Species-Specific, Ph-Independent, Standard Redox Potential Of

Total Page:16

File Type:pdf, Size:1020Kb

Species-Specific, Ph-Independent, Standard Redox Potential Of antioxidants Article Species-Specific, pH-Independent, Standard Redox Potential of Selenocysteine and Selenocysteamine Tamás Pálla 1,2, Arash Mirzahosseini 1,2 and Béla Noszál 1,2,* 1 Department of Pharmaceutical Chemistry, Semmelweis University, H-1092 Budapest, Hungary; [email protected] (T.P.); [email protected] (A.M.) 2 Research Group of Drugs of Abuse and Doping Agents, Hungarian Academy of Sciences, H-1051 Budapest, Hungary * Correspondence: [email protected]; Tel.: +36-1217-0891 Received: 10 April 2020; Accepted: 21 May 2020; Published: 1 June 2020 Abstract: Microscopic redox equilibrium constants and standard redox potential values were determined to quantify selenolate-diselenide equilibria of biological significance. The highly composite, codependent acid-base and redox equilibria of selenolates could so far be converted into pH-dependent, apparent parameters (equilibrium constants, redox potentials) only. In this work, the selenolate-diselenide redox equilibria of selenocysteamine and selenocysteine against dithiothreitol were analyzed by quantitative nuclear magnetic resonance (NMR) methods to characterize the interfering acid-base and redox equilibria. The directly obtained, pH-dependent, conditional redox equilibrium constants were then decomposed by our method into pH-independent, microscopic constants, which characterize the two-electron redox transitions of selenocysteamine and selenocysteine. The 12 different, species-specific parameter values show close correlation with the respective selenolate basicities, providing a tool to estimate otherwise inaccessible site-specific selenolate-diselenide redox potentials of related moieties in large peptides and proteins. Keywords: selenocysteine; redox; disulfide 1. Introduction The role of selenium, the biological trace element and the related selenium-containing proteins (selenoproteins) has been described in numerous antioxidant processes [1]. Selenocysteine, known as the twenty-first amino acid, is the only selenium-containing building block of proteins that contains selenium. The majority of selenoproteins are enzymes (such as glutathione peroxidase [2], iodothyronine deiodinase [3], thioredoxin reductase [4]), most of which are involved in redox reactions. Their selenocysteine residue is the essential unit for their catalytic activity. A new, specific way to quantify redox properties at the submolecular level has recently been introduced to characterize thiols of biological importance (cysteine, cystamine, homocysteine and glutathione [5,6]; ovothiol A and penicillamine [5,7]). A major conclusion of these studies is that there is a close correlation between the thiolate basicities and the thiolate-disulfide redox properties [5–9]. The hypothesis of this work is that such a correlation between acid-base and redox characteristics exists for the selenium-analogues of the above compounds as well, namely for selenocysteine and selenocysteamine. We wish to demonstrate said correlation by determining the species-specific physico-chemical parameters of the acid-base and redox equilibria of the above compounds and extend the correlation to nuclear magnetic resonance (NMR) chemical shift values as well. In this work, the species-specific redox equilibria of two biogenic selenols: selenocysteamine (CysASeH) and selenocysteine (CysSeH) with dithiothreitol (DTT) were studied. The oxidation of these Antioxidants 2020, 9, 465; doi:10.3390/antiox9060465 www.mdpi.com/journal/antioxidants Antioxidants 2020, 9, x FOR PEER REVIEW 2 of 13 In this work, the species-specific redox equilibria of two biogenic selenols: selenocysteamine Antioxidants 2020, 9, 465 2 of 13 (CysASeH) and selenocysteine (CysSeH) with dithiothreitol (DTT) were studied. The oxidation of these compounds yields selenocystamine (CysASeSeCysA) and selenocystine (CysSeSeCys), compoundsrespectively. yieldsThe selenocystamineconstitutional formulae (CysASeSeCysA) of the studied and selenocystine selenium-containing (CysSeSeCys), compounds respectively. are Thedepicted constitutional in Figure formulae1. of the studied selenium-containing compounds are depicted in Figure1. Figure 1. The structure of the investigated selenols (left) and diselenides (right). Glutathione is known as a “gold standard”standard” in thiol-disulfidethiol-disulfide biochemistry, hence, every thiol-containing antioxidantantioxidant isis comparedcompared toto glutathione.glutathione. Moreover, Moreover, the species-specificspecies-specific physico-chemical acid-base [9] [9] and redox [5,6] [5,6] parameters of glutathione are well-characterized. However, previous works examining selenoproteins or selenium-containing peptides found that the diselenide bridge cannot be reducedreduced by glutathione [[10,11].10,11]. We We fo foundund that even a large excess of glutathione was ineineffectiveffective in reducing the studiedstudied diselenidediselenide compounds, confirmingconfirming the above observation. Thus, a more powerful reducing agentagent was needed to investigate selenolate-diselenide redox equilibria.equilibria. Based Based on on literature literature recommendations recommendations [8,12 ],[8,12], dithiothreitol dithiothreitol (DTT), a(DTT), stronger a reducingstronger agent,reducing was agent, chosen. was Dithiothreitol chosen. Dithiothreitol undergoesa unde one-steprgoes two-electron a one-step redoxtwo-el reaction,ectron redox resulting reaction, in the formation of oxidized dithiothreitol (DTT ) with an intramolecular disulfide in a six-membered ring. resulting in the formation of oxidized dithiothreitolox (DTTox) with an intramolecular disulfide in a Duringsix-membered the redox ring. processes During between the redox dithiothreitol processes and between other agents, dithiothreitol the presence and ofother the intermediateagents, the 2 compound,presence of the where intermediate only one ofcompound, the thiolate wher groupse only of one DTT of− theis oxidized thiolate groups is negligible of DTT [132−]. is The oxidized main physico-chemical properties of DTT are already described (logK = 10.1; logK = 9.2 [14]; E = 0.323 is negligible [13]. The main physico-chemical properties of DTT1 are already2 described (log◦ K1− = 10.1; V at pH = 7.0 [15]). logK2 = 9.2 [14]; E° = −0.323 V at pH = 7.0 [15]). To obtainobtain datadata describingdescribing selenolate-diselenideselenolate-diselenide redox equilibria comparablecomparable to those of 2 thiolate-disulfidethiolate-disulfide systems,systems, firstfirst thethe glutathione-DTTglutathione-DTT2− redoxredox reaction reaction was was investigated investigated (Figure (Figure 22).). 2 The general step-by-step scheme of selenolate-diselenide redox equilibria with DTT − is depicted in Figure3, where RSe − and RSeSeR stand for the reduced and oxidized form of the selenium-containing 2 compounds, respectively. The reaction between disulfides (e.g., oxidized glutathione) and DTT − is analogous (where RS− and RSSR stand for the thiolate and disulfide, respectively). Antioxidants 2020, 9, x FOR PEER REVIEW 3 of 13 Antioxidants 2020, 9, 465 3 of 13 Antioxidants 2020, 9, x FOR PEER REVIEW 3 of 13 Figure 2. The redox reaction between oxidized glutathione and dithiothreitol (DTT)2− dominant microspecies at the pH of blood. The general step-by-step scheme of selenolate-diselenide redox equilibria with DTT2− is depicted in Figure 3, where RSe− and RSeSeR stand for the reduced and oxidized form of the selenium-containing compounds, respectively. The reaction between disulfides (e.g., oxidized 2− − glutathione) and DTT is analogous (where RS and RSSR stand for the thiolate22 − and disulfide, Figure 2. TheThe redox reaction between oxidizedoxidized glutathioneglutathione andand dithiothreitoldithiothreitol (DTT)(DTT) − dominant respectively).microspecies at the pH of blood. The general step-by-step scheme of selenolate-diselenide redox equilibria with DTT2− is depicted in Figure 3, where RSe− and RSeSeR stand for the reduced and oxidized form of the selenium-containing compounds, respectively. The reaction between disulfides (e.g., oxidized glutathione) and DTT2− is analogous (where RS− and RSSR stand for the thiolate and disulfide, respectively). 2− 2 Figure 3. TheThe two-step two-step redox redox equilibria equilibria between between a adiselenide diselenide compound compound and and DTT DTT (reaction− (reaction I and I and II) II)followed followed by bytheir their aggregated aggregated one-step one-step net netreaction reaction (III). (III). Identical Identical reaction reaction schemes schemes are areapplicable applicable for fordisulfide disulfide analogues. analogues. The arrow The arrow in reaction in reaction II indica II indicatestes the low the probability low probability of formation of formation of the sulfur– of the sulfur–seleniumselenium bridge. bridge. 2 Since DTT −2− is highly driven towards the ring-closing second oxidation step [13], and diselenides Since DTT is highly driven towards the ring-closing second oxidation step [13], and 2 arediselenides more stable are more than stable the selenylsulfides than the selenylsulfi [16], thedes reaction [16], the betweenreaction between diselenides diselenides and DTT and− can DTT be2− Figure 3. The two-step redox equilibria between a diselenide compound and DTT2− (reaction I and II) reasonablycan be reasonably discussed discussed in terms ofin the terms net reaction.of the ne Thet reaction. conditional The equilibrium conditiona constantl equilibrium describing constant this followed by their aggregated
Recommended publications
  • Optical Properties and Denaturation by Guanidinium Chloride and Urea
    Biochem. J. (1977) 161, 321-331 321 Printed in Great Britain Optical Properties and Denaturation by Guanidinium Chloride and Urea of the Adenosine Triphosphatase of Micrococcus lysodeikticus A COMPARISON OF FOUR MOLECULAR FORMS OF THE ENZYME By MANUEL NIETO and JUAN A. AYALA Seccion de Bioquimica de Membranas, Centro de Investigaciones Biol6gicas, Veldzquez 144, Madrid-6, Spain (Received 7 July 1976) 1. The fluorescence and circular dichroism offour homogeneous preparations of ATPase (adenosine triphosphatase) fromMicrococcus lysodeikticus differing in molecular structure and enzymic properties were examined at pH 7.5 and 25°C. Emission was maximum at 325 and 335nm and the relative intensities at these wavelengths may be used to characterize the different ATPase preparations. The circular-dichroism spectra exhibited negative extrema at 208 and 220nm, and the relative value of the molar ellipticity at these wave- lengths was also different for each molecular form ofthe enzyme. 2. The four preparations undergo two consecutive major unfolding transitions in guanidinium chloride (midpoints at 0.94 and 1.5 M denaturant), with concomitant destruction ofthe quaternary structure of the protein. A comparatively minor alteration in the ATPase structure also occurred in 0.05-0.2M-guanidine and led to complete inactivation ofthe enzyme. The inactivation and the first unfolding transition were reversible by dilution of the denaturant; the transition with midpoint at 1.5M-guanidine was irreversible. 3. Similar results were obtained in urea, except that the successive transitions had midpoints at concentrations of denaturant of 0.4, 2.0 and 4.5M. Low concentrations of urea caused a noticeable activation of the enzyme activity and alterations of the electrophoretic mobility of the ATPase.
