant pathogens. In one embodiment, the present comprising a metal salt of a phosphorus acid monoester, said invention provides a method for controlling plant pathogens bactericide compositions being used for treating plants Suf by using said composition as a fungicide. In one embodiment, fering from bactericidal diseases. Examples C, E and H dis the present invention provides a method for controlling plant close such a bactericide composition in powder form which pathogens by using said composition as a bactericide. further contains calcium or sodium lignoSulfonate and 0014. The present invention further provides methods of optionally a metal salt, e.g. calcium carbonate. using said composition as a fertilizer. 0005 U.S. Pat. No. 4,139,616 discloses compositions for controlling fungus diseases which containas active material a metal salt of a phosphorus acid monoester. Examples 1 and 2 BRIEF DESCRIPTION OF THE DRAWINGS disclose Such compositions as wettable powders which fur ther contain 5% calcium lignoSulfate. (0.015 FIG. 1 represents DuPontTM KOCIDE(R) 2000 fun 0006 U.S. Pat. No. 6,689,392 discloses compositions for gicide/bactericide and Composition 4. As it shows, controlling plant pathogens comprising an effective amount KOCIDE(R) 2000 is a suspension of wettable powder, while of a metalion, a chelating agent, and phosphorus acid, and/or Composition 4 is a solution of water soluble powder. salt or hydrate thereof, which further contain from about 1% 0016 FIG. 2 represents results of controlling late blight to 10% of an acidifying agent such as lignoSulfonate. (Phytophthora infestans) on tomato in the greenhouse by 0007. The present invention meets a long felt need for Composition 4 (C. 4) and DuPontTM KOCIDE(R) 2000 fungi improved compositions for preventing and/or treating plant cide/bactericide. pathogens, wherein such compositions contain metal as an 0017 FIG.3 represents results of controlling downy mil active compound. dew (Pseudoperonospora cubensis) on cucumber in the greenhouse by Composition 4 (C. 4) and DuPontTM SUMMARY KOCIDE(R) 2000 fungicide/bactericide. 0008. The present invention provides formulation tech 0018 FIG. 4 represents cucumber plants sprayed with nologies for Soluble compositions of plant protecting agents Composition 4 and DuPontTM KOCIDE(R) 2000 fungicide/ and/or plant fertilizing agents and to methods which Substan bactericide. Picture was taken six days after downy mildew tially or completely prevent the formation of metal phosphite infection. US 2010/0068299 A1 Mar. 18, 2010 0019 FIG. 5 represents results of controlling tomato 0030. As used herein, the term “suspension” refers to a speck (Pseudomonas syringae) on cucumber in the green heterogeneous fluid containing solid particles that are suffi house by Composition 4 (C. 4) and DuPontTM KOCIDE(R) ciently large for sedimentation. 2000 fungicide/bactericide. 0031. As used herein, the term “colloid” refers to a type of chemical mixture where one substance is dispersed evenly DETAILED DESCRIPTION throughout another. The particles of the dispersed substance are only suspended in the mixture, unlike a solution, where 0020 All publications, patents and patent applications, they are completely dissolved within. including any claims, drawings and appendices, herein are 0032. As used herein, the term “chelator” refers to a bi- or incorporated by reference to the same extent as if each indi multidentate ligand used in agricultural practice that is often vidual publication or patent application was specifically and an organic compound, also called chelant, chelating agent or individually indicated to be incorporated by reference. sequestering agent. Chelators are chemicals that form 0021. The following description includes information that soluble, complex molecules with certain metal ions, inacti may be useful in understanding the present invention. It is not Vating the ions so that they cannot normally react with other an admission that any of the information provided herein is elements or ions to produce precipitates or scale. Chelators prior art or relevant to the presently claimed inventions, or generally form one or more coordination bonds with a central that any publication specifically or implicitly referenced is metal ion, resulting in heterocyclic rings with the central prior art. metalion as part of the ring. Examples of chelators are phos phines, amines, diphosphines, diamines, EDTA, EDDHA, Definitions HEDTA, DTPA, citrate, saccharate, gluconate, glucohepto 0022. As used herein, the term “soluble” refers to the nate and glycine.
