Prion Evolvability and the Hazard of Atypical Scrapie in Small Ruminants

Total Page:16

File Type:pdf, Size:1020Kb

Prion Evolvability and the Hazard of Atypical Scrapie in Small Ruminants Open Vets. 2020; 1: 1-14 Review Article David B. Adams* Prion Evolvability and the Hazard of Atypical Scrapie in Small Ruminants https://doi.org/10.1515/ovs-2020-0001 received April 22, 2019; accepted August 20, 2019 1 Introduction The discipline of evolutionary biology provides special Abstract: Observations on strain behaviour and direct insights into the natural history of disease and is vital demonstrations of natural selection establish that the to the practice of medicine and public health across scrapie agent and prions in general are able to evolve. all species [1, 2]. Evolutionary biology has been applied Accordingly, it is conceivable that atypical non-conta- to scrapie disease in sheep [3] where it showed that the gious scrapie in sheep and goats can transform to classi- scrapie agent, a prion or ‘proteinaceous infectious agent’ cal contagious scrapie under particular circumstances. In [4], and prions in general possess the functions of varia- consequence, atypical scrapie can be regarded as a latent tion, reproduction and heritability that drive evolution [5]. hazard that warrants comprehensive risk assessment Prions are thus endowed with evolvability or the capac- and biosecurity preparedness planning. Evidence for this ity for generating adaptive diversity and evolving through proposition comes from differences in the expression of natural selection [6, 7] and can be regarded as objects atypical and classical scrapie that may make scrapie con- of selection [8, 9]. The extended evolutionary synthesis tagious, historical records of scrapie in Western Europe, [10] is significant in this regard. It caters for evolution in and contemporary accounts of the epidemiology of atyp- the absence of a nucleic acid based genome and allows ical scrapie. Biosecurity preparedness can be based on for evolutionary mechanisms involving prions or pro- current knowledge of pathophysiology and epidemiol- teins that acquire alternative conformations that become ogy and can be built around a three-stage model for the self-propagating [11]. endogenous emergence of a propagating epidemic of The evolvability of prions is substantiated by strain scrapie. The first stage concerns the occurrence of atypi- behaviour in the scrapie agent and has important prac- cal scrapie. The second stage concerns the acquisition of tical consequences for scrapie in sheep [3]. It justifies communicability in prion populations provided by atyp- the proposition that non-contagious idiopathic forms of ical scrapie and the third stage concerns circumstances scrapie, represented arbitrarily by atypical scrapie [12] can allowing disease transmission and the initiation of a be the precursor of classical contagious scrapie. Accord- propagating epidemic. The range of component causes ingly, atypical scrapie is identified as a latent hazard that envisaged for possible outbreaks of endogenous classical can convert to a contagious form under particular circum- scrapie is broad. However, exposure of sheep and goats to stances. The question now is what these circumstances cyanobacterial toxins qualifies for special attention. might be and how they might be managed. The present study reviews relevant knowledge on the natural history of scrapie and the known behaviour of Keywords: Proteostasis; Biosecurity; Neurotoxin; Neuro- prions in the context of evolutionary biology and patho- degenerative physiology. The objective is a preliminary understanding of factors involved in the possible endogenous emergence of classical contagious scrapie from atypical non-conta- gious scrapie and the intent is to inform risk management. Accordingly, (1) differences between atypical and classical scrapie are recapitulated, (2) possible cellular and molec- ular mechanisms underlying the idiopathic genesis of *Corresponding author: David B. Adams, 24 Noala Street, Aranda, atypical scrapie are investigated, (3) the historical record ACT 2614, Australia, Tel: +61 2 6161 4825, E-mail: dadams@home- of scrapie disease in sheep is probed for possible inde- mail.com.au pendent appearances of scrapie at different places and Open Access. © 2019 David B. Adams., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 License. 