Phytoplankton, Zooplankton, Micronekton and Benthos

Total Page:16

File Type:pdf, Size:1020Kb

Phytoplankton, Zooplankton, Micronekton and Benthos GROUP 2: PHYTOPLANKTON, ZOOPLANKTON, MICRONEKTON, AND BENTHOS U.S. GLOBEC Northeast Pacific Program: Observations, retrospective studies and model products Hal Batchelder College of Oceanic & Atmospheric Sciences, Oregon State University, 104 Ocean Administration Bldg., Corvallis, OR 97331-5503, U.S.A. E-mail: [email protected] U.S. GLOBEC is supporting oceanographic and The U.S. GLOBEC program in the NEP has a fisheries research in two regions in the northeast limited duration of field observations (ca. 7±2 years) Pacific (NEP): 1) within the eastern boundary of the in both the CGOA and CCS. These two regions in California Current upwelling system (CCS) off the past have had co-varying, but of opposite phase, Oregon and Northern California, and 2) within a salmon and zooplankton population abundances predominantly buoyancy-forced, downwelling through time. Since the program is interested in ecosystem in the coastal domain of the northern Gulf examining the role of climate variability on the of Alaska (CGOA). Within these regions, GLOBEC structure and dynamics of the coastal marine is supporting: (i) retrospective data analysis of ecosystems, and specifically in comparing the existing medium-to-long term data sets spanning responses of these two regional systems, we realized hydrography through lower trophic levels to fish, that a short-duration study (<10 years) would be birds and mammals; (ii) long-term observation insufficient, by itself, to answer questions concerning programs (LTOPs, e.g., “monitoring”) - regular longer-term, larger-scale variation. Thus, U.S. sampling of pre-selected ocean stations for GLOBEC has devoted substantial resources to parameters ranging from physics to higher trophics; retrospective analysis of existing, but perhaps, under- (iii) process-focussed research cruises that estimate exploited data sets, and to the development of biological and physical rate processes, and provide coupled biophysical models. The intent is that detailed survey descriptions of ecosystem state improved models will increase our ability to variables (biomass, size structure, hydrography, integrate biological and physical observations in transports); (iv) moorings deployed at a few sites to coastal ecosystems generally, and specifically, to provide time-series data of hydrographic conditions, provide integrated assessments of the effect of transports, and selected biological fields; (v) drifter environmental variability and climate change on deployments to examine cross-shelf and along-shelf coastal marine ecosystems within the NEP. The data flows, and in a few cases to provide time-series sets assembled and collected within the GLOBEC observations of biological rates; and (vi) nearly NEP program--including historical data, and newly continuous HF radar (CODAR) observations of collected data from LTOP and process studies--will surface currents in selected regions. Complementing provide a comparison to similar observations these research elements are analysis of satellite collected previously and provide a baseline for future derived ocean products (ocean color, SST, and sea data collections and comparisons. level), and modeling of ocean circulation and the coupling of biological processes and state variables The GLOBEC principal investigators have identified with physical processes. Modeling approaches vary a number of historical data sets that should be re- among research groups, ranging from highly evaluated and/or made generally available, and idealized process-oriented biophysical coupled which would be of particular value for the NEP models with simple external forcing to realistic study (Table 1). geometry/bathymetry simulations of ocean circulation in regional models coupled to basin or Data collected within the 5-7 years of the program global-scale models. are numerous and include: 79 1. CCS LTOP Program (5 cruises/year; July 4. Moorings: 1997 – Nov. 2003) (Table 2). 4.1. CCS (3 moorings: Newport, Coos Bay, Rogue River): Hydrography, velocities, 2. CGOA LTOP Program (6-7 cruises/year; backscatter, and fluorescence. Sept. 1997 – Dec. 2003) (Table 3 & Fig. 1). 