Persistent Currents and Magnetization in Two-Dimensional Magnetic Quantum Systems

Total Page:16

File Type:pdf, Size:1020Kb

Persistent Currents and Magnetization in Two-Dimensional Magnetic Quantum Systems FR9800312 PERSISTENT CURRENTS and MAGNETIZATION in TWO-DIMENSIONAL MAGNETIC QUANTUM SYSTEMS Jean DESBOIS, Stephane OUVRY and Christophe TEXIER Division de Physique Theorique 1, IPN, Orsay Fr-91406 Abstract Persistent currents and magnetization are considered for a two-dimensional electron (or gas of electrons) coupled to various magnetic fields. Thermodynamic formulae for the magnetization and the persistent current are established and the "classical" relationship between current and magnetization is shown to hold for systems invariant both by translation and rotation. Applications are given, including the point vortex superposed to aft homogeneous magnetic field, the quantum Hall geometry (an electric field and an homogeneous magnetic field) and the random magnetic impurity problem (a random distribution of point vortices). PACS numbers: 05.30.-d, 05.40.+J, ll.10.-z IPNO/TH 97-43 December 1997 1 Unite de Recherche des Universites Paris 11 et Paris 6 associee au CNRS 29-43 Introduction Since the pioneering work of Bloch [1], several questions concerning persistent currents have been answered. The conducting ring case has been largely discussed in the literature [2], as well as the persistent current due to a point-like vortex [3]. However, many questions remain open. For example, we might ask about standard relationships such as M = IV (2) where /, M, E, V, $ are, respectively, the persistent current, magnetization, energy, area (denoted by V as volume in two dimensions) and magnetic flux through the system. These relations are clearly understood in the case of a ring. Do they apply to more general, for instance infinite, systems? More precisely, are they still correct, and if yes, in which case? The aim of this paper is to clarify these points in the case of two-dimensional systems. We will show that (2) holds true as soon as the system is invariant by translation and rotation. We will also insist on the role of the spin coupling, which happens to be crucial in the case of point vortices. We will examplify these considerations for an electron (or gas of electrons) coupled to - a point vortex superposed to an homogeneous magnetic field, - an uniform electric field and an homogeneous magnetic field (quantum Hall geometry), - a distribution of point-like vortices randomly dropped onto the plane according to Poisson's law, modelising disordered magnetic systems (analytical and numerical). The case of electrons on a ring threaded by a flux, and electrons in a plane coupled to a point vortex will be revisited in Appendix A. Some technical details on harmonic regularization for computing partition functions and the so called "Landau counting rule" will be given in Appendix B. 2 Basic Definitions and Formalism Consider the two-dimensional quantum mechanical problem of an electron with Hamiltonian (we set the electron mass and the Planck constant me = h = 1) e + V- -czB (3) V and A are, respectively, the scalar and vector potential (B = V x A) and crz/2 is the electron spin. The local current is (v = p- eA) j(?)=e-(v\r)(r\ + \r)(r\v) (4) The total magnetization is by definition e M=\j dr{rx{]{r)))-k+ -(az) (5) where k is the unit vector perpendicular to the plane and ( ) means average over Boltzmann or Fermi-Dirac distributions. In the Boltzmann case, one obtains the thermal magnetization We want to relate the thermal magnetization to a thermodynamical quantity. To this aim, we add a fictitious uniform magnetic field B' perpendicular to the plane. In the symmetric gauge, its vector potential is eA' = (e/2)B' x r. H becomes H(B') with the partition function Zp{B') = Trje"^^')}. First order perturbation theory in B' gives f{( )} ... (7) and thus, the magnetization, 1 ,. d\nZp(B') Mp = - hm 5-£T—- (8) p 13 S'-vo dB' v ' In the sequel, we will consider the spin-up and spin-down as two distinct physical situations. It follows that in (8), the spin induced part of the magnetization is \ozs thus the orbital part of the magnetization is Note that in the particular case of H containing an homogeneous magnetic field B perpendicular to the plane, (8) narrows down to the usual formula and (9) to 6_ M& - Note also that one can compute directly M^ using (8) by simply dropping the coupling of the fictitious B' field to the spin in Zp(B'), and, accordingly, using (10) in the case of H containing a homgeneous B field, the coupling of B to the spin in Zp. Let us now turn to the persistent current and consider in the plane a semi infinite line V starting at f0 and making an angle 6O with the horizontal x-axis. The