2 D. B. Adams different times, and (4) accounts of the epidemiological tests based on immunoblotting and immunohistochem- aspects of atypical and Nor98 strain scrapie are analysed. istry. This work used an outstanding collection of case histories to classify the clinical expression of scrapie into five typical syndromes of classical scrapie and five atypi- cal syndromes of scrapie-like illness in sheep. More recent 2 Differences between atypical and studies in 2006 and 2008 [16, 21] list 33 different clini- classical scrapie cal signs of scrapie from four different scientific reports and clustered them under headings of ‘general signs’, A consensus view from the Panel on Biological Hazards ‘changes in behaviour’, ‘changes in sensitivity’, ‘changes of the European Food Safety Authority states that atypical in locomotion’ and ‘other signs’. Symptomatology varied scrapie ‘does not present, epidemiologically, like an infec- according to place and sheep population. Altered mental tious disease’ [12] (EFSA, 2014). A more recent review [13] status, pruritus and wool loss were the most frequent of scrapie disease states similarly that atypical scrapie has initial signs seen in Norway and Spain whereas ataxia a separate aetiology from classical scrapie and is “sponta- and head tremours were the most frequent initial seen in neous or transmits very poorly under natural conditions”. Ireland and both ataxia and pruritis were seen in Italy. Unlike classical scrapie, atypical scrapie is not listed by Characteristics of classical scrapie and atypical scrapie the World Organization for Animal Health (OIE) as a noti- that differ in kind as opposed to degree are the nature and fiable disease [14]. distribution of lesions and deposits of deformed or mis- For present purposes, atypical scrapie is postulated folded prion protein (PrPSc ) in the central nervous system, as non-contagious scrapie and its comparison with con- the tissue distribution of infectivity and misfolded prion tagious classical scrapie can identify features associated protein (PrPSc) and the immunoblot pattern. These first with the capability for contagion. In this regard, future two differences may point to mechanisms that are present instances where atypical scrapie is found to be contagious in classical scrapie and which are required for atypical will not refute the possibility of non-contagious scrapie scrapie to become contagious. The significance of the or the cogency of earlier accounts of atypical scrapie. third difference, the presence of a fourth band of 15 kDa in Instead, they will fortify the present thesis that atypical the immunoblot pattern seen atypical scrapie, is unclear. scrapie has a potential for transforming to contagious As to the first difference, there can be no contagion scrapie when particular circumstances apply. if prions are restricted to the central nervous system and A review of key aspects of classical and atypical thus have no access to the portals of exit known to be scrapie, including Nor98 scrapie [15], shows that some involved in the transmission of contagious scrapie. In characteristics in classical compared with atypical scrapie this regard, PrPSc has been found in the brain of sheep differ in degree whereas other characteristics differ in with atypical scrapie but not in peripheral tissues [22, 23]. kind [3]. Differences in degree may reflect the diversity of By contrast, PrPSc is found in both brain and peripheral variants within population of prions involved in classical tissues in sheep with classical scrapie [24-26]. Particular- and atypical scrapie and point to scope for evolutionary ities in the nature and distribution of lesions and in the change. Differences in kind, however, may foreshadow central nervous system of sheep with atypical or classical gains-of-function in prion populations that can allow the scrapie [27, 28] may identify portals of exit of the scrapie conversion of non-contagious atypical scrapie to conta- agent to peripheral tissues and suggest possible patho- gious scrapie. physiological mechanisms for the migration of scrapie Characters of classical scrapie and atypical scrapie prions to the rest of the body. that differ in degree as opposed to kind are age of onset The second difference in kind between atypical and of disease, symptomatology and duration of disease. classical scrapie is also relevant to the portals of exit that The tendency for atypical scrapie to occur in older sheep make scrapie contagious. The presence of PrPSc and infec- [16-18] may reflect the aetiological importance of host and tivity in the lymphoreticular tissues and cells is a constant environment rather than exposure to exogenous infec- feature in sheep with contagious classical scrapie [24- tion, which drives classical scrapie. Classical and atypical 26]. In contrast, PrPSc is virtually restricted to the central scrapie have exceptionally diverse signs and symptoms nervous system and is scant in the lymphoreticular that vary according to place, time and population and tissues and cells of sheep with atypical scrapie [22, 28]. signal the extent of variation in the scrapie agent. For This difference is crucial because the well-known migra- example, the work of Parry [19, 20], carried out from 1950 tory behaviour of lymphocytes and mononuclear phago-
Recommended publications
  • Scrapie and Tagging/Tattooing Your Goats and Sheep 2017 PRESENTATION for ASHTABULA COUNTY 4-H by STEPHANIE MAROUS What Is Scrapie?