    [Show full text]
  • Mechanistic Insights on the Reduction of Glutathione Disulfide by Protein Disulfide Isomerase
    Mechanistic insights on the reduction of glutathione disulfide by protein disulfide isomerase Rui P. P. Nevesa, Pedro Alexandrino Fernandesa, and Maria João Ramosa,1 aUnidade de Ciências Biomoleculares Aplicadas, Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal Edited by Donald G. Truhlar, University of Minnesota, Minneapolis, MN, and approved May 9, 2017 (received for review November 22, 2016) We explore the enzymatic mechanism of the reduction of glutathione of enzymes, which are responsible for the reduction and isomer- disulfide (GSSG) by the reduced a domain of human protein disulfide ization of disulfide bonds, through thiol-disulfide exchange. isomerase (hPDI) with atomistic resolution. We use classical molecular dynamics and hybrid quantum mechanics/molecular mechanics cal- Structure and Function of PDI culations at the mPW1N/6–311+G(2d,2p):FF99SB//mPW1N/6–31G(d): Human protein disulfide isomerase (hPDI) is a U-shaped enzyme FF99SB level. The reaction proceeds in two stages: (i) a thiol-disulfide with 508 residues. Its tertiary structure is composed of four exchange through nucleophilic attack of the Cys53-thiolate to the thioredoxin-like domains (a, b, b′,anda′) and a fifth tail-shaped c GSSG-disulfide followed by the deprotonation of Cys56-thiol by domain (Fig. 1) (14, 15). The maximum activity of hPDI is observed Glu47-carboxylate and (ii) a second thiol-disulfide exchange between when all domains of PDI contribute synergistically to its function (16). the Cys56-thiolate and the mixed disulfide intermediate formed in Similar to thioredoxin, the a and a′ domains have a catalytic the first step.
    [Show full text]
  • DTT (Dithiothreitol)
    FT-054721(284251) DTT (DithioThreitol) Product Information Catalog #: 054721, 5g 054722, 25g Name: DTT (DithioThreitol), Biotech grade CAS: 3483-12-3 Molecular Weight : MW: 154.25 Typical values: Purity: >99.4% Abs@283nm (0.1M, water):<0.05 Loss on drying: <0.5% other names: mp: 39-43°C (2S,3S)-1,4-Bis-sulfanylbutane-2,3-diol Oxidized DTT: <0.5% Threo-1,4-dimercaptobutane-2,3-diol Protease: none DL-Threo-1,4-dimercapto-2,3-butanediol DNase: none 1,4-Dithio-DL-threitol, ±-Threo-1,4-dimercapto- RNase: none 2,3-butanediol Storage: -20°C (or 4°C short term). (M) Cleland's reagent, Reductacryl Protect from moisture. Keep dry Harmful / Irritant; R: 36/37/38; S: 26-36 Cleland’s Reagent, or Dithiothreitol (DTT), is a water-soluble reducing reagent used for various applications in biotechnology, biology and biochemistry : - reduces quantitatively disulfides, generating sulfhydryls (used typically at 1-10mM for protein SS reduction) - reduction of proteins before SDS-PAGE analysis, studies of protein structure and function (Kaji 1993) - keep sulfhydryl groups of biomolecules in the reduced state - protects biomolecules in various applications (enzymes or receptors, living cells under ionizing radiations) - prevents the fading of fluorescence such as FITC labeled conjugates (Picciolo 1984) Technical and Scientific Information Dithiothreitol (DTT), also known as Cleland's reagent, is a small-molecule redox reagent . Its oxidized form is a disulfide-bonded 6-membered ring. DTT has an epimeric ('sister') compound, dithioerythritol (DTE, #123378). DTT is highly soluble in water (clear solution, OD<0.05 at 0.02M), but also in ethanol, chloroform, ether and ethyl acetate.