orbital persistent or6 current 7 (fb, 90) through the line is , r if- ^o) x (](f)) „ r*(?o,0o) = / d\r- fo| —A 1- • k (12) where 'r~£_?r*^ • fc is the orthoradial component of j(r) to the line. It obviously depends on r*o &nd OQ. Consider now systems rotationnally invariant around r*o. /or6(roi ^o) no longer depends on #o a-nd, without loss of generality, can be averaged over <?o- So \r — and for the Boltzmann distribution Again, we want to establish a link between (14) and a thermodynamical quantity. We add to the system a fictitious vortex <f>' located at fo the origin of the line, with potential vector and magnetic field eBv = 2na'8(r- ro)k (16) where a' = <j>'/<f>0 -4>o is the flux quantum- can always be chosen in the interval [0,1] by periodicity. The resulting Hamiltonian is e (-eA-eAv)\v- -at{B + Bv) (17) with partition function Zp(ar). Though being a well-established fact [4], we recall here that the spin coupling term Cz(B + Bv) in (3,17) is necessary to define in a non ambiguous way point vortices quantum systems. The behavior of the wavefunctions at the location fo of the fictitious point vortex (or of a physical point vortex contained in the original Hamiltonian (3)) has to be specified properly. This is precisely achieved in a scale invariant way with the spin coupling term, which materializes either a repulsive hard-core (spin-down) ira'8{r — ?Q) or attractive (spin-up) —no/5(r — f0) point contact interaction at f0. In the standard Aharonov-Bohm problem, the wavefunctions are chosen to vanish at ?o, i.e. the spin-down repulsive prescription. However, we might as well take the attractive spin-up prescription. Still, the persistent current should clearly be insensitive to the nature of the fictitious vortex introduced to define it, and in particular on the way it is regularized at short distance. First order perturbation theory in a' gives ) = Zp + a'p (TT |e~^ ^I^p * • *} + ™^(f0, r0)) + ... (18) where G/3(f,f') = {r\e~0H\r') is the thermal propagator for the Hamiltonian (3). We define the total current around ro as - (19) and, from (14), Note that in the particular case of H containing a vortex <f> at r*o, or consisting of a ring of center f*o threaded by a magnetic flux <f> = a<fo) the orbital persistent current generated 2 in the plane around f0, or in the ring , (20) narrows down to *' {ro) ~ 2^d^r rzj If the first term in (20) is usually discussed in the literature under the weaker form appearing in (21) valid for the point vortex and the ring [l]-[3], the second term in (20,21) 2 In the case of a ring, the propagator at the center of the ring is by definition nul. triggered by the spin coupling to the propagator has been so far ignored. However, both terms are crucial, and if the spin term is absent, some contradictions do arise in the computation of orbital persistent currents. Indeed, orbital persistent currents -as well as orbital magnetizations- should vanish when H becomes free, and this is not the case if the spin term is ignored, as we will see later for the point vortex, or for the point vortex superposed to an homogeneous field. We will also encounter in the attractive point vortex case a situation where the orbital current by itself is not defined (in fact infinite), and where only the total (orbital + spin) current has a sensible physical meaning. To summarize, orbital magnetizations and currents are respectively given by (9) and (20). They should both vanish when the original Hamiltonian H becomes free. Total magnetizations and currents are given by (8) and (19). They obviously depend, as well as their orbital counterparts, on the spin degree of freedom defined in the original Hamiltonian (3). If we consider systems that are both invariant by translation and rotation, we can proceed further by averaging (14) over f0. Taking advantage of the identity [5] fi£0*°-«x, (22) we can write, using (6,14), iorb=vl drV(r~o) = vMOrb (23) which generalizes the conducting ring situation to translation and rotation invariant two- dimensional systems. Furthermore, since for a translation invariant system Ga(fo,fo) = Zp/V, (23) holds also for the total current and magnetization / = ±M (24) Finally, (23,24) still hold for non rotational invariant systems if the persistent current Iorb is understood as averaged over all directions 8Q of the semi infinite straight line. To have access to the orbital magnetization and persistent currents of a gas of non- interacting electrons, Zp(B') or Zp(a') have to be replaced in (9,20), and Z@ in (11,21), by the corresponding grand-partition functions. For instance, (11) and (21) respectively become (26) where E@(n) is the grand-partition function In "Bpin) = Tr |ln(l + e~^H~^) | for chemical potential fi and f(E) is the Fermi-Dirac distribution.