    Scrapie and Tagging/Tattooing Your Goats and Sheep 2017 PRESENTATION FOR ASHTABULA COUNTY 4-H BY STEPHANIE MAROUS What is Scrapie? Scrapie is a fatal degenerative disease of the central nervous system of sheep and goats. (Basically it is the sheep and goat version of Mad Cow Disease) Scrapie is commonly spread from a female to her offspring. Other members of the herd can catch it through contact with the placenta or its fluids. Scrapie can only truly be tested after an animal is dead. This is done by testing the brain tissue and looking for the disease. SYMPTOMS Symptoms may take 2-5 years to appear Head and Neck Tremors Skin Itching (this is where the term scrapie comes from) Inability to control legs (remember this attacks the Nervous System) Good appetite accompanied by weight loss. Remember just because an animal exhibits these symptoms does not mean it has scrapie. Consult your Vet to rule out possible reasons for symptoms. Scrapie Eradication Program The National Scrapie Eradication Program, coordinated by the U.S. Department of Agriculture’s (USDA) Animal and Plant Health Inspection Service (APHIS), has reduced the prevalence of scrapie by over 85 percent. To find and eliminate the last few cases in the United States, the cooperation of sheep and goat producers throughout the country is needed. Producers are required to follow Federal and State regulations for officially identifying their sheep and goats. Producers must also keep herd records showing what new animals were added and what animals left the herd/flock Scrapie Eradication Program APHIS provides official plastic or metal eartags free of charge to producers.
    [Show full text]
  • WO 2016/110768 Al 14 July 2016 (14.07.2016) W P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/110768 Al 14 July 2016 (14.07.2016) W P O PCT (51) International Patent Classification: Rue de la Blancherie 11, 1022 Chavannes-pres-Renens A61K 35/74 (2015.01) A61P 25/28 (2006.01) (CH). HANNA, Walid; Avenue des Bains 40, 1007 Lausanne (CH). FAK, Frida; Qvantenborgsvagen 4B, 227 (21) International Application Number: 38 Lund (SE). MARUNGRUANG, Nittaya; Ostra Varvs- PCT/IB2015/059945 gatan 20A, 2 11 75 Malmo (SE). (22) International Filing Date: (74) Agent: ROLAND, Andre; c/o ANDRE ROLAND S.A., 23 December 2015 (23. 12.2015) P.O. Box 5107, 1002 Lausanne (CH). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/IB20 15/050 127 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 7 January 2015 (07.01 .2015) IB HN, HR, HU, ID, IL, ΓΝ , IR, IS, JP, KE, KG, KN, KP, KR, PCT/IB2015/053957 27 May 2015 (27.05.2015) IB KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (71) Applicant: ECOLE POLYTECHNIQUE FEDERALE MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, DE LAUSANNE (EPFL) [CH/CH]; EPFL-TTO, EPFL PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, Innovation Park J, 1015 Lausanne (CH).
