Conversion of Magnesium Bearing Radioactive Wastes Into Cementitious Binders

Total Page:16

File Type:pdf, Size:1020Kb

Conversion of Magnesium Bearing Radioactive Wastes Into Cementitious Binders Conversion of magnesium bearing radioactive wastes into cementitious binders Samuel Alexander Walling A thesis submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy Department of Materials Science and Engineering The University of Sheffield June 2016 i Abstract The UK radioactive waste inventory contains sizeable portions of magnesium hydroxide rich Magnox sludges due to corrosion of historic wastes. These require disposal in suitable wasteforms, with one potential being solidification in a composite Portland cement matrix. This thesis investigates magnesium hydroxide as a key component in the production of a cementitious binder, attempting to maximise waste loading and improve wasteform integrity through integral usage of these wastes. Hydrated magnesium silicate cements were produced through reaction with amorphous silica, creating stable products comprising a poorly crystalline M-S-H gel. The formulations for this product were optimised, water contents reduced through the use of a polyphosphate dispersant, and the nature of the M-S-H binder investigated further. This was determined to be a lizardite-like structure, which is a stable mineral. This system was modified through the addition of sodium aluminate, resulting in formulations with varying ratios of silicon to aluminium, each of which produced various zeolitic phases along with a magnesium aluminium hydrotalcite phase. This addition improved the setting characteristics of the binders, but did not produce any additional magnesium silicates binders. Additionally to this, sodium carbonate activated slag cement binders blended with magnesium hydroxide were assessed. These were slower setting, low heat cements which formed stable mineral phases, largely unaffected by the addition of magnesium hydroxide. The chemistry of these binders was assessed over an 18 month period, remaining stable throughout. Ultimately it was proved that magnesium hydroxide can be utilised to form cementitious binders, but only in the absence of competing calcium based binding systems. i Acknowledgements This thesis owes a great deal to the support and encouragement of countless people, most notably my academic supervisors Prof. John Provis and Dr. Hajime Kinoshita, without whom none of this would have been possible. I would also like to especially thank Dr. Susan Bernal López for getting me back on track when I’ve been lost, and for proof reading a great deal of this thesis in various stages. Thanks of course to my family and Laura Gardner for their (nearly) unending patience and help. Also thanks everyone within the Immobilisation Science Laboratory, especially Dr. Claire Corkhill, Dr. Oday Hussein, Dr. Martin Stennett and Prof. Neil Hyatt. I would like to express my gratitude to my funding bodies, the Engineering and Physical Sciences Research Council for funding, via the Nuclear FiRST program, and to the Nuclear Decommissioning Authority for funding also. I am indebted to Dr. Nick Collier and Dr. Steve Palethorpe for industrial input, to Dr. Dinu Iuga for assistance undertaking high-field NMR experiments, and to Andrew Mould, Ben Palmer and Dr. Nik Reeves for ongoing technical assistance. ii Publications Journal publications 1. Walling, S.A., Provis, J.L. (2016) “Magnesium based cements – a journey of 150 years, and cements for the future?” – Submitted to Chemical Reviews 2. Walling, S.A., Provis, J.L. (2016) “A discussion of the papers “Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements” and “Enhancing the carbonation of MgO cement porous blocks through improved curing conditions”, by C. Unluer & A. Al-Tabbaa”, Cement and Concrete Research, 79, 424-426. 3. Walling, S.A., Kinoshita, H., Bernal, S.A., Collier, N.C., Provis, J.L. (2015) “Structure and properties of binder gels formed in the system Mg(OH)2-SiO2- H2O for immobilisation of Magnox sludge”, Dalton Transactions, 44, 8126- 8137. 4. Gardner, L.J., Bernal, S.A., Walling, S.A., Corkhill, C.L., Provis, J.L., Hyatt, N.C. (2015) “Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag”, Cement and Concrete Research, 74, 78-87. 5. Walling, S.A., Bernal, S.A., Kinoshita, H., Collier, N.C., Provis, J.L. (2014) “Cementitious binders in the system Mg(OH)2-NaAlO2-SiO2-H2O”, Advances in Applied Ceramics, 113, 496-501. iii Conference publications 1. Walling, S.A., Bernal, S.A., Kinoshita, H., Provis, J.L. “Magnesium aluminium silicate hydrate (M-A-S-H) cements for Magnox sludge immobilisation”, Workshop on Waste Cementation, Sheffield, 17th September 2014. (Extended abstract and poster presentation) 2. Walling, S.A., Bernal, S.A., Collier, N.C., Kinoshita, H., Provis, J.L. “Sodium carbonate activated slag binders for the immobilisation of Magnox nuclear waste”, 34th Cement and Concrete Science Conference, Sheffield, UK, September 14-16th 2014. (Extended abstract and poster presentation) 3. Gardner L.J., Bernal S.A., Walling S.A., Corkhill C.L., Provis J.L., Hyatt N.C. “High-resolution multi-nuclear NMR characterisation of a novel GBFS/MKPC binder for nuclear waste encapsulation”, 34th Cement and Concrete Science Conference, Sheffield, 14-16th September 2014. 