Recommended publications
  • Superconductivity: the Meissner Effect, Persistent Currents and the Josephson Effects
    Superconductivity: The Meissner Effect, Persistent Currents and the Josephson Effects MIT Department of Physics (Dated: March 1, 2019) Several phenomena associated with superconductivity are observed in three experiments carried out in a liquid helium cryostat. The transition to the superconducting state of several bulk samples of Type I and II superconductors is observed in measurements of the exclusion of magnetic field (the Meisner effect) as the temperature is gradually reduced by the flow of cold gas from boiling helium. The persistence of a current induced in a superconducting cylinder of lead is demonstrated by measurements of its magnetic field over a period of a day. The tunneling of Cooper pairs through an insulating junction between two superconductors (the DC Josephson effect) is demonstrated, and the magnitude of the fluxoid is measured by observation of the effect of a magnetic field on the Josephson current. 1. PREPARATORY QUESTIONS 0.5 inches of Hg. This permits the vaporized helium gas to escape and prevents a counterflow of air into the neck. Please visit the Superconductivity chapter on the 8.14x When the plug is removed, air flows downstream into the website at mitx.mit.edu to review the background ma- neck where it freezes solid. You will have to remove the terial for this experiment. Answer all questions found in plug for measurements of the helium level and for in- the chapter. Work out the solutions in your laboratory serting probes for the experiment, and it is important notebook; submit your answers on the web site. that the duration of this open condition be mini- mized.
    [Show full text]
  • Arxiv:2104.02218V1 [Cond-Mat.Quant-Gas] 6 Apr 2021
    Persistent currents in rings of ultracold fermionic atoms Yanping Cai, Daniel G. Allman, Parth Sabharwal, and Kevin C. Wright∗ Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover NH 03766, USA We have produced persistent currents of ultracold fermionic atoms trapped in a toroidal geometry with lifetimes greater than 10 seconds in the strongly-interacting limit. These currents remain stable well into the BCS limit at sufficiently low temperature. We drive a circulating BCS superfluid into the normal phase and back by changing the interaction strength and find that the probability for quantized superflow to reappear is remarkably insensitive to the time spent in the normal phase and the minimum interaction strength. After ruling out the Kibble-Zurek mechanism for our experi- mental conditions, we argue that the reappearance of superflow is due to long-lived normal currents and the Hess-Fairbank effect. Coherent quantum systems can support currents that remain constant in time without being driven by any ex- ternal power source. These remarkable \persistent" cur- rents may occur as metastable non-equilibrium states in superconducting [1] and superfluid [2] phases, but equi- librium persistent currents also occur in normal conduct- ing phases around closed paths shorter than the coher- ence length [3{5]. Progress in understanding transport phenomena in quantum fluids has often been made by considering spherical, cylindrical, toroidal, or more exotic geometries [6], and realizing experimentally viable quan- tum many-body systems in more exotic geometries is an important challenge in quantum engineering. Persistent FIG. 1. Column density distribution for an equal spin mixture currents have been observed in experiments with Bose- of 1:2(1)×104 6Li atoms in a ring-dimple trap, which changes Einstein condensates (BECs) of ultracold atoms [7{9], when the interactions are tuned from the (a) BEC limit to the quantized phase slips [10] have been observed in matter- (d) BCS limit using a Feshbach resonance at 83.2 mT.