Recommended publications
  • Chocolate Under Threat from Old and New Cacao Diseases
    Phytopathology • 2019 • 109:1331-1343 • https://doi.org/10.1094/PHYTO-12-18-0477-RVW Chocolate Under Threat from Old and New Cacao Diseases Jean-Philippe Marelli,1,† David I. Guest,2,† Bryan A. Bailey,3 Harry C. Evans,4 Judith K. Brown,5 Muhammad Junaid,2,8 Robert W. Barreto,6 Daniela O. Lisboa,6 and Alina S. Puig7 1 Mars/USDA Cacao Laboratory, 13601 Old Cutler Road, Miami, FL 33158, U.S.A. 2 Sydney Institute of Agriculture, School of Life and Environmental Sciences, the University of Sydney, NSW 2006, Australia 3 USDA-ARS/Sustainable Perennial Crops Lab, Beltsville, MD 20705, U.S.A. 4 CAB International, Egham, Surrey, U.K. 5 School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, U.S.A. 6 Universidade Federal de Vic¸osa, Vic¸osa, Minas Gerais, Brazil 7 USDA-ARS/Subtropical Horticultural Research Station, Miami, FL 33131, U.S.A. 8 Cocoa Research Group/Faculty of Agriculture, Hasanuddin University, 90245 Makassar, Indonesia Accepted for publication 20 May 2019. ABSTRACT Theobroma cacao, the source of chocolate, is affected by destructive diseases wherever it is grown. Some diseases are endemic; however, as cacao was disseminated from the Amazon rain forest to new cultivation sites it encountered new pathogens. Two well-established diseases cause the greatest losses: black pod rot, caused by several species of Phytophthora, and witches’ broom of cacao, caused by Moniliophthora perniciosa. Phytophthora megakarya causes the severest damage in the main cacao producing countries in West Africa, while P. palmivora causes significant losses globally. M. perniciosa is related to a sister basidiomycete species, M.
    [Show full text]
  • Maximum Entropy Niche Modelling to Estimate the Potential Distribution of Phytophthora Megakarya Brasier & M
    European Journal of Ecology, 6.2, 2020, pp. 23-40 MAXIMUM ENTROPY NICHE MODELLING TO ESTIMATE THE POTENTIAL DISTRIBUTION OF PHYTOPHTHORA MEGAKARYA BRASIER & M. J. GRIFFIN (1979) IN TROPICAL REGIONS Maxwell C. Obiakara1 (ORCID: 0000-0002-0635-8068), Peter M. Etaware1 (ORCID: 0000-0002-9370-8029), Kanayo S. Chukwuka1 (ORCID: 0000-0002-8050-0552) 1 Plant Ecology Unit, Department of Botany, University of Ibadan, Ibadan, Nigeria 1 Plant Pathology Unit, Department of Botany, University of Ibadan, Ibadan, Nigeria Abstract. Background: Phytophthora megakarya is an invasive pathogen endemic to Central and West Africa. This species causes the most devastating form of black pod disease of cacao (Theobroma cacao). Despite the dele- terious impacts of this disease on cocoa production, there is no information on the geographic distribution of P. megakarya. Aim: In this study, we investigated the potential geographic distribution of P. megakarya in cocoa-produc- ing regions of the world using ecological niche modelling. Methods: Occurrence records of P. megakarya in Central and West Africa were compiled from published studies. We selected relevant climate and soil variables in the indigenous range of this species to generate 14 datasets of climate-only, soil-only, and a combination of both data types. For each dataset, we calibrated 100 candidate MaxEnt models using 20 regularisation multiplier (0.1−1.0 at 0.1 interval, 2−4 at 0.5 interval, 4−8 at 1 interval, and 10) and five feature classes. The best model was selected from statistically significant can- didates with an omission rate ≤ 5% and the lowest Akaike Information Criterion corrected for small sample sizes, and projected onto cocoa-producing regions in Southeast Asia, Central and South America.