4. Walling, S.A., Bernal, S.A., Kinoshita, H., Collier, N.C., Provis, J.L. rd “Alternative binders in the systems Mg(OH)2-NaAlO2-SiO2-H2O”, 33 Cement and Concrete Science Conference, Portsmouth, 2-3rd September 2013 (Extended abstract and presentation) 5. Walling, S.A., Bryan, N.D., Kinoshita, H. “Magnesium silicate hydrate cement for Magnox sludge encapsulation” 32nd Cement and Concrete Science Conference, Belfast, 17-18th September 2012 (Extended abstract & poster presentation) iv Other abstracts / posters 1. Walling, S.A., Bernal, S.A., Kinoshita, H., Provis, J.L. “Conversion of magnesium bearing radioactive wastes into cementitious binders”, Nuclear Decommissioning Authority PhD Research Seminar for NDA-Sponsored PhD Projects, 14th January 2015, Manchester. (Abstract and poster presentation) 2. Walling, S.A., Collier, N., Kinoshita, H. “Magnox sludge as a cementitious binder” – Nuclear Decommissioning Authority PhD Research Seminar for NDA-Sponsored PhD Projects, 29th January 2013, Manchester. (Abstract) v Cement Chemical Nomenclature A = Al2O3 C = CaO F = Fe2O3 H = H2O M = MgO S = SiO2 Ĉ = CO2 C3A 3CaO·Al2O3 Ca3Al2O6 C4AF 4CaO·Al2O3·Fe2O3 2Ca2AlFeO5 C2S 2CaO·SiO2 Ca2SiO4 C3S 3CaO·SiO2 Ca3SiO5 CH CaO·H2O Ca(OH)2 MH MgO·H2O Mg(OH)2 vi Contents Abstract ........................................................................................................................ i Acknowledgements ..................................................................................................... ii Publications ................................................................................................................ iii Journal publications ................................................................................................ iii Conference publications .......................................................................................... iv Other abstracts / posters ........................................................................................... v 1 Introduction ......................................................................................................... 1 2 Literature Review ............................................................................................... 3 2.1 Nuclear power ............................................................................................... 3 2.2 Nuclear power in the UK ............................................................................... 7 2.2.1 History .................................................................................................... 7 2.2.2 Today.................................................................................................... 10 2.3 Nuclear waste .............................................................................................. 15 2.3.1 Nuclear waste in the UK ...................................................................... 16 2.4 Geological disposal ..................................................................................... 20 2.4.1 Geological disposal in the UK ............................................................. 20 2.5 Waste treatment ........................................................................................... 23 2.5.1 Vitrification .......................................................................................... 23 2.5.2 Cementation ......................................................................................... 24 2.5.3 Alternative ILW immobilisation technologies ..................................... 29 2.6 Magnox sludges ........................................................................................... 31 2.6.1 Other sources of Magnox sludge.......................................................... 34 2.6.2 Magnox sludge encapsulation .............................................................. 35 2.6.3 Alternative processing techniques........................................................ 36 2.6.4 Cement encapsulation of Magnox sludges ........................................... 37 2.7 Summary ..................................................................................................... 38 3 Review of magnesium cements ........................................................................ 39 3.1 Introduction ................................................................................................