    [Show full text]
  • NAC and Vitamin D Restore CNS Glutathione in Endotoxin-Sensitized Neonatal Hypoxic-Ischemic Rats
    antioxidants Article NAC and Vitamin D Restore CNS Glutathione in Endotoxin-Sensitized Neonatal Hypoxic-Ischemic Rats Lauren E. Adams 1,†, Hunter G. Moss 2,† , Danielle W. Lowe 3,† , Truman Brown 2, Donald B. Wiest 4, Bruce W. Hollis 1, Inderjit Singh 1 and Dorothea D. Jenkins 1,* 1 Department of Pediatrics, 10 McLellan Banks Dr, Medical University of South Carolina, Charleston, SC 29425, USA; [email protected] (L.E.A.); [email protected] (B.W.H.); [email protected] (I.S.) 2 Center for Biomedical Imaging, Department of Radiology, Medical University of South Carolina, 68 President St. Room 205, Charleston, SC 29425, USA; [email protected] (H.G.M.); [email protected] (T.B.) 3 Department of Psychiatry, Medical University of South Carolina, 67 Presidents St., MSC 861, Charleston, SC 29425, USA; [email protected] 4 Department of Pharmacy and Clinical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-843-792-2112 † Three first authors contributed equally to this work. Abstract: Therapeutic hypothermia does not improve outcomes in neonatal hypoxia ischemia (HI) complicated by perinatal infection, due to well-described, pre-existing oxidative stress and neuroin- flammation that shorten the therapeutic window. For effective neuroprotection post-injury, we must first define and then target CNS metabolomic changes immediately after endotoxin-sensitized HI (LPS-HI). We hypothesized that LPS-HI would acutely deplete reduced glutathione (GSH), indicating overwhelming oxidative stress in spite of hypothermia treatment in neonatal rats. Post-natal day 7 Citation: Adams, L.E.; Moss, H.G.; rats were randomized to sham ligation, or severe LPS-HI (0.5 mg/kg 4 h before right carotid artery Lowe, D.W.; Brown, T.; Wiest, D.B.; ligation, 90 min 8% O2), followed by hypothermia alone or with N-acetylcysteine (25 mg/kg) and Hollis, B.W.; Singh, I.; Jenkins, D.D.
    [Show full text]
  • Irect Measurement of the Equilibrium Between Glutathione and Dithiothreitol by High Performant;E Liquid Chromatography
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 291. number 2. 296-298 FEES 10260 October 199 I 0 1991 Federation of European Biochemical Societies 00145793/911$3 50 ADONIS 0014579391009708 irect measurement of the equilibrium between glutathione and dithiothreitol by high performant;e liquid chromatography Mei-Hmg Chau and Jeffrey W. Nelson Deprtnlent of Btochemrsrry, Loutsrana Stare Unwersr~y, &ton. Rouge, LA 90803-1806, USA Received 17 Yuly 1991 The equthbrmm constant between reduced glutathlone (GSH), oxldlzed glutathlone (GSSG), reduced chthlothreltol (DTT:!), and oxidized dlthrothreltol (DTT~) has been directly measured by Hugh performance hqutd chromatography analysis of cqulhbrmm mixtures The equihbnum constdnt at 2YC for the reactlon GSSG + DTT:! + 2GSH -t De vanes from approximately 200 M, below pH 8, to approxnnately 2800 M. above pH 11 The observed pH dependence IS generally consistent with pubhshed values of acid dlssoclatIon constants of these thlols Glutathlonc. Dlthlothrenol, Thiol reagent, Dlsulfide exchange 1. INTRODUCTION We are currently carrymg out equihbnum studies of dlsulfide exchange of a protem usmg both dlthiothreitol Dlthiothreltol and glutathione are common reagents and glutathlone Surprismgly, the equihbrmm constant for ths study of disulfide exchange reactions of protein between dlthlothreltol and glutathlone obtamed mdl- &sulfides [l-9] The stabtlity of a dlsulfide bond m a rectly m our studies, approximately 120 M at pH 7 0 protein can be represented by the equihbrium constant (unpubhshed data), was found to be different from pre- of the thlol-dlsulfide exchange between that protem dl- vlously reported values.