    [Show full text]
  • Chronic Wasting Disease and Atypical Forms of Bovine Spongiform
    Journal of General Virology (2012), 93, 1624–1629 DOI 10.1099/vir.0.042507-0 Short Chronic wasting disease and atypical forms of Communication bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein Rona Wilson,1 Chris Plinston,1 Nora Hunter,1 Cristina Casalone,2 Cristiano Corona,2 Fabrizio Tagliavini,3 Silvia Suardi,3 Margherita Ruggerone,3 Fabio Moda,3 Silvia Graziano,4 Marco Sbriccoli,4 Franco Cardone,4 Maurizio Pocchiari,4 Loredana Ingrosso,4 Thierry Baron,5 Juergen Richt,63 Olivier Andreoletti,7 Marion Simmons,8 Richard Lockey,8 Jean C. Manson1 and Rona M. Barron1 Correspondence 1Neuropathogenesis Division, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Rona M. Barron Midlothian, UK [email protected] 2Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Turin, Italy 3IRCCS Foundation, ‘Carlo Besta’ Neurological Institute, Milan, Italy 4Department of Cell Biology and Neurosciences, Istituto Superiore di Sanita`, Viale Regina Elena 299, 00161 Rome, Italy 5Agence Nationale de Se´curite´ Sanitaire, Lyon, France 6USDA, ARS, National Animal Disease Center, PO Box 70, Ames, IA 50010, USA 7UMR 1225 Interactions Hoˆtes-Agents Pathoge`nes, INRA, Ecole Nationale Ve´te´rinaire, 23 chemin des Capelles, B.P. 87614, 31076 Toulouse Cedex 3, France 8Neuropathology Section, Department of Pathology and Host Susceptibility, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey KT15 3NB, UK The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt–Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans.
    [Show full text]
  • An Overview of the Disease and the National Scrapie Eradication Program
    Scrapie An overview of the disease and the National Scrapie Eradication Program Prepared by the Scrapie Management Team USDA, APHIS, Veterinary Services September, 2012 An Introduction to the National Scrapie Eradication Program This overview provides Federal and State regulatory personnel with a basic introduction to scrapie and the National Scrapie Eradication Program (NSEP). Since the association between BSE in cattle and variant CJD in humans was made in the mid-1990s, a great deal of research on TSE diseases has been done. Recognizing the importance of eliminating TSE diseases from food animal populations, in the past decade many countries around the world – including the United States – have initiated aggressive eradication programs for scrapie. How to Use this Document This introduction to scrapie briefly describes the disease and outlines the major elements of the National Scrapie Eradication Program (NSEP). This document is part of the National Scrapie Reference Library. The Reference Library is a collection of the major documents and templates relevant to the NSEP. Whenever a topic that has been summarized has more extensive information available, the relevant documents in the National Scrapie Reference Library are be referenced so the reader can learn more on the subject. This document has bookmarks for each section and then subsection for easier navigation. If the bookmarks panel is not already activated, click on the bookmarks icon along the upper left-hand side of the screen to open it. The bookmarks icon looks like this: . 1 | Page An Introduction to the National Scrapie Eradication Program Contents Learning Objectives ................................................................................................................................ 4 Section One: History of Scrapie in the United States ............................................................................
    [Show full text]
  • Redalyc.Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil
    Acta Scientiae Veterinariae ISSN: 1678-0345 [email protected] Universidade Federal do Rio Grande do Sul Brasil Souza Leal, Juliano; Pinto de Andrade, Caroline; Laizola Frainer Correa, Gabriel; Silva Boos, Gisele; Viezzer Bianchi, Matheus; Ceroni da Silva, Sergio; Lopes, Rui Fernando Felix; Driemeier, David Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil Acta Scientiae Veterinariae, vol. 43, 2015, pp. 1-7 Universidade Federal do Rio Grande do Sul Porto Alegre, Brasil Available in: http://www.redalyc.org/articulo.oa?id=289039764014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta Scientiae Veterinariae, 2015. 43(Suppl 1): 69. CASE REPORT ISSN 1679-9216 Pub. 69 Classical Scrapie Diagnosis in ARR/ARR Sheep in Brazil Juliano Souza Leal1,2, Caroline Pinto de Andrade2, Gabriel Laizola Frainer Correa2, Gisele Silva Boos2, Matheus Viezzer Bianchi2, Sergio Ceroni da Silva2, Rui Fernando Felix Lopes3 & David Driemeier2 ABSTRACT Background: Scrapie is a transmissible spongiform encephalopathy (TSE) that affects sheep flocks and goat herds. The transfer of animals or groups of these between sheep farms is associated with increased numbers of infected animals and with the susceptibility or the resistance to natural or classical scrapie form. Although several aspects linked to the etiology of the natural form of this infection remain unclarified, the role of an important genetic control in scrapie incidence has been proposed. Polymorphisms of the PrP gene (prion protein, or simply prion), mainly in codons 136, 154, and 171, have been associated with the risk of scrapie.
