Auscultation of Abdominal Arterial Murmurs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Studies on Renal Arteries Origin from the Aorta in Respect to Superior Mesenteric Artery in Polish Population
ONLINE FIRST This is a provisional PDF only. Copyedited and fully formatted version will be made available soon. ISSN: 0015-5659 e-ISSN: 1644-3284 Studies on renal arteries origin from the aorta in respect to superior mesenteric artery in Polish population Authors: Henryk Sośnik, Katarzyna Sośnik DOI: 10.5603/FM.a2019.0065 Article type: ORIGINAL ARTICLES Submitted: 2019-02-10 Accepted: 2019-05-19 Published online: 2019-05-28 This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed. Powered by TCPDF (www.tcpdf.org) Studies on renal arteries origin from the aorta in respect to superior mesenteric artery in Polish population Studies on renal arteries origin from the aorta in respect to SMA in Polish population Henryk Sośnik, Katarzyna Sośnik Department of Pathomorphology, Regional Specialist Hospital, Wroclaw, Poland Address for correspondence: Henryk Sośnik, MD, PhD, ul. St. Jaracza 82B/4, 50–305 Wroclaw, Poland, tel. +48 71 79 14 129, e-mail: [email protected] Abstract Background: The aim of the study was to determine the location of the branching of the renal arteries from the aorta in respect to superior mesenteric artery. Materials and methods: 324 vasculo-renal samples were collected from corpses ( 180 male and 144 female), and subject to x-ray contrasting and preparation. The distance between the branching of selected arteries from the superior mesenteric artery (SMA) was measured. Results were subject to statistical analysis. -
Everything I Need to Know About Renal Artery Stenosis
Patient Information Renal Services Everything I need to know about renal artery stenosis What is renal artery stenosis? Renal artery stenosis is the narrowing of the main blood vessel running to one or both of your kidneys. Why does renal artery stenosis occur? It is part of the process of arteriosclerosis (hardening of the arteries), that develops in very many of us as we get older. As well as becoming thicker and harder, the arteries develop fatty deposits in their walls which can cause narrowing. If the kidneys are affected there is generally also arterial disease (narrowing of the arteries) in other parts of the body, and often a family history of heart attack or stroke, or poor blood supply to the lower legs. Arteriosclerosis is a consequence of fat in our diet, combined with other factors such as smoking, high blood pressure and genetic factors inherited, it may develop faster if you have diabetes. What are the symptoms? You may have fluid retention, where the body holds too much water and this can cause breathlessness, however often there are no symptoms. The arterial narrowing does not cause pain, and urine is passed normally. As a result this is usually a problem we detect when other tests are done, for example, routine blood test to measure how well your kidneys are working. What are the complications of renal artery stenosis? Kidney failure, if the kidneys have a poor blood supply, they may stop working. This can occur if the artery blocks off suddenly or more gradually if there is serious narrowing. -
Practical Cardiac Auscultation
LWW/CCNQ LWWJ306-08 March 7, 2007 23:32 Char Count= Crit Care Nurs Q Vol. 30, No. 2, pp. 166–180 Copyright c 2007 Wolters Kluwer Health | Lippincott Williams & Wilkins Practical Cardiac Auscultation Daniel M. Shindler, MD, FACC This article focuses on the practical use of the stethoscope. The art of the cardiac physical exam- ination includes skillful auscultation. The article provides the author’s personal approach to the patient for the purpose of best hearing, recognizing, and interpreting heart sounds and murmurs. It should be used as a brief introduction to the art of auscultation. This article also attempts to illustrate heart sounds and murmurs by using words and letters to phonate the sounds, and by presenting practical clinical examples where auscultation clearly influences cardiac diagnosis and treatment. The clinical sections attempt to go beyond what is available in standard textbooks by providing information and stethoscope techniques that are valuable and useful at the bedside. Key words: auscultation, murmur, stethoscope HIS article focuses on the practical use mastered at the bedside. This article also at- T of the stethoscope. The art of the cardiac tempts to illustrate heart sounds and mur- physical examination includes skillful auscul- murs by using words and letters to phonate tation. Even in an era of advanced easily avail- the sounds, and by presenting practical clin- able technological bedside diagnostic tech- ical examples where auscultation clearly in- niques such as echocardiography, there is still fluences cardiac diagnosis and treatment. We an important role for the hands-on approach begin by discussing proper stethoscope selec- to the patient for the purpose of evaluat- tion and use. -
Intra-Operative Auscultation of Heart and Lungs Sounds: the Importance of Sound Transmission