    [Show full text]
  • Essential Role of Coenzyme a in Pyruvate Dehydrogenase Kinase Activity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 148, number 2 FEBSLETTERS November1982 Essential role of coenzyme A in pyruvate dehydrogenase kinase activity E.A. Siess and O.H. Wieland Forschergruppe Diabetes and Institut fiir Klinische Chemie, Sttidtisches Krankenhaus Miinchen-Schwabing, Kd;lner Platz 1, D-8000 Miinchen 40, FRG Received 16 September 1982 The rate of phosphorylation and concomitant inactivation of purified pig heart muscle pyruvate de- hydrogenase complex by intrinsic kinase (EC 2.7.1.99) is markedly accelerated by the addition of co- enzyme A to the incubation medium, showing a half-maximum effect at 1.8 PM. The pantetheine moiety is the effective part of the coenzyme A molecule. The free thiol group is prerequisite for the stimulatory action, acetyl-CoA, benzoyl-CoA or CoAS-SCoA being ineffectual. The thiol’s specificity is evidenced by showing that dithiothreitol, 2-mercaptoethanol or glutathione up to 5 mM failed to replace coenzyme A. The possibility is considered that coenzyme A might act as a physiological modifier of pyruvate dehydrogenase kinase activity. Pyruvate dehydrogenase kinase Phosphorylation Coenzyme A Heart muscle 1. INTRODUCTION together with 50 ~1 0.1 M Na2CO3, 200 ~1 30 mM Tris-HCl buffer (pH 8.6) and 20 ~132 PM CuSO4 Recent work on highly purified pyruvate de- at 25°C. After 2 h, >90% of the initially titratable hydrogenase complex (PDH) from bovine kidney thiol content [4] had disappeared. [Y-~~P]ATP was suggests that protein thiol-disulfide exchange purchased from the Radiochemical Centre is involved in the regulation of PDH kinase (Amersham).
    [Show full text]
  • DL-Dithiothreitol Solution (646563)
    DL-Dithiothreitol Solution 1 M in H2O Catalog Number 646563 Store at Room Temperature CAS RN 3483-12-3 Precautions and Disclaimer Synonyms: Cleland's Reagent, DTT For R&D use only. Not for drug, household, or other Molecular Formula: C4H10O2S2 uses. Please consult the Safety Data Sheet for Molecular Weight: 154.3 information regarding hazards and safe handling practices. Product Description Dithiothreitol (DTT) is used in proteomics applications Preparation Instructions to maintain sulfhydryl (–SH) groups in the reduced state This product is supplied as a ready-to-use 1 M solution. and for quantitative reduction of disulfide (–S–S–) groups, as described by Cleland in his pioneering work Storage/Stability in the 1960's.1 By reducing the disulfide bonds in a The unopened product is stable for at least two years at protein sample, the protein can be more effectively room temperature. fragmented and analyzed. Procedure DTT is a commonly used reagent in buffers because of SDS-PAGE sample preparation with DTT its ability to reduce the oxidation state of a protein 1. Dilute the 1 M DTT Solution to 50 mM by adding sample, and thereby, preserve enzymatic activity.2 50 L of the 1 M DTT Solution to 950 L of DTT is oxidized to the cyclic disulfide during the ultrapure water. reduction of other disulfides in solution. Disulfide 2. Aliquots of the 50 mM can be added to the samples reduction is typically complete in minutes at pH 8. Its to a final concentration of 5 mM. usefulness stems from its water solubility, reduced 3.
    [Show full text]
  • Electrophoretic Resolution of Three Major Insulin Receptor Structures
    Proc. Natl. Acad. Sci. USA Vol. 77, No. 12, pp. 7137-7141, December 1980 Biochemistry Electrophoretic resolution of three major insulin receptor structures with unique subunit stoichiometries (crosslinking/plasma membranes/receptor heterogeneity/disulfide-linked subunits/insulin action) JOAN MASSAGUE, PAUL F. PILCH, AND MICHAEL P. CZECH Section of Physiological Chemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912 Communicated by Herman M. Kalckar, August 29, 1980 ABSTRACT Plasma membrane insulin receptors, affinity erogeneous population of three major insulin receptor structures labeled by covalent crosslinking to receptor-bound "25I-labeled in membranes from all rat and human tissues studied. The insulin, are shown to appear as a heterogeneous population of resolution of these heterogeneous insulin receptor structures three major disulfide-Iinked complexes (Mr 350,000, 320,000, and 290,000) upon electrophoresis in highly porous dodecyl clarifies the apparent diversity of results obtained in different sulfate/polyacrylamide gels in the absence of reductant. This laboratories concerning subunit components of the receptor. pattern is consistent in all rat and human tissues that were an- Our results reveal that the three receptor structures resolved alyzed. Upon reduction of disulfide bonds, each of these re- consist of the Mr 125,000-135,000, Mr 90,000, and Mr ceptor structures is dissociated in two successive steps. Low 45,000-49,000 subunits, identified in various laboratories (1-9), concentrations of dithiothreitol promote a first step of disulfide in unique stoichiometries. bond reduction in which the Mr 350,000 species splits into a Mr 210,000 form and the Mr 290,000 species splits into a Mr 160,000 form.