    [Show full text]
  • And Polyneuropathy (ATTR-PN) Amyloidosis
    Rintell et al. Orphanet J Rare Dis (2021) 16:70 https://doi.org/10.1186/s13023-021-01706-7 RESEARCH Open Access Patient and family experience with transthyretin amyloid cardiomyopathy (ATTR-CM) and polyneuropathy (ATTR-PN) amyloidosis: results of two focus groups David Rintell1* , Dena Heath2, Florencia Braga Mendendez3, Elizabeth Cross4, Theodore Cross4, Vincent Knobel5, Bruno Gagnon5, Cameron Turtle5, Alan Cohen5, Edward Kalmykov5 and Jonathan Fox5 Abstract Background: Transthyretin amyloidosis, or ATTR, is a progressive and debilitating rare proteopathy generally mani- fested as either transthyretin amyloid polyneuropathy (ATTR-PN) or transthyretin amyloid cardiomyopathy (ATTR- CM). Irrespective of the clinical presentation, afected patients manage a chronic and life-threatening condition that severely impacts their quality of life. Although the primary symptoms and diagnostic criteria for ATTR are increasingly being discussed in the medical literature, due in large part by continual advances in uncovering disease pathophysi- ology, there exists a surprising paucity of published data on the patient journey and family experience. In order to address this disparity, two focus groups, one for ATTR-CM and one for ATTR-PN, were convened and asked to describe the diagnostic process, symptoms, and impact on their own quality of life that was experienced from these rare and typically misdiagnosed illnesses. Results: Patients in both ATTR groups often underwent a long and difcult diagnostic odyssey characterized by seemingly nonspecifc physical manifestations resulting in mismanagement and suboptimal care, inadequate interventions, and delays in establishing the correct diagnosis, which was integral to determining the specialized treatment they needed. Collectively, patients with ATTR-CM and patients with ATTR-PN reported a similar number of symptoms, but the type of symptoms varied.
    [Show full text]
  • Molecular Mechanisms in Amyloid Disorders. Novel Treatment Options in Hereditary Cystatin C Amyloid Angiopathy
    Molecular Mechanisms in Amyloid Disorders. Novel Treatment Options in Hereditary Cystatin C Amyloid Angiopathy. Östner, Gustav 2013 Link to publication Citation for published version (APA): Östner, G. (2013). Molecular Mechanisms in Amyloid Disorders. Novel Treatment Options in Hereditary Cystatin C Amyloid Angiopathy. Division of Clinical Chemistry and Pharmacology, Faculty of Medicine, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Molecular Mechanisms in Amyloid Disorders Novel Treatment Options in Hereditary Cystatin C Amyloid Angiopathy GUSTAV RANHEIMER ÖSTNER Clinical Chemistry Department of Laboratory Medicine Lund University, Sweden DOCTORAL DISSERTATION by due permission of the Faculty of Medicine, Lund University, Sweden, to be defended at Wallenberg Neurocenter, Segerfalksalen, Sölvegatan 17, Lund, Saturday 14th of September 2013 at 9.15 a.m.