    [Show full text]
  • Impact of Environmental Factors, Chemical Fungicide and Biological Control on Cacao Pod Production Dynamics and Black Pod Disease (Phytophthora Megakarya) in Cameroon
    Available online at www.sciencedirect.com Biological Control 44 (2008) 149–159 www.elsevier.com/locate/ybcon Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (Phytophthora megakarya) in Cameroon P. Deberdt a,b,*, C.V. Mfegue c, P.R. Tondje c, M.C. Bon d, M. Ducamp e, C. Hurard d, B.A.D. Begoude c, M. Ndoumbe-Nkeng c, P.K. Hebbar f, C. Cilas g a CIRAD, UPR Bioagresseurs de Pe´rennes, Saint Augustine, Trinidad and Tobago b CIRAD, UPR Bioagresseurs de Pe´rennes, Montpellier, F-34398, France c IRAD, Regional Biological Control and Applied Microbiology Laboratory, P.O. Box 2067, Yaounde´, Cameroon d USDA-ARS-EBCL, Campus International de Baillarguet, 34980 Montferrier le Lez, France e CIRAD, UMR BGPI, TAA-54K, Campus International de Baillarguet, Montpellier F-34398, France f MARS Inc./USDA-ARS, Sustainable Perennial Crops Laboratory, Beltsville, MD 20705, USA g CIRAD, UPR Bioagresseurs de Pe´rennes, Montpellier F-34398, France Received 14 February 2007; accepted 30 October 2007 Available online 5 November 2007 Abstract The impact of environmental factors and microbial and chemical control methods on cacao pod production dynamics and spread of black pod disease caused by Phytophthora megakarya was assessed over three consecutive years in a smallholder’s plantation. Significant positive correlations were found between rainfall records and pod rot incidence when assessed after a 1-week lag. Disease distribution across various pod developmental stages showed that immature pods were the most susceptible to P. megakarya attack. Weekly obser- vations of the pod distribution and disease progression at various developmental stages on cacao trees sprayed with fungicide Ridomil, Trichoderma asperellum biocontrol agent (strain PR11), or untreated control trees indicated that the total pod production and the inci- dence of black pod rot was significantly different between the treatments.
    [Show full text]
  • Predicting Lifestyle and Host from Positive Selection Data and Genome Properties in Oomycetes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426341; this version posted March 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. G´omez-P´erez and Kemen RESEARCH Predicting lifestyle and host from positive selection data and genome properties in oomycetes Daniel Gomez-P´ ´erez* and Eric Kemen *Correspondence: daniel.gomez- [email protected] Abstract Zentrum fur¨ Molekularbiologie der Pflanzen, Auf der Morgenstelle 32, Background: Host and niche shifts are a source of genomic and phenotypic 72076 Tubingen,¨ Germany diversification as evidenced in parasitism. Exemplary is core metabolism reduction Full list of author information is as parasites adapt to a particular host, while the accessory genome often available at the end of the article maintains a high degree of diversification. However, selective pressures acting on the genome of organisms that have undergone lifestyle or host change have not been fully investigated. Results: Here, we developed a comparative genomics approach to study underlying adaptive trends in oomycetes, a eukaryotic phylum with a broad range of economically important plant and animal parasitic lifestyles. Our analysis reveals converging evolution on biological processes for oomycetes that have similar lifestyle. Besides, we find that certain functions, in particular carbohydrate metabolism, transport, and signaling, are important for host and environmental adaption in oomycetes. Discussion: Given the high correlation between lifestyle and genome properties in our oomycete dataset and the convergent evolution of fungal and oomycete genomes, we have developed a model that predicts plant pathogen lifestyles with high accuracy based on functional annotations.
    [Show full text]
  • Testing for the Resistance of Newly Generated Hybrid Cacao Germplasm