Intra-Operative Auscultation of more readily when stethoscopes are used. Loeb Heart and Lungs Sounds: (2) has reported that the response time to detect an abnormal value on an intraoperative The Importance of Sound monitor display and it was 61 seconds with 16% Transmission of the abnormal values not being recognized in 5 minutes. Whereas, Copper et al, (3) found the Anthony V. Beran, PhD* meantime between an event and detection with a stethoscope was 34 seconds. This Introduction suggests that changes in cardio-pulmonary function may be detected more readily with a Sometimes we put so much emphasis on stethoscope (1). Auscultation of heart and lung electronic monitoring devices we forget that sounds during perioperative period is useful our own senses often detect things before a only if the Esophageal Stethoscope provides machine can. Seeing condensation in airway strong, clear transmission of the sounds to the device or clear mask can serve to indicate the anesthesia provider. This study evaluates the presence of ventilation before the signal has sound transmission properties of several even reached the equipment. Sometimes the Esophageal Stethoscopes currently available in sense of smell can be the first thing to aid in the the market. detection of a disconnected airway device or circuit. Similarly, in some situations listening for Methods the presence of abnormal heart or airway sounds can help detect the onset of critical To evaluate the sound transmission properties incidents quicker than electronic monitors. But of the Esophageal Stethoscopes in vitro study in recent years the art of listening has changed was performed. A system that simulates the in the practice of Anesthesia. -
Bilateral Superior Accessory Renal Arteries - Its Embryological Basis and Surgical Importance – a Case Report G
ical C lin as C e Praveen Kumar, J Clinic Case Reports 2012, 2:1 f R o l e DOI: 10.4172/2165-7920.1000e105 a p n o r r t u s o J Journal of Clinical Case Reports ISSN: 2165-7920 Editorial Open Access Bilateral Superior Accessory Renal Arteries - Its Embryological Basis and Surgical Importance – A Case Report G. Praveen Kumar* Department of Anatomy, Pinnamaneni Siddhartha Institute of Medical sciences & research foundation, Chinoutpalli, Gannavaram, India Abstract During routine dissection of a male cadaver, in the Department of Anatomy, Pinnamaneni Siddhartha Institute of Medical science, presence of bilateral superior accessory renal arteries was noted. They took origin from the antero lateral aspect of abdominal aorta, below the origin of superior mesenteric artery and above the origin of main renal arteries. The main right and left renal arteries took their origin from the lateral aspect of abdominal aorta, at the level of the origin of inferior mesenteric artery. Proper knowledge of variations of the arteries supplying the kidney is essential not only to the anatomists but also to the vascular surgeons, urologists, nephrologists and radiologists. Such vascular variations as noted in the present study have been explained in light of embryogenic development. Keywords: Renal artery; Abdominal aorta; Superior mesenteric symptoms of urinary tract infection, or calculus formation may result artery; Inferior mesenteric artery; Accessory renal arteries [2]. Introduction The accessory renal artery variations can be explained in the light of embryonic development from the lateral mesonephric branches of the Knowledge of the anatomy of the renal blood supply is important dorsal aorta and its molecular regulation. -
Inferior Phrenic Artery, Variations in Origin and Clinical Implications – a Case Study
IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) E-ISSN: 2279-0853, p-ISSN: 2279-0861. Volume 7, Issue 6 (Mar.- Apr. 2013), PP 46-48 www.iosrjournals.org Inferior Phrenic Artery, Variations in Origin and Clinical Implications – A Case Study 1 2 3 Dr.Anupama D, Dr.R.Lakshmi Prabha Subhash .Dr. B.S Suresh Assistant Professor. Dept. Of Anatomy, SSMC. Tumkur.Karnataka.India Professor & HOD. Dept. Of Anatomy, SSMC. Tumkur.Karnataka.India Associate professor.Dept. Of Anatomy, SSMC. Tumkur.Karnataka.India Abstract:Variations in the branching pattern of abdominal aorta are quite common, knowledge of which is required to avoid complications during surgical interventions involving the posterior abdominal wall. Inferior Phrenic Arteries, the lateral aortic branches usually arise from Abdominal Aorta ,just above the level of celiac trunk. Occasionally they arise from a common aortic origin with celiac trunk, or from the celiac trunk itself or from the renal artery. This study describes the anomalous origin of this lateral or para aortic branches in the light of embryological and surgical basis. Knowledge of such variations has important clinical significance in abdominal operations like renal transplantation, laparoscopic surgery, and radiological procedures in the upper abdomen or invasive arterial procedures . Keywords: Abdominal Aorta, Celiac Trunk(Ct), Diaphragm, Inferior Phrenic Artery (Ipa), Retro Peritoneal, Renal Artery(Ra). I. Introduction The abdominal aorta begins from the level of 12th thoracic vertebra after passing through the Osseo aponeurotic hiatus of diaphragm. It courses downwards with Inferior vena cava to its right and terminates at the level of 4th lumbar vertebra by dividing in to two terminal branches. -