Recommended publications
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • Advanced Nuclear Power and Fuel Cycle Technologies: Outlook and Policy Options
    Order Code RL34579 Advanced Nuclear Power and Fuel Cycle Technologies: Outlook and Policy Options July 11, 2008 Mark Holt Specialist in Energy Policy Resources, Science, and Industry Division Advanced Nuclear Power and Fuel Cycle Technologies: Outlook and Policy Options Summary Current U.S. nuclear energy policy focuses on the near-term construction of improved versions of existing nuclear power plants. All of today’s U.S. nuclear plants are light water reactors (LWRs), which are cooled by ordinary water. Under current policy, the highly radioactive spent nuclear fuel from LWRs is to be permanently disposed of in a deep underground repository. The Bush Administration is also promoting an aggressive U.S. effort to move beyond LWR technology into advanced reactors and fuel cycles. Specifically, the Global Nuclear Energy Partnership (GNEP), under the Department of Energy (DOE) is developing advanced reprocessing (or recycling) technologies to extract plutonium and uranium from spent nuclear fuel, as well as an advanced reactor that could fully destroy long-lived radioactive isotopes. DOE’s Generation IV Nuclear Energy Systems Initiative is developing other advanced reactor technologies that could be safer than LWRs and produce high-temperature heat to make hydrogen. DOE’s advanced nuclear technology programs date back to the early years of the Atomic Energy Commission in the 1940s and 1950s. In particular, it was widely believed that breeder reactors — designed to produce maximum amounts of plutonium from natural uranium — would be necessary for providing sufficient fuel for a large commercial nuclear power industry. Early research was also conducted on a wide variety of other power reactor concepts, some of which are still under active consideration.
    [Show full text]
  • WO 2012/028419 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 8 March 2012 (08.03.2012) WO 2012/028419 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C04B 28/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/EP201 1/063629 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 8 August 201 1 (08.08.201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (26) Publication Langi English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 1014577.9 2 September 2010 (02.09.2010) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): NO- kind of regional protection available): ARIPO (BW, GH, VACEM LIMITED [GB/GB]; The Incubator, Bessemer GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, Building, Imperial College, South Kensington London ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, SW7 2AZ (GB).
    [Show full text]
  • Preliminary Core Design Studies for the Advanced Burner Reactor Over a Wide Range of Conversion Ratios
    ANL-AFCI-177 Preliminary Core Design Studies for the Advanced Burner Reactor over a Wide Range of Conversion Ratios Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.
    [Show full text]
  • Effect of Admixing Fly Ash on Cementing Characteristics of Magnesium Oxychloride Cement
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-9 Issue-5, January 2021 Effect of Admixing Fly Ash on Cementing Characteristics of Magnesium Oxychloride Cement Rekha Sharma, R. N. Yadav Abstract: Investigations pertaining to the effect of admixing The manufacturing process of MOC binders is not only free different amounts of fly ash on setting characteristics and from any carbon dioxide gas emissions, but due to carbon compressive strength of magnesium oxychloride cement has been sequestration potential, these binders actually act as “sinks” carried out in this paper. For this purpose, two different dry mix for atmospheric carbon dioxide [13]. The important compositions (1:0 and 1:1) of magnesia and dolomite were commercial applications of MOC binders include floorings prepared and 5 %, 10 %, 15 % and 20 % fly ash were added in dry mixes. The dry mixes were then gauged with 24 °Be of industries and hospitals, grinding wheels and wall concentration of magnesium chloride gauging solution. It was insulation panels due to its marble like gloss. The industrial observed that initial and final setting times of cement blocks tend applications of MOC cement has been limited because of the to increase with increasing amount of fly ash in dry mix. MOC associated problems of poor water resistance, volume cement blocks of 1:1 composition admixed with fly ash displayed instability, cracking and sweating etc. The magnesium good cementing characteristics. oxychloride binder system exhibits excellent bonding Keywords: Compressive strength, fly ash, Gauging solution, capacity to a large variety of organic and inorganic Inert filler, MOC, Setting time.