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.07.414466; this version posted December 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Testing for the resistance of newly generated hybrid cacao 2 germplasm in the gene pool of Cocoa Research Institute of 3 Nigeria (CRIN) against Phytophthora megakarya pathogen 4 causing black pod disease of cocoa 5 6 Tijani, A. A.23*¶, Otuonye, A. H.1¶, Otusanya, M. O.3&, Olaiya, A. O.4&, Adenuga, O. 7 O.2& and Afolabi, C. G.3¶ 8 9 1. Department of Plant Protection, Cocoa Research Institute of Nigeria, Ibadan, Nigeria 10 2. Department of Plant Improvement, Cocoa Research Institute of Nigeria, Ibadan, Nigeria 11 3. Department of Plant Protection, Federal University of Agriculture Abeokuta, Abeokuta, 12 Nigeria 13 4. Department of Crop Physiology, Federal University of Agriculture Abeokuta, Abeokuta, 14 Nigeria 15 ¶ These authors contributed equally to this work. 16 & These authors also contributed equally to this work. 17 *Corresponding author: E-mail Address: [email protected] (A. A.): Contact address: CRIN, 18 PMB 5244, Idi-Ayunre, Ibadan. 19 20 ABSTRACT 21 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.07.414466; this version posted December 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Incoped Workshop 5 Proceedin
    International Permanent Working Group for Cocoa Pests and Diseases Secretariat Chairman: Dr. J. L. Pereira, CEPEC/CEPLAC, Brazil, 2000-2006 Vice Chairman: Andrews Y. Akrofi, CRIG, Ghana, 2003-2006 Secretary: Dr. Jacques Hubert Charles Delabie (Brazil) Treasurer: Georges J. Blaha (presently in Papua New Guinea) Sub-Regional Co-ordinators: African: Dr. I.B. Kebe, CNRA, Côte d’Ivoire Americas: Dr. J.L. Pereira, CEPEC/CEPLAC, Brazil South East Asia: Dr. I. Azhar, Malaysian Cocoa Board Local Organising Committee of INCOPED 5th International Seminar Advisors: J.L. Pereira, CEPEC/CEPLAC, Brazil A.Y. Akrofi, CRIG, Ghana Chairperson: Dr. Urlike Krauss, CABI Bioscience, Trinidad and Tobago Secretary: Dr. G. Martijn ten Hoopen, CATIE/CATIE, Costa Rica Tresurer: Mirjam Bekker, CABI/CATIE, Costa Rica Secretarial staff: Margarita Alvarado, CATIE, Costa Rica Celia López, CATIE, Costa Rica Funds for publication of this proceedings were provided by the World Cocoa Foundation. INCOPED 5th International Seminar on Cocoa Pests and Diseases held on 15th -17th October, 2006 in San Jose, Costa Rica was jointly organized by CATIE and INCOPED. This proceedings was published in 2007 by the INCOPED Secretariat Cocoa Research Institute of Ghana P. O. Box 8 Akim Tafo, Ghana. Tel: (+233 22029/ 23039/ 22040) Fax: (+233 277900029) Copyright © INCOPED 2007 ISBN 9988-0-2250-6 Citation: Proceedings of INCOPED 5th Int. Seminar, 15-17th Oct., 2006, San Jose, Costa Rica. Edited by Akrofi, A.Y and Baah, F. Opinions expressed in the proceedings are not necessarily those of the organizers (CATIE and INCOPED) of the Seminar or those of the authors’ affiliations. Mention of any products in the proceedings does not indicate endorsement or discrimination of the products.
    [Show full text]
  • Control of Phytophthora Megakarya Diseases of Cocoa with Phosphonic Acid
    CROP PROTECTION PROGRAMME Control of Phytophthora megakarya diseases of cocoa with phosphonic acid R7326 (ZA0278) FINAL TECHNICAL REPORT 1 February 1999 – 30 June 2002 Dr Mark Holderness CABI Bioscience (UK Centre) 30 June 2002 This publication is an output from a research project funded by the United Kingdom department for international development for the benefit of developing countries. The views expressed are not necessarily those of DFID. (DFID project R7326, Crop Protection Research Programme). 1 TABLE OF CONTENTS Page Project Summary 3 Executive Summary 5 Background 7 Project Purpose 10 Research activities and outputs 11 Dissemination 34 Project logical framework 36 Contribution of outputs 38 What further research is necessary 40 Pathways whereby present and anticipated future outputs will impact on 41 poverty alleviation or sustainable livelihoods Annexes: 1. Farmer socio-economic survey report 44 2. Technical Report – Implementation of analytical method and 81 Assessment of operator exposure to sprays 3. Technical report – Analysis of phosphonate residues 108 4. Technical report – Analysis of metalaxyl residues 120 2 PROJECT SUMMARY The project was directly concerned with the development and evaluation of an operator-safe fungicide and application technique against a disease of major importance in a crop grown extensively in the high potential systems of West Africa. The programme was particularly concerned with understanding the current issues surrounding chemical use by smallhold farmers in Ghana and with ensuring that application systems are optimized to the benefit of both farmers and consumers. Through an extensive survey across 4 regions of Ghana, the project examined the human and socio- economic constraints to the adoption of disease management technologies among smallholder farmers and identified key issues requiring resolution in the development of effective and viable disease control measures.