Renal Artery Duplex Cedar Rapids, IA 52403 800/982-1959 Or 319/364-7101
PCI Medical Pavilion 202 10th St. SE, Suite 225 Renal Artery Duplex Cedar Rapids, IA 52403 800/982-1959 or 319/364-7101 What is a Renal Artery Duplex? Jones Regional Medical Center A Renal Artery Duplex is an ultrasound test that uses high frequency 1795 Highway 64 East sound waves (ultrasound) to examine the renal arteries and measure Anamosa, IA 52205 the blood flow through the arteries. These arteries can narrow or become blocked. This may result in kidney failure or hypertension (high 800/982-1959 or 319-481-6213 blood pressure.) Why is a Renal Artery Duplex performed? Regional Medical Center The renal arteries provide blood flow to the kidneys. Renal artery disease, including narrowing (stenosis) due to atherosclerosis, can 709 W Main Street, Suite 100 result in reduced blood-flow to the kidney. This can cause hypertension. Manchester, IA 52057 Renal artery stenosis is the most common correctable cause of 800/982-1959 or 563/927-2855 hypertension. Long-standing, untreated renal artery disease is also an important cause of kidney failure. What can I expect during the Renal Artery Duplex? Unitypoint.org/cardiologyclinic • A personal history describing current vascular symptoms and family history will be obtained. • You will be asked to remove outer clothing, put on a patient gown, and lie on the bed • The lights in the room will be dimmed so the ultrasound screen can be seen clearly • The sonographer will place a water-soluble gel on your abdomen and firmly press against your skin with a transducer. The transducer is a small hand-held device that resembles a microphone. -
Jugular Venous Pressure
NURSING Jugular Venous Pressure: Measuring PRACTICE & SKILL What is Measuring Jugular Venous Pressure? Measuring jugular venous pressure (JVP) is a noninvasive physical examination technique used to indirectly measure central venous pressure(i.e., the pressure of the blood in the superior and inferior vena cava close to the right atrium). It is a part of a complete cardiovascular assessment. (For more information on cardiovascular assessment in adults, see Nursing Practice & Skill ... Physical Assessment: Performing a Cardiovascular Assessment in Adults ) › What: Measuring JVP is a screening mechanism to identify abnormalities in venous return, blood volume, and right heart hemodynamics › How: JVP is determined by measuring the vertical distance between the sternal angle and the highest point of the visible venous pulsation in the internal jugular vein orthe height of the column of blood in the external jugular vein › Where: JVP can be measured in inpatient, outpatient, and residential settings › Who: Nurses, nurse practitioners, physician assistants, and treating clinicians can measure JVP as part of a complete cardiovascular assessment What is the Desired Outcome of Measuring Jugular Venous Pressure? › The desired outcome of measuring JVP is to establish the patient’s JVP within the normal range or for abnormal JVP to be identified so that appropriate treatment may be initiated. Patients’ level of activity should not be affected by having had the JVP measured ICD-9 Why is Measuring Jugular Venous Pressure Important? 89.62 › The JVP is -
The Carotid Bruit on September 25, 2021 by Guest
AUGUST 2002 221 Pract Neurol: first published as 10.1046/j.1474-7766.2002.00078.x on 1 August 2002. Downloaded from INTRODUCTION When faced with a patient who may have had a NEUROLOGICAL SIGN stroke or transient ischaemic attack (TIA), one needs to ask oneself some simple questions: was the event vascular?; where was the brain lesion, and hence its vascular territory?; what was the cause? A careful history and focused physical examination are essential steps in getting the right answers. Although one can learn a great deal about the state of a patient’s arteries from expensive vascular imaging techniques, this does not make simple auscultation of the neck for carotid bruits redundant. In this brief review, we will therefore defi ne the place of the bruit in the diagnosis and management of patients with suspected TIA or stroke. WHY ARE CAROTID BRUITS IMPORTANT? A bruit over the carotid region is important because it may indicate the presence of athero- sclerotic plaque in the carotid arteries. Throm- boembolism from atherosclerotic plaque at the carotid artery bifurcation is a major cause of TIA and ischaemic stroke. Plaques occur preferentially at the carotid bifurcation, usually fi rst on the posterior wall of the internal carotid artery origin. The growth of these plaques and their subsequent disintegration, surface ulcera- tion, and capacity to throw off emboli into the Figure 1 Where to listen for a brain and eye determines the pattern of subse- bifurcation/internal carotid quent symptoms. The presence of an arterial http://pn.bmj.com/ artery origin bruit – high up bruit arising from stenosis at the origin of the under the angle of the jaw. -
Coarctation of the Abdominal Aorta and Renal Artery Stenosis Related to an Umbilical Artery Catheter Placement in a Neonate