    [Show full text]
  • 1D Quantum Rings and Persistent Currents
    Introduction and motivation 1D quantum rings - theoretical approach Experimental survey Summary 1D quantum rings and persistent currents Anatoly Danilevich Lehrstuhl für Theoretische Festkörperphysik Institut für Theoretische Physik IV Universität Erlangen-Nürnberg March 9, 2007 Anatoly Danilevich 1D quantum rings and persistent currents Introduction and motivation 1D quantum rings - theoretical approach Experimental survey Summary Motivation In the last decades there was a growing interest for such microscopic systems like quantum rings because of few aspects: New physics behind quantum rigs, like Aharonov-Bohm-Effect and the possibility of controlling many-body systems with a well defined number of charge-carriers Possibility of the experimental realization of such systems, especially semiconductor technology developing new electronic devices Anatoly Danilevich 1D quantum rings and persistent currents Introduction and motivation 1D quantum rings - theoretical approach Experimental survey Summary Motivation In the last decades there was a growing interest for such microscopic systems like quantum rings because of few aspects: New physics behind quantum rigs, like Aharonov-Bohm-Effect and the possibility of controlling many-body systems with a well defined number of charge-carriers Possibility of the experimental realization of such systems, especially semiconductor technology developing new electronic devices Anatoly Danilevich 1D quantum rings and persistent currents Introduction and motivation 1D quantum rings - theoretical approach
    [Show full text]
  • Superconductivity: the Meissner Effect, Persistent Currents, and The
    Superconductivity: The Meissner Effect, Persistent Currents, and the Josephson Effects MIT Department of Physics (Dated: March 10, 2005) Several of the phenomena of superconductivity are observed in three experiments carried out in a liquid helium cryostat. The transition to the superconducting state of each of several bulk samples of Type I and II superconductors is observed in measurements of the exclusion of magnetic field (the Meisner effect) from samples as the temperature is gradually reduced by the flow of cold gas from boiling helium. The persistence of a current induced in a superconducting cylinder of lead is demonstrated by measurements of its magnetic field over a period of a day. The tunneling of Cooper pairs through an insulating junction between two superconductors (the DC Josephson effect) is demonstrated, and the magnitude of the fluxoid is measured by observation of the effect of a magnetic field on the Josephson current. 1. PREPARATORY QUESTIONS temperature. The liquid helium (liquefied at MIT in the Cryogenic Engineering Laboratory) is stored in a highly 1.How would you determine whether or notinsulated a sample Dewar flask. Certain precautions must be taken of some unknown material is capable ofin being its a manipulation.It is imperative that you read superconductor? the following section on Cryogenic Safety before proceeding with the experiment. 2.Calculate the loss rate of liquid helium from the dewar in L−1. d The density of liquid helium at 4.2K is 0.123− g3. cm At STP helium gas has a density of 0.178−1. g Data L for the measured2.1.
    [Show full text]
  • Persistent Currents in Superconducting Quantum Interference
    1 PERSISTENT CURRENTS IN SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES F. Romeo Dipartimento di Fisica “E. R. Caianiello”, Università degli Studi di Salerno I-84081 Baronissi (SA), Italy R. De Luca CNR-INFM and DIIMA, Università degli Studi di Salerno I-84084 Fisciano (SA), Italy ABSTRACT Starting from the reduced dynamical model of a two-junction quantum interference device, a quantum analog of the system has been exhibited, in order to extend the well known properties of this device to the quantum regime. By finding eigenvalues of the corresponding Hamiltonian operator, the persistent currents flowing in the ring have been obtained. The resulting quantum analog of the overdamped two-junction quantum interference device can be seen as a supercurrent qubit operating in the limit of negligible capacitance and finite inductance. PACS: 74.50.+r, 85.25.Dq Keywords: Josephson junctions, d. c. SQUID, Qubit 2 I INTRODUCTION The d. c. SQUID (Superconducting QUantum Interference Device) is a well known system, widely investigated in the literature [1-3]. This system, though not confined to atomic scale in its dimensions, has been proposed as the basic unit for quantum computing (qubit) by resorting to a characteristic feature of superconductivity: macroscopic quantum coherence [4]. In general, a qubit can be realized by means of a two-level quantum mechanical system [5]. Therefore, the quantum states of a qubit can be a linear combinations of the orthogonal basis 0 and 1 , so that the Hilbert space generated by this basis is two-dimensional. Alternatively, a qubit state can be represented by elements of an infinite-dimensional Hilbert space.