    [Show full text]
  • Black Pod: Diverse Pathogens with a Global Impact on Cocoa Yield
    Symposium e-Xtra* Cacao Diseases: Important Threats to Chocolate Production Worldwide Black Pod: Diverse Pathogens with a Global Impact on Cocoa Yield David Guest University of Sydney, NSW 2006, Australia. ABSTRACT Guest, D. 2007. Black pod: Diverse pathogens with a global impact on several sources of primary inoculum and several modes of dissemination cocoa yield. Phytopathology 97:1650-1653. of secondary inoculum. This results in explosive epidemics during favor- able environmental conditions. The spread of regional pathogens must be Pathogens of the Straminipile genus Phytophthora cause significant prevented by effective quarantine barriers. Resistance to all these Phy- disease losses to global cocoa production. P. m eg a k a r y a causes signifi- tophthora species is typically low in commercial cocoa genotypes. Dis- cant pod rot and losses due to canker in West Africa, whereas P. c a p s i c i ease losses can be reduced through integrated management practices and P. citrophthora cause pod rots in Central and South America. The that include pruning and shade management, leaf mulching, regular and global and highly damaging P. palmivora attacks all parts of the cocoa complete harvesting, sanitation and pod case disposal, appropriate fertil- tree at all stages of the growing cycle. This pathogen causes 20 to 30% izer application and targeted fungicide use. Packaging these options to pod losses through black pod rot, and kills up to 10% of trees annually improve uptake by smallholders presents a major challenge for the in- through stem cankers. P. palmivora has a complex disease cycle involving dustry. The Straminipile genus Phytophthora probably causes more pro- are very similar but symptoms appear quicker and sporulation is duction losses globally than any other disease of cocoa.
    [Show full text]
  • Biological Control of Black Pod Disease of Cocoa (Theobroma Cacao L.) with Bacillus Amyloliquefaciens, Aspergillus Sp
    Vol. 12(2), pp. 52-63, July-December 2020 DOI: 10.5897/JMA2020.0434 Article Number: 8C724B764743 ISSN: 2141-2308 Copyright ©2020 Journal of Microbiology and Author(s) retain the copyright of this article http://www.academicjournals.org/JMA Antimicrobials Full Length Research Paper Biological control of black pod disease of cocoa (Theobroma cacao L.) with Bacillus amyloliquefaciens, Aspergillus sp. and Penicillium sp. in vitro and in the field Stephen Larbi-Koranteng1*, Richard Tuyee Awuah2 and Fredrick Kankam3 1Department of Crop and Soil Sciences, Faculty of Agriculture Education, University of Education, Winneba (UEW), College of Agriculture Education, Mampong Ashanti, Ghana. 2Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. 3Department of Agronomy, Faculty of Agriculture, University for Development Studies (UDS), Tamale, Ghana. Received 25 June, 2020; Accepted 10 August, 2020 Phytopathogenic fungi, Phytophthora palmivora and Phytophthora megakarya continue to be a major threat to cocoa production worldwide. To counter these drawbacks, producers rely heavily on agrochemicals leading to pathogen resistance and environmental hazards. There is also increasing demand by cocoa consumers for pesticide-free seeds. Therefore, biological control through the use of natural microbial antagonists is more rational and safer crop management option. The plant-associated Bacillus amyloliquefaciens, ESI was selected in vitro, among seven other Bacillus species as the most promising, using the zone of inhibition techniques. The B. amyloliquefaciens together with two other laboratory contaminants, Aspergillus and Penicillium spp. were used to control black pod disease of cocoa caused by P. palmivora and P. megakarya on detached cocoa pods and under field conditions.
    [Show full text]
  • Phytophthora Palmivora Causing Disease on Theobroma Cacao in Hawaii
    agriculture Article Phytophthora palmivora Causing Disease on Theobroma cacao in Hawaii Alina Sandra Puig 1,* , Wilber Quintanilla 1, Tracie Matsumoto 2, Lisa Keith 2 , Osman Ariel Gutierrez 1 and Jean-Philippe Marelli 3 1 Subtropical Horticultural Research Station, USDA-ARS, Miami, FL 33158, USA; [email protected] (W.Q.); [email protected] (O.A.G.) 2 Daniel K. Inouye U.S. Pacific Basin Agriculture Research Center, USDA-ARS, Hilo, HI 96720, USA; [email protected] (T.M.); [email protected] (L.K.) 3 Mars Plant Sciences Laboratory, Davis, CA 95616, USA; [email protected] * Correspondence: [email protected] Abstract: Commercial production of cacao in Hawaii has doubled in the past 10 years, and farmers are receiving premium prices for their beans from the expanding local confectionery industry. Black pod, caused by Phytophthora spp., is the only major cacao disease that has been reported in Hawaii but distribution and molecular identification are lacking. To determine the species of Phytophthora affecting Theobroma cacao, a sampling trip was conducted on Hawaii Island and Oahu. Ten isolates of Phytophthora palmivora were obtained from diseased cacao on Hawaii Island, but none from Oahu, despite the presence of symptomatic pods. No other Phytophthora species were found. Laboratory studies showed that all isolates produced lesions on unwounded cacao pods, but they differed in terms of their temperature–growth responses. Fungicide sensitives for a subset of isolates (n = 4) were determined using media amended with a range of fungicide concentrations. The Hawaiian isolates of P. palmivora were more sensitive to mefenoxam, chlorothalonil, and fosetyl-Al, than isolates Citation: Puig, A.S.; Quintanilla, W.; n n P.