    [Show full text]
  • Macaca Fascicularis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ORIGINAL RESEARCH ARTICLE published: 10 Novemberprovided by 2014 Frontiers - Publisher Connector AGING NEUROSCIENCE doi: 10.3389/fnagi.2014.00313 Amyloid beta and the phoshorylated tau threonine 231 1–42 in brains of aged cynomolgus monkeys (Macaca fascicularis) Huda Shalahudin Darusman1,2*, Albert Gjedde 3,4,5,6, Dondin Sajuthi 7, Steven J. Schapiro1,8, Otto Kalliokoski 1,Yuli P.Kristianingrum9, Ekowati Handaryani 10 and Jann Hau 1 1 Department of Experimental Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark 2 Department of Anatomy, Physiology and Pharmacology, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia 3 Department of Neuroscience and Pharmacology, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark 4 Center for Functionally Integrative Neuroscience, University of Aarhus, Aarhus, Denmark 5 Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA 6 Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada 7 Primate Research Center, Bogor Agricultural University, Bogor, Indonesia 8 Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA 9 Department of Pathology, Faculty of Veterinary Medicine, University of Gajah Mada, Yogyakarta, Indonesia 10 Division of Pathology, Department of Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural
    [Show full text]
  • Genetic Variation in the Prion Protein Gene (PRNP) of Two Tunisian Goat Populations
    animals Article Genetic Variation in the Prion Protein Gene (PRNP) of Two Tunisian Goat Populations Samia Kdidi 1,* , Mohamed Habib Yahyaoui 1, Michela Conte 2, Barbara Chiappini 2, Mohamed Hammadi 1, Touhami Khorchani 1 and Gabriele Vaccari 2 1 Livestock and Wildlife Laboratory, Institut des Régions Arides, Université de Gabes, Route. El Djorf, Km 22.5, Medenine 4119, Tunisia; [email protected] (M.H.Y.); [email protected] (M.H.); [email protected] (T.K.) 2 Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; [email protected] (M.C.); [email protected] (B.C.); [email protected] (G.V.) * Correspondence: [email protected] or [email protected] Simple Summary: Goat production is contributing to the economic and social development of rural areas in arid lands, within harsh conditions of Southern Tunisia. In this geographic zone, there are two caprine populations: the native goat population and the crossed goat population. Genotyping goats for the prion protein gene (PRNP) allows us to estimate their level of genetic susceptibility to scrapie disease. In the present work, the Sanger sequencing method of the entire PRNP coding sequence was used to determine the different PRNP genotypes and haplotypes in two populations (116 animals). This study represents the first investigation on goats’ PRNP genetic variability in Tunisia, and the results are useful in the design of national breeding programs. Citation: Kdidi, S.; Yahyaoui, M.H.; Conte, M.; Chiappini, B.; Hammadi, Abstract: Scrapie is a fatal prion disease. It belongs to transmissible spongiform encephalopathies M.; Khorchani, T.; Vaccari, G.
    [Show full text]
  • Gut Microbiota, Probiotic Interventions, and Cognitive Function in the Elderly: a Review of Current Knowledge
    nutrients Review Gut Microbiota, Probiotic Interventions, and Cognitive Function in the Elderly: A Review of Current Knowledge Agata Białecka-D˛ebek 1,* , Dominika Granda 1 , Maria Karolina Szmidt 1 and Dorota Zieli ´nska 2 1 Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; [email protected] (D.G.); [email protected] (M.K.S.) 2 Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159c, 02-776 Warsaw, Poland; [email protected] * Correspondence: [email protected] Abstract: Changes in the composition and proportions of the gut microbiota may be associated with numerous diseases, including cognitive impairment. Over the recent years, the growing interest in this relation is observed, but there are still many unknowns, especially in the elderly. To the best of our knowledge, this is the first work that synthesizes and critically evaluates existing evidence on the possible association between human gut microbiota and cognitive function in the elderly. For this purpose, comprehensive literature searches were conducted using the electronic databases PubMed, Google Scholar, and ScienceDirect. The gut microbiota of cognitively healthy and impaired elderly people may differ in the diversity and abundance of individual taxes, but specific taxes cannot be identified. However, some tendencies to changing the Firmicutes/Bacteroidetes ratio can be Citation: Białecka-D˛ebek,A.; identified. Currently, clinical trials involving probiotics, prebiotics, and synbiotics supplementation Granda, D.; Szmidt, M.K.; Zieli´nska, have shown that there are premises for the claim that these factors can improve cognitive functions, D.