Coarctation of the Abdominal Aorta and Renal Artery Stenosis Related to an Umbilical Artery Catheter Placement in a Neonate Raymond D. Adelman, MD*, and Rose Ellen Morrell, MD‡ ABSTRACT. Umbilical artery catheters have been asso- developed Gram-positive sepsis, meningitis, and necrotizing en- ciated with thrombotic complications, such as partial or terocolitis that was managed medically. On day 5, a systolic mur- complete occlusion in the aorta, the renal arteries, and mur was diagnosed as patent ductus arteriosus. A flush aortogram other blood vessels. There have been few reports of the was performed through the umbilical catheter, which revealed a normal abdominal aorta and normal renal arteries. On the same long-term consequences of either symptomatic or asymp- day, the patent ductus arteriosus was ligated. tomatic thrombi. We report a patient, now 22 years of age, The patient was noted at 2 months of age to be hypertensive born with a normal aorta, who developed hypertension at with systolic blood pressures up to 125 mm Hg. Blood pressure the age of 2 months after use of an umbilical artery measurements in 4 extremities revealed no differences between catheter. An intravenous pylegram and nuclear renal scan the upper and lower extremities. An intravenous pyelogram were compatible with occlusion of left renal artery and of showed a large right kidney but nonvisualization of the left. A the distal aorta. At 6 months of age, the patient presented nuclear renal scan suggested faint visualization of the left kidney; with reduced femoral pulses. Angiography demonstrated no radioisotope was visualized in the distal aorta, compatible with an acquired coarctation of the abdominal aorta and renal an aortic thrombosis. -
Chest Auscultation: Presence/Absence and Equality of Normal/Abnormal and Adventitious Breath Sounds and Heart Sounds A
Northwest Community EMS System Continuing Education: January 2012 RESPIRATORY ASSESSMENT Independent Study Materials Connie J. Mattera, M.S., R.N., EMT-P COGNITIVE OBJECTIVES Upon completion of the class, independent study materials and post-test question bank, each participant will independently do the following with a degree of accuracy that meets or exceeds the standards established for their scope of practice: 1. Integrate complex knowledge of pulmonary anatomy, physiology, & pathophysiology to sequence the steps of an organized physical exam using four maneuvers of assessment (inspection, palpation, percussion, and auscultation) and appropriate technique for patients of all ages. (National EMS Education Standards) 2. Integrate assessment findings in pts who present w/ respiratory distress to form an accurate field impression. This includes developing a list of differential diagnoses using higher order thinking and critical reasoning. (National EMS Education Standards) 3. Describe the signs and symptoms of compromised ventilations/inadequate gas exchange. 4. Recognize the three immediate life-threatening thoracic injuries that must be detected and resuscitated during the “B” portion of the primary assessment. 5. Explain the difference between pulse oximetry and capnography monitoring and the type of information that can be obtained from each of them. 6. Compare and contrast those patients who need supplemental oxygen and those that would be harmed by hyperoxia, giving an explanation of the risks associated with each. 7. Select the correct oxygen delivery device and liter flow to support ventilations and oxygenation in a patient with ventilatory distress, impaired gas exchange or ineffective breathing patterns including those patients who benefit from CPAP. 8. Explain the components to obtain when assessing a patient history using SAMPLE and OPQRST. -
Laboratory 8 - Urinary and Reproductive Systems
Laboratory 8 - Urinary and Reproductive Systems Urinary System Please read before starting: It is easy to damage the structures of the reproductive system as you expose structures associated with excretion, so exercise caution as you do this. Please also note that we will have drawings available as well to help you find and identify the structures described below. The major blood vessels serving the kidneys are the Renal renal artery and the renal pyramid vein., which are located deep in the parietal peritoneum. The renal artery is a branch of the dorsal aorta that comes off Renal further caudal than the cranial pelvis mesenteric artery. Dissect the left kidney in situ, dividing it into dorsal and ventral portions by making a frontal section along the outer periphery. Observe the renal cortex renal medulla (next layer in) renal pyramids renal pelvis ureter (see above diagram) The kidneys include a variety of structures including an arterial supply, a venous return, extensive capillary networks around each nephron and then, of course, the filtration and reabsorption apparatus. These structures are primarily composed of nephrons (the basic functional unit of the kidney) and the ducts which carry urine away from the nephron (the collecting ducts and larger ducts eventually draining these into the ureters from each kidney. The renal pyramids contain the extensions of the nephrons into the renal medulla (the Loops of Henle) and the collecting ducts. Urine is eventually emptied into the renal pelvis before leaving the kidneys in the ureters. The ureters leaves the kidneys medially at approximately the midpoint of the organs and then run caudal to the urinary bladder.