    [Show full text]
  • Impact of Copper-Based Fungicide Application on Copper Contamination in Cocoa Soils and Plants in the Ahafo Ano North District
    IMPACT OF COPPER-BASED FUNGICIDE APPLICATION ON COPPER CONTAMINATION IN COCOA SOILS AND PLANTS IN THE AHAFO ANO NORTH DISTRICT, ASHANTI REGION A THESIS SUBMITTED TO THE DEPARTMENT OF MATERIAL ENGINEERING OF THE COLLEGE OF ENGINEERING, KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY BY GYIMAH GYAMFI HANS IN PARTIAL FULFILMENT FOR THE AWARD OF MSc. ENVIRONMENTAL RESOURCE MANAGEMENT SEPTEMBER, 2012. i DECLARATION AND CERTIFICATION I hereby declare that this submission is my own work towards the Master of Science (MSc.) Degree, and that, to my best of knowledge it contains no material previously published by another person or material which has been accepted for the award of any other degree of the University, except where due acknowledgement has been made in the text. HANS GYIMAH GYAMFI ..................................... .................................. Student’s Name Signature Date ....................................................... Student’s ID Certified by: ................................................ ..................................... ...................... Supervisor’s Name Signature Date Certified by: .......................................................... ...................................... ...................... Head of Department Signature Date ii ABSTRACT The control of the blackpod disease of cocoa is mainly by the application of copper- based fungicides. However, copper fungicides used might have negative impact on soil pH, available phosphorus and organic matter and may also persist in cocoa beans which can negatively impact on the health of consumers. A study was conducted in selected cocoa farms in the Ahafo-Ano North district of the Ashanti Region to evaluate the effect of copper contained in fungicides on the soil, cocoa beans and leaves. Soil analysis showed that the amount of both extractable and total copper in the soil did not vary significantly with increasing soil depth, but varied significantly (p<0.001) with the age of cocoa plantation.
    [Show full text]
  • Bioassay of Geniculosporium Species for Phytophthora Megakarya Biological Control on Cacao Pod Husk Pieces
    International Scholars Journals International Journal of Plant and Animal Sciences ISSN 2167-0366 Vol. 7 (1), pp. 001-005, January, 2019. Available online at www.internationalscholarsjournals.org © International Scholars Journals Author(s) retain the copyright of this article. Full Length Research Paper Bioassay of Geniculosporium species for Phytophthora megakarya biological control on cacao pod husk pieces P. R. TONDJE1*, K. P. HEBBAR2, G. SAMUELS4, J. H. BOWERS3, S. WEISE5, E. NYEMB1, D. BEGOUDE1, J. FOKO+ and D. FONTEM6 1 Regional Biological control and Applied Microbiology Laboratory, Institute of Agricultural Research for Development ( IRAD ), P.O. Box 2123 Yaoundé, Cameroon. 2 MARS Inc./US Deparment of Agriculture, Agricultural Research Service, Plant Science Institute, Alternate Crops Systems Lab, Beltsville, MD 20705, USA. 3 US. Deparment of Agriculture (USDA), Agricultural Research Service (ARS), Plant Science Institute (PSI), Alternate Crops Systems Lab. Beltsville, MD,20705 USA. 4 US. Deparment of Agriculture (USDA), Agricultural Research Service (ARS), Plant Science Institute (PSI), Systematic and Mycology Lab. Beltsville, MD,20705 USA. 5 International Institute of Tropical Agriculture (IITA), HFS- P.O.Box 2008 Yaounde, Cameroon. 6 University of Dschang, Faculty of Agronomy and Agricultural Science, P.O.Box 222, Dschang - Cameroon. Accepted 17 March, 2018 Fungal endophytes (Geniculosporium sp.) isolated from cacao leaves were screened for biological control of Phytophthora megakarya the cacao black pod disease pathogen, using Cacao Pod Husk Pieces (CPHP). CPHP were pre-treated with spore suspensions of Geniculosporium sp. [BC13 (GJS 01- 196), BC108 (GJS 01-192), BC118 (GJS 01-197), BC177 (GJS 01-198)], and were infected with P. 5 megakarya zoospore suspensions (10 zoospores/ml) .
    [Show full text]