    [Show full text]
  • Scrapie Fact Sheet
    SCRAPIE FACT SHEET WHAT IS SCRAPIE? Scrapie is a fatal, degenerative disease that affects the central nervous system of sheep and goats. It is among a number of diseases classified as transmissible spongiform encephalopothies (TSE). There is no cure for scrapie. Scrapie is not a human health concern, but it is a reportable disease according to the Texas Administrative Code. Veterinarians, veterinary diagnostic laboratories or a person having care, custody or control of an animal must report scrapie to the Texas Animal Health Commission (TAHC) determine if a sheep or goat has scrapie require within 24 hours of diagnosis by calling 1-800-550- brain or lymphoid tissue (lymph nodes, tonsil, 8242. third eyelid, or rectoanal lymphoid tissue). Brain or lymphoid tissues may be collected from dead It is not completely understood how scrapie is animals or through a biopsy of live animals. passed from one animal to the next and apparently healthy sheep infected with scrapie can spread WHAT IF SCRAPIE IS DETECTED IN MY FLOCK? the disease. Sheep and goats are typically infected If scrapie is detected in your flock or your animals as young lambs or kids, though adult sheep and have been exposed to the disease, a TAHC or a goats can become infected. United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) SIGNS AND SYMPTOMS regulatory veterinarian will work closely with you Signs of scrapie develop slowly in sheep and goats. to consider all options for disease eradication It usually appears between two and five years using a customized plan to determine the status after infection; therefore, infected animals rarely of your flock, eradicate the disease if it is present, show clinical signs of infection before the age of and develop a monitoring schedule.
    [Show full text]
  • Light Chain Amyloidosis in the Era of Novel Agents
    Review Hematology 4 Light chain amyloidosis in the era of novel agents K. Beel, MD, PhD1 The development of new immunomodulatory therapies and their implementation in the treatment of mul- tiple myeloma in the past years, offer new perspectives for the treatment of other plasma cell dyscrasias. Light chain amyloidosis is historically associated with a very poor prognosis, despite the small size of the monoclonal plasma cell population, due to progressive amyloid deposition in vital organs. Hence, advances in treatment are eagerly awaited. Luckily, myeloma patients are paving the way for light chain amyloidosis treatment, clearly demonstrating that immunomodulatory drugs and proteasome inhibitors are capable of controlling plasma cell proliferation. Two recently published trials have shown a remarkable survival benefit with CyBorD, a bortezomib containing regimen in light chain amyloidosis, possibly setting a new standard for the treatment of this disease. In this article, we review current insights in the pathogenesis, diagnostic challenges, prognostic markers and available treatments for light chain amyloidosis. (Belg J Hematol 2013;4(4):120-126) Introduction Systemic light chain amyloidosis (AL) is caused by a malities occur both in MM and in AL. The translocation small clone of plasma cells, synthesising immunoglob- t(11;14) is more frequent in AL (40-50%), but in contrast ulin light chain polypeptides, which are prone to mis- to MM, it is associated with a worse prognosis, as is folding and interstitial deposition as insoluble β-sheet the presence of cyclin D1 overexpression. Of interest, fibrils. Without treatment, the associated proteotoxicity marrow plasma cells of amyloidosis patients exert an inevitably leads to progressive organ failure and death.
    [Show full text]