    [Show full text]
  • Aharonov-Bohm Effects in Nanostructures
    Aharonov-Bohm effects in nanostructures V.L. Gurtovoi, A.V. Nikulov, and V.A. Tulin Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, 142432 Chernogolovka, Moscow District, RUSSIA. Measurements of the Little-Parks oscillations at measuring current much lower than the persistent current give unambiguous evidence of the dc current flowing against the force of the dc electric field because of the Aharonov-Bohm effect. This result can assume that an additional force is needed for description of the Aharonov-Bohm effect observed in semiconductor, normal metal and superconductor nanostructures in contrast to the experimental result obtained recently for the case of the two-slit interference experiment. Introduction solves it. In the case of the Aharonov-Bohm effect in nanostructures the problem can be made more manifest because of the possibility of a dc potential difference V Y. Aharonov and D. Bohm have shown in 1959 [1] that on loop halves with non-zero resistance R > 0. The ob- according to the universally recognized quantum formal- servation of the persistent current I 6= 0 in this case ism magnetic flux can act on quantum-mechanical state p could mean that it can flow against the force of electric of charged particles even if the flux is enclosed and the field E = −▽ V if it can be considered as a direct circu- particles do not cross any magnetic field lines [2]. The lar equilibrium current. The progress of nanotechnology Aharonov-Bohm effect proposed [1] and observed [3] first allows to make such investigation which together with for the two-slit interference experiment becomes apparent the investigation of the two-slit interference experiment in numerous mesoscopic quantum phenomena observed [17,18] can give new information on paradoxical nature in semiconductor and metal nanostructures [4-12].
    [Show full text]
  • Arxiv:Cond-Mat/9510158V1 27 Oct 1995
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows Persistent currents in coupled mesoscopic rings. T. P. Pareek† and A. M. Jayannavar‡. thanks Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, INDIA. February 1, 2008 Abstract We have analysed the nature of persistent currents in open coupled mesoscopic rings. Our system is comprised of two ideal loops connected to an electron reservoir. We have arXiv:cond-mat/9510158v1 27 Oct 1995 obtained analytical expressions for the persistent current densities in two rings in the presence of a magnetic field. We show that the known even-odd parity effects in isolated single loops have to be generalised for the case of coupled rings. We also show that when the two rings have unequal circumferences, it is possible to observe opposite currents (diamagnetic or paramagnetic) in the two rings for a given Fermi level. PACS NO : 75.20.-g, 72.10.Bg, 67.57.Hi 1e-mail:[email protected] I. Introduction It was predicted by B¨uttiker et. al. [1] that an equilibrium persistent current flows in an ideal one dimensional mesoscopic ring threaded by a magnetic flux φ. Persistent current flows in a ring as a response to magnetic field which destroys the time reversal symmetry and is periodic in magnetic flux , with a period φ0 , φ0 being the elementary flux quanta (φ0=hc/e). At zero temperature the amplitude of persistent current is given by evf /L , where vf is the Fermi velocity and L is the circumference of the ring.