    [Show full text]
  • Small Modular Reactors – Key to Future Nuclear Power Generation in the U.S.1,2
    Small Modular Reactors – Key to Future Nuclear Power Generation in the U.S.1,2 Robert Rosner and Stephen Goldberg Energy Policy Institute at Chicago The Harris School of Public Policy Studies Contributor: Joseph S. Hezir, Principal, EOP Foundation, Inc. Technical Paper, Revision 1 November, 2011 1 The research described in this paper was funded by the U.S. DOE through Argonne National Laboratory, which is operated by UChicago Argonne, LLC under contract No. DE-AC02-06CH1357. This report was prepared as an account of work sponsored by the United States Department of Energy. Neither the United States Government nor any agency thereof, nor the University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or the institutional opinions of the University of Chicago. 2 This paper is a major update of an earlier paper, July 2011. This
    [Show full text]
  • Nuclear Graphite for High Temperature Reactors
    Nuclear Graphite for High temperature Reactors B J Marsden AEA Technology Risley, Warrington Cheshire, WA3 6AT, UK Abstract The cores and reflectors in modem High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design, see Table 1. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable. The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modem HTRs. HTR Graphite Component Design and Irradiation Environment The details of the HTRs, which have, or are being, been built and operated, are listed in Table 1.
    [Show full text]
  • Fundamentals of Nuclear Power
    Fundamentals of Nuclear Power Juan S. Giraldo Douglas J. Gotham David G. Nderitu Paul V. Preckel Darla J. Mize State Utility Forecasting Group December 2012 Table of Contents List of Figures .................................................................................................................................. iii List of Tables ................................................................................................................................... iv Acronyms and Abbreviations ........................................................................................................... v Glossary ........................................................................................................................................... vi Foreword ........................................................................................................................................ vii 1. Overview ............................................................................................................................. 1 1.1 Current state of nuclear power generation in the U.S. ......................................... 1 1.2 Nuclear power around the world ........................................................................... 4 2. Nuclear Energy .................................................................................................................... 9 2.1 How nuclear power plants generate electricity ..................................................... 9 2.2 Radioactive decay .................................................................................................
    [Show full text]
  • Foam Glass Lightened Sorel's Cement Composites Doped with Coal Fly
    materials Article Foam Glass Lightened Sorel’s Cement Composites Doped with Coal Fly Ash Adam Pivák 1 , Milena Pavlíková 1 , Martina Záleská 1 , Michal Lojka 2, Anna-Marie Lauermannová 2 , Ivana Faltysová 2, OndˇrejJankovský 2 and Zbyšek Pavlík 1,* 1 Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic; [email protected] (A.P.); [email protected] (M.P.); [email protected] (M.Z.) 2 Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; [email protected] (M.L.); [email protected] (A.-M.L.); [email protected] (I.F.); [email protected] (O.J.) * Correspondence: [email protected]; Tel.: +420-224-354-371 Abstract: Lightweight Sorel’s cement composites doped with coal fly ash were produced and tested. Commercially available foam granulate was used as lightening aggregate. For comparison, reference composites made of magnesium oxychloride cement (MOC) and quartz sand were tested as well. The performed experiments included X-ray diffraction, X-ray fluorescence, scanning electron microscopy, light microscopy, and energy dispersive spectroscopy analyses. The macro- and microstructural parameters, mechanical resistance, stiffness, hygric, and thermal parameters of the 28-days matured composites were also researched. The combined use of foam glass and fly ash enabled to get a material of low weight, high porosity, sufficient strength and stiffness, low water imbibition, and Citation: Pivák, A.; Pavlíková, M.; greatly improved thermal insulation performance.