    [Show full text]
  • As Sensitive Plasma Biomarkers of Oxidative Stress Received: 22 June 2018 Xiaoyun Fu1,2, Shelby A
    www.nature.com/scientificreports OPEN Cysteine Disulfdes (Cys-ss-X) as Sensitive Plasma Biomarkers of Oxidative Stress Received: 22 June 2018 Xiaoyun Fu1,2, Shelby A. Cate1, Melissa Dominguez1, Warren Osborn1, Tahsin Özpolat 1, Accepted: 6 November 2018 Barbara A. Konkle1,2, Junmei Chen1 & José A. López1,2 Published: xx xx xxxx We developed a high-throughput mass spectrometry–based method to simultaneously quantify numerous small-molecule thiols and disulfdes in blood plasma. Application of this assay to analyze plasma from patients with known oxidative stress (sickle cell disease and sepsis) and from a patient with sickle cell disease treated with the antioxidant N-acetylcysteine suggests that cysteine disulfdes, in particular protein-bound cysteine, serve as sensitive plasma biomarkers for the extent of oxidative stress and efectiveness of antioxidant treatment. Oxidative stress accompanies a wide variety of diseases1, including sickle cell disease (SCD), HIV/AIDS, and rheumatoid arthritis, and antioxidant therapy is emerging as a pharmacological strategy for treating diseases in which oxidative stress is known or suspected to be elevated2. Te ability to measure oxidative stress quantitatively is important for understanding disease mechanisms and monitoring the efectiveness of antioxidant treatments. Among biomarkers of oxidative stress, the ratio of reduced glutathione (GSH) to glutathione disulfde (GSSG) is frequently measured in various cell types, owing to the millimolar intracellular concentrations of these glu- tathione species and the broad availability of assays for their measurement, including many that are commercially available1,3,4. Despite these advantages, GSH/GSSG is not well suited as a plasma biomarker of oxidative stress due to the low plasma concentrations of GSH species, which are usually in the low micromolar range, and the low sensitivity of the assays.
    [Show full text]
  • The Responses of Glutathione and Antioxidant Enzymes to Hyperoxia in Developing Lung
    LUNG GLUTATHIONE RESPONSE TO HYPEROXIA 8 19 Physiol 55: 1849- 1853 alkalosis on cerebral blood flow in cats. Stroke 5:324-329 21. Lou HC, Lassen NA. Fnis-Hansen B 1978 Decreased cerebral blood flow after 24. Arvidsson S, Haggendal E, Winso 1 1981 Influence on cerebral blood flow of administration of sodium bicarbonate in the distressed newborn infant. Acta infusions of sodium bicarbonate during respiratory acidosis and alkalosis in Neurol Scand 57:239-247 the dog. Acta Anesthesiol Scand 25:146-I52 22. Rapoport SI 1970 Effect ofconcentrated solutions on blood-brain barrier. Am 25. Pannier JL, Weyne J, Demeester G, Leusen 1 1978 Effects of non-respiratory J Physiol 219270-274 alkalosis on brain tissue and cerebral blood flow in rats with damaged blood- 23. Pannier JL, Demeester MS, Leuscn 1 1974 Thc influence of nonrcspiratory brain hamer. Stroke 9:354-359 003 1-3998/85/1908-08 19$0:.00/0 PEDIATRIC RESEARCH Vol. 19, No. 8, 1985 Copyright 8 1985 International Pediatric Research Foundation, Inc Prinled in U.S.A. The Responses of Glutathione and Antioxidant Enzymes to Hyperoxia in Developing Lung JOSEPH B. WARSHAW, CHARLIE W. WILSON, 111, KOTARO SAITO, AND RUSSELL A. PROUGH Departmmls qfP~diufricsarid Biochemistr,~, The University of Texas Health Srience Center ul DaNas. Dallas, Texas 75235 ABSTRACT. Total glutathione levels and the activity of Abbreviations enzymes associated with antioxidant protection in neonatal lung are increased in response to hyperoxia. GIutathione SOD, superoxide dismutiase levels in developing rat lung decreased from 24 nmol/mg GSH, reduced glutathione protein on day 19 of gestation to approximately 12 nmol/ GSSG, oxidized glutathione mg protein at birth.