    [Show full text]
  • Persistent Current in Metallic Rings and Cylinders
    Persistent Current in Metallic Rings and Cylinders Santanu K. Maiti E-mail: [email protected] 1Theoretical Condensed Matter Physics Division Saha Institute of Nuclear Physics 1/AF, Bidhannagar, Kolkata-700 064, India 2Department of Physics Narasinha Dutt College 129, Belilious Road, Howrah-711 101, India arXiv:0812.0439v2 [cond-mat.mes-hall] 13 Dec 2008 1 Contents Preface 3 1 Introduction 4 2 Persistent Current in Non-Interacting Single-Channel and Multi- Channel Mesoscopic Rings 5 2.1 OriginofPersistentCurrent .......................... 5 2.2 Non-InteractingOne-ChannelRings. .. 7 2.2.1 ImpurityFreeRings .......................... 7 2.2.2 Rings with Impurity . 9 2.3 Non-Interacting Multi-Channel Systems . ... 11 2.3.1 EnergySpectra ............................. 13 2.3.2 PersistentCurrent ........................... 14 3 Low-Field Magnetic Response on Persistent Current 18 3.1 One-ChannelMesoscopicRings . 19 3.1.1 EffectofTemperature ......................... 20 3.2 Multi-Channel Mesoscopic Cylinders . 21 4 Concluding Remarks 22 References 23 2 Preface We explore the behavior of persistent current and low-field magnetic response in meso- scopic one-channel rings and multi-channel cylinders within the tight-binding framework. We show that the characteristic properties of persistent current strongly depend on total number of electrons Ne, chemical potential µ, randomness and total number of channels. The study of low-field magnetic response reveals that only for one-channel rings with fixed Ne, sign of the low-field currents can be predicted exactly, even in the presence of disorder. On the other hand, for multi-channel cylinders, sign of the low-field currents cannot be mentioned exactly, even in the perfect systems with fixed Ne as it significantly depends on the choices of Ne, µ, number of channels, disordered configurations, etc.
    [Show full text]
  • Persistent Currents in Superconducting Nanorings Preliminaries T B Greenslade Jr
    Journal of Physics: Conference Series OPEN ACCESS Related content - Adventures with Lissajous Figures: Persistent currents in superconducting nanorings Preliminaries T B Greenslade Jr To cite this article: T Hongisto and K Yu Arutyunov 2008 J. Phys.: Conf. Ser. 97 012114 - An empirical weak parity-non-conserving nucleon-nucleon potential with T = 1 and T = 2 enhancement M A Box, A J Gabric, K R Lassey et al. - Periodic magnetoresistance oscillations View the article online for updates and enhancements. induced by superconducting vortices in singlecrystal Au nanowires Lin He and Jian Wang Recent citations - Fabio Biscarini et al - Fluxoid quantization in the critical current of a niobium superconducting loop far below the critical temperature Sebastien Michotte This content was downloaded from IP address 170.106.33.19 on 24/09/2021 at 20:26 8th European Conference on Applied Superconductivity (EUCAS 2007) IOP Publishing Journal of Physics: Conference Series 97 (2008) 012114 doi:10.1088/1742-6596/97/1/012114 Persistent Currents in Superconducting Nanorings T. T. Hongisto and K. Yu. Arutyunov University of JyvÄaskylÄa,Department of Physics, Nanoscience Center, PB 35, 40014 JyvÄaskylÄa, Finland E-mail: [email protected] Abstract. Superconductor-insulator-superconductor-insulator-superconductor (SIS'IS) tunnel nanos- tructures with the central electrode S' in a shape of a loop have been fabricated. It has been shown that at low temperatures at a ¯xed voltage bias V the tunnel current oscillates in perpen- dicular magnetic ¯eld B with period ¢© few times exceeding the superconducting flux quantum. The normalized magnitude of oscillations reaches its maximum close to the quadruple supercon- ducting energy gap 4¢.
    [Show full text]
  • Probing Nuclear Superfluidity with Neutron Stars
    Probing Nuclear Superfluidity with Neutron Stars Nicolas Chamel Institute of Astronomy and Astrophysics Université Libre de Bruxelles, Belgium Karpacz, 24 February 2020 Neutron stars: laboratories for dense matter Formed in gravitational core-collapse supernova explosions, neutron stars are the most compact stars in the Universe. They are initially very hot (∼ 1012 K) but cool down rapidly by releasing neutrinos. Their dense matter is thus expected to undergo various phase transitions, as observed in terrestrial materials at low-temperatures. Outline 1 Superfluidity and superconductivity in the laboratory Basic phenomenology and historical context Theoretical understanding of these phenomena 2 Superfluidity and superconductivity in neutron stars Dynamics at the nuclear scale Global hydrodynamic models Astrophysical manifestations (pulsar frequency glitches) Disclaimer: these lectures are not intended to be an extensive review of superfluidity and superconductivity, but aim at providing a basic understanding of these phenomena in neutron stars. Part 1: Superfluidity and superconductivity in the laboratory "Suprageleider" Heike Kamerlingh Onnes and his collaborators were the first to liquefy helium in 1908. On April 8th, 1911, H. K. Onnes and Gilles Holst discovered that the electric resistance of mercury dropped to almost zero at Tc ' 4:2 K Onnes was awarded the Nobel Prize in 1913. The year later, tin and lead were found to be also superconducting. Persistent electric currents In 1914, Heike Kamerlingh Onnes designed an experiment to measure the decay time of a magnetically induced electric current in a superconducting lead ring. He noted “During an hour, the current was observed not to decrease perceptibly”. In superconducting rings, the decay time of induced electric currents is not less than 100 000 years ! J.