    [Show full text]
  • Carbon Dioxide Uptake by MOC-Based Materials
    applied sciences Article Carbon Dioxide Uptake by MOC-Based Materials OndˇrejJankovský 1, Michal Lojka 1, Anna-Marie Lauermannová 1, Filip Antonˇcík 1, Milena Pavlíková 2, Zbyšek Pavlík 2 and David Sedmidubský 1,* 1 Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; [email protected] (O.J.); [email protected] (M.L.); [email protected] (A.-M.L.); fi[email protected] (F.A.) 2 Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic; [email protected] (M.P.); [email protected] (Z.P.) * Correspondence: [email protected]; Tel.: +420-2-2044-4122 Received: 6 March 2020; Accepted: 24 March 2020; Published: 26 March 2020 Featured Application: The highest potential of magnesium oxychloride cement (MOC) is its capability to be used as a component of low-energy building composite materials while acting as a CO2 sink. The results of this contribution also show that MOC can be used as a binder in advanced building materials that have particular properties, and therefore specific application potentials. Formation and hardening of this material are rather fast, so the material can be used in quick repairs as well as a protection layer. This property is also beneficial for use in prefabrication, due to the possibility of unmolding after a shorter time compared to Portland cement (PC) materials, so the whole production process can be considered more effective. Somewhat significant importance should be given to its ability to capture CO2, which not only makes it more eco-friendly, but also improves its mechanical properties.
    [Show full text]
  • Zenker, Stephanie F., Ed. Books For
    DOCUMENT RESUME ED 415 506 CS 216 144 AUTHOR Stover, Lois T., Ed.; Zenker, Stephanie F., Ed. TITLE Books for You: An Annotated Booklist for Senior High. Thirteenth Edition. NCTE Bibliography Series. INSTITUTION National Council of Teachers of English, Urbana, IL. ISBN ISBN-0-8141-0368-5 ISSN ISSN-1051-4740 PUB DATE 1997-00-00 NOTE 465p.; For the 1995 edition, see ED 384 916. Foreword by Chris Crutcher. AVAILABLE FROM National Council of Teachers of English, 1111 W. Kenyon Road, Urbana, IL 61801-1096 (Stock No. 03685: $16.95 members, $22.95 nonmembers). PUB TYPE Reference Materials Bibliographies (131) EDRS PRICE MF01/PC19 Plus Postage. DESCRIPTORS *Adolescent Literature; Adolescents; Annotated Bibliographies; *Fiction; High School Students; High Schools; *Independent Reading; *Nonfiction; *Reading Interests; *Reading Material Selection; Reading Motivation; Recreational Reading; Thematic Approach IDENTIFIERS Multicultural Materials; *Trade Books ABSTRACT Designed to help teachers, students, and parents identify engaging and insightful books for young adults, this book presents annotations of over 1,400 books published between 1994 and 1996. The book begins with a foreword by young adult author, Chris Crutcher, a former reluctant high school reader, that discusses what books have meant to him. Annotations in the book are grouped by subject into 40 thematic chapters, including "Adventure and Survival"; "Animals and Pets"; "Classics"; "Death and Dying"; "Fantasy"; "Horror"; "Human Rights"; "Poetry and Drama"; "Romance"; "Science Fiction"; "War"; and "Westerns and the Old West." Annotations in the book provide full bibliographic information, a concise summary, notations identifying world literature, multicultural, and easy reading title, and notations about any awards the book has won.
    [Show full text]
  • PRISM Sodium Fast Reactor Licensing Modernization Project Demonstration
    Modernization of Technical Requirements for Licensing of Advanced Non-Light Water Reactors PRISM Sodium Fast Reactor Licensing Modernization Project Demonstration Project Report Issued Final Authors: Thomas Hicks, Matthew Warner, Gary Miller, Jonathan Li Document Number SC-29980-201 December 2018 Prepared for: U.S. Department of Energy (DOE) Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 Issued final by: Jan. 29th, 2019 ________________________________________________ ____________________ Amir Afzali, Next Generation Licensing and Policy Director Date Southern Company Services PRISM Sodium Fast Reactor Licensing Modernization Project Demonstration Disclaimer This report was prepared as an account of work sponsored by an agency of the United States (U.S.) Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, nor Southern Company Services, Inc., nor any of its employees, nor any of its subcontractors, nor any of its sponsors or co-funders, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The
    [Show full text]