Impact of wind pattern and complex topography on snow microphysics during ICE-POP 2018 Kwonil Kim1, Wonbae Bang1, Eun-Chul Chang2, Francisco J. Tapiador3, Chia-Lun Tsai1, Eunsil Jung4, and Gyuwon Lee1 1Department of Astronomy and Atmospheric Sciences, Center for Atmospheric REmote sensing (CARE), Kyungpook National University, Daegu, Republic of Korea 2Department of Atmospheric Sciences, Kongju National University, Gongju, Republic of Korea 3Earth and Space Sciences Research Group, Institute of Environmental Sciences, University of Castilla-La Mancha, Spain 4Department of Advanced Science and Technology Convergence, Kyungpook National University, Sangju, Republic of Korea Correspondence: Gyuwon Lee (
[email protected]) Abstract. Snowfall in north-eastern part of South Korea is the result of complex snowfall mechanisms due to a highly- contrasting terrain combined with nearby warm waters and three synoptic pressure patterns. All these factors together create unique combinations, whose disentangling can provide new insights into the microphysics of snow in the planet. This study focuses on the impact of wind flow and topography on the microphysics drawing of twenty snowfall events during the ICE-POP 5 2018 (International Collaborative Experiment for Pyeongchang 2018 Olympic and Paralympic winter games) field campaign in the Gangwon region. The vertical structure of precipitation and size distribution characteristics are investigated with collo- cated MRR (Micro Rain Radar) and PARSIVEL (PARticle SIze VELocity) disdrometers installed across the mountain range. The results indicate that wind shear and embedded turbulence were the cause of the riming process dominating the mountain- ous region. As the strength of these processes weaken from the mountainous region to the coastal region, riming became less 10 significant and gave way to aggregation.