    [Show full text]
  • Superconductivity
    Superconductivrty - Wikipedia, the free encyclopedia http://en. wikipedia. org/rviki/S uperconductivity Superconductivity From Wikipedia, the free encyclopedia Superconductivity occurs in certain materials at very low temperatures. When superconductive, a material has an electrical resistance of exactly zero and no interior magnetic field (the Meissner effect). It was discovered by Heike Kamerlingh Onnes in 1911. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It cannot be understood simply as the idealization of "perfect conductivity" in classical physics. A magnet levitating above a high-temperature The electrical resistivity of a metallic conductor decreases gradually as superconductor, cooled with the temperature is lowered. However, in ordinary conductors such as liquid nitrogen. Persistent copper and silveE this decrease is limited by impurities and other electric current florvs on the surface of the superconductor, defects. Even near absolute zero, a real sample of copper shows some acting to exclude the magnetic resistance. In a superconductor however, despite these imperfections, field of the magnet (the the resistance drops abruptly to zero when the material is cooled below Meissner effect). This current its critical temperature. An electric current flowing in a loop of effectively forms an electromagnet that repels the superconducting wire can persist indefinitely with no power rour"".[1] masnet. Superconductivity occurs in many materials: simple elements like tin and aluminium, various metallic alloys and some heavily-doped semiconductors. Superconductivity does notoccurin noble metals like gold and silver, norinpure samples of ferromagnetic metals. In 1986, it was discovered that some cuprate-perovskite ceramic materials have critical temperatures of more than 90 kelvin.
    [Show full text]
  • Quantum Rings for Beginners: Energy Spectra and Persistent Currents S
    Available online at www.sciencedirect.com Physica E 21 (2004) 1–35 www.elsevier.com/locate/physe Review Quantum rings for beginners: energy spectra and persistent currents S. Viefersa;∗, P. Koskinenb, P. Singha Deoc, M. Manninenb aDepartment of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway bDepartment of Physics, University of Jyvaskyl$ a,$ FIN-40014 Jyvaskyl$ a,$ Finland cS.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 98, India Received 30 April 2003; accepted 12 August 2003 Abstract Theoretical approaches to one-dimensional and quasi-one-dimensional quantum rings with a few electrons are reviewed. Discrete Hubbard-type models and continuum models are shown to give similar results governed by the special features of the one-dimensionality. The energy spectrum of the many-body states can be described by a rotation–vibration spectrum of a “Wigner molecule” of “localized” electrons, combined with the spin-state determined from an e7ective antiferromagnetic Heisenberg Hamiltonian. The persistent current as a function of the magnetic 8ux through the ring shows periodic oscillations arising from the “rigid rotation” of the electron ring. For polarized electrons the periodicity of the oscillations is always the 8ux quantum 0. For nonpolarized electrons the periodicity depends on the strength of the e7ective Heisenberg coupling and changes from 0 ÿrst to 0=2 and eventually to 0=N when the ring gets narrower. ? 2003 Elsevier B.V. All rights reserved. PACS: 73.23.Ra; 73.21.Hb; 75.10.Pq; 71.10.Pm Keywords: Quantum ring; Persistent current; Electron localization Contents 9.3.
    [Show full text]