    [Show full text]
  • Microglial Glutathione and Glutamate: Regulation Mechanisms
    Microglial glutathione and glutamate: Regulation mechanisms Victoria Anne Honey Fry UCL Institute of Neurology A thesis submitted for the degree of Doctor of Philosophy (Ph.D.) 1 I, Victoria Fry, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract Microglia, the immune cells of the central nervous system (CNS), are important in the protection of the CNS, but may be implicated in the pathogenesis of neuroinflammatory disease. Upon activation, microglia produce reactive oxygen and nitrogen species; intracellular antioxidants are therefore likely to be important in their self-defence. Here, it was confirmed that cultured microglia contain high levels of glutathione, the predominant intracellular antioxidant in mammalian cells. The activation of microglia with lipopolysaccharide (LPS) or LPS + interferon- was shown to affect their glutathione levels. GSH levels in primary microglia and those of the BV-2 cell line increased upon activation, whilst levels in N9 microglial cells decreased. - Microglial glutathione synthesis is dependent upon cystine uptake via the xc transporter, which exchanges cystine and glutamate. Glutamate is an excitatory neurotransmitter whose extracellular concentration is tightly regulated by excitatory amino acid transporters, as high levels cause toxicity to neurones and other CNS cell types through overstimulation of - glutamate receptors or by causing reversal of xc transporters. Following exposure to LPS, increased extracellular glutamate and increased levels of messenger ribonucleic acid - (mRNA) for xCT, the specific subunit of xc , were observed in BV-2 and primary microglial cells, suggesting upregulated GSH synthesis.
    [Show full text]
  • Free Radical-Induced Oxidation of Docosahexaenoate Lipids
    CLINICAL AND ANIMAL STUDIES OF LIPID-DERIVED PROTEIN MODIFICATIONS IN AUTISM, KIDNEY DIALYSIS, KERATITIS AND AGE-RELATED MACULAR DEGENERATION by LIANG LU Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Thesis Advisor: Dr. Robert G. Salomon Department of Chemistry CASE WESTERN RESERVE UNIVERSITY August 2007 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. This thesis is dedicated to my parents, my husband, my daughter, and my sisters. iii TABLE OF CONTENTS Table of Contents iv List of Schemes ix List of Tables xi List of Figures xiv Acknowledgements xxiv List of Abbreviations and Acronyms xxvi Abstract xxxiii CLINICAL AND ANIMAL STUDIES OF LIPID-DERIVED PROTEIN MODIFICATIONS IN AUTISM, KIDNEY DIALYSIS, KERATITIS AND AGE-RELATED MACULAR DEGENERATION Chapter 1. Introduction 1 1.1. Oxidative stress and aging 2 1.2. Lipid oxidation 4 1.3. 4-Hydroxy-2-nonenal and its protein adducts 6 1.4. Levuglandins, isolevuglandins and their protein adducts 7 1.5. Oxidatively truncated phospholipids and carboxyalkylpyrrole modifications of proteins 10 1.6. Carboxyethylpyrroles (CEPs) and their potential clinical applications 11 1.7. References 17 Chapter 2. Syntheses and Characterization of Carboxyethylpyrroles 27 2.1. Background 28 2.2. Results and Discussion 30 2.2.1. Paal-Knoor synthesis using 4,7-dioxoheptanoic acid is ineffective iv for the preparation of CEPs 30 2.2.2.
    [Show full text]