4.2. CGOA (about 7 moorings; Seward Line, Gore Pt. Line): Hydrography, velocities, 3. Process/Survey Cruises: multi-frequency backscatter, fluorescence, 3.1. CCS (spring and fall cruises, 2000 & 2002) nitrate, and surface meteorology. (Fig. 2) • States: temperature, salinity, fluores- 5. Models: cence, zooplankton biomass and 5.1. Physics composition, fish, birds, and mammals; • Idealized Process-Oriented: Spectral • Rates: transports, zooplankton vital Element Ocean Model (SEOM) rates, feeding rates; and fish vital rates. • Realistic Geometry & Bathymetry: 3.2. CGOA (late-winter, spring, summer Regional Ocean Modeling System cruises, 2001 & 2003) (Figs. 3 and 4) (ROMS) • States: temperature, salinity, fluores- 5.2. Biology – Plankton cence, zooplankton biomass, and • NPZ and NPZ+ models composition, fish, and birds; • Individual Based Models (IBMs) • Rates: transports, zooplankton vital 5.3. Biology rates, feeding rates; fish vital rates. • Fish: Individual Based Models 5.4. Ecosystem, esp. for higher trophics • ECOPATH • Numerical Simulation Models Table 1 Data base availability and needs for the U.S. GLOBEC NEP program. DATA SET AREA PERIOD SOURCE Upwelling Index West Coast 1946- (mo) PFEG 1967-(6 h; daily) Freshwater Gulf of Alaska 1931-(mo) Tom Royer (ODU) Pacific NW SST No. Pacific 1946-O Various SST-GAK1 GAK1 1970-(mo) Tom Royer (ODU) Coastal Sea Level West Coast 1945-(mo) NOAA Sea Level Pressure Sitka, AK 1899-(mo) Tom Royer (ODU) Sea Level Pressure Other West Coast Air Temperature CalCOFI Hydrography/Chl-a So. Calif Bight 1980’s?- SIO/MLRG CalCOFI ZP Biomass So. Calif Bight 1951-(qtr) Ohman/SIO CalCOFI ZP Composition So. Calif Bight Spring; Reg, Avgs. Ohman/Reb stock/SIO MicroZP abund/comp Line P 1987-88; 93-99; 2-3X/yr Strom/WWU ZP Biomass Line P 1940-1981; intermittent since Canadians ZP Biomass No. Pacific Before and after 76 regime shift Brodeur Satellite Color CZCS CCS 78-83; 10-d composites; mo Andy Thomas/Maine Sea WiFS Baja-50N Sept. 97- (10-d composites) Andy Thomas/Maine MODIS ? ? Abbott/Letelier/OSU Satellite Altimetry No. Pacific Ted Strub/OSU Satellite SST West Coast 1992- (<day) Ted Strub/OSU Gridded Ocean Fields COADS No. Pacific 1945-(mo; seasonal climatologies) PFEG 80 Table 2 GLOBEC long-term observation program in the California Current System. 81 82 Fig. 1 Coastal Gulf of Alaska long-term observation program. (CTD, ADCP, nutrients, chlorophyll, zooplankton biomass, species composition, multi-frequency acoustics, fish abundance, composition, diet, along-track data: S, T, F, winds, etc.). Fig. 2 A priori cruise lines for California Current mesoscale survey. Table 3 U.S. GLOBEC long-term observation program in the Gulf of Alaska. Year 97 98 99 00 Month=> 10 3 4 5 7 10 12 3 4 5 8 10 12 3 4 5 8 10 12 Seward X X X X X X X X X X X X X X X X X X X Fairfield X X X X X X X X X X X X X X X X X X X Cleare X X X X X X X X X X Hinchenbrook X X X X X X X Clear SW X X X X X Fig. 3 Proposed sampling lines for a May 2001 cruise in the Coastal Gulf of Alaska. Squares (Seward Line) and triangles (Gore Pt. Line) are the proposed locations of moorings to be deployed on the shelf in May 2001. Transect lines parallel to the Seward line will be occupied for CTD and plankton sampling. The grid of transect lines in Amatouli Trough will be occupied for CTD and plankton sampling. Satellite tracked drifters will be released from locations in the vicinity of the moorings. Fig. 4 GLOBEC 2000: Gulf of Alaska juvenile salmon distribution transects (Helle, Cokelet, Farley, Hollowed and Stabeno). 83 Table 4 Satellite data sets. Primary Data Sets Other Data Sets Available NOW To be ADDED AVHRR SST SeaWiFS Surface Pigments in California Current • Pathfinder, 9-km SST, 18-63°N, 108-170°W, Sept 1997-present; 8-day composites from Andrew 1992-98, will be continued Thomas (Marine); single images from Scott Pegau • 1-km and 3-km pixel SST, 18-55°N (Calif. (OSU) Current), all available data 1982-present; Altimeter SSH Fields from TOPEX and ERS-2 (on 1982-1992: sparse temporal coverage; 1992- request from Ted Strub, OSU) present: 2-4 images/day QuikScat wind stress fields from Dudley Chelton, • http://coho.oce.orst.edu: get data using OSU (Feb.-Sept. 2000); anonymous FTP anonymous FTP The Continuous Plankton Recorder survey of the North Pacific Sonia D. Batten1 and David W. Welch2 1 Sir Alister Hardy Foundation for Ocean Science, 1 Walker Terrace, Plymouth, UK. PL1 3BN E-mail: [email protected] 2 Department of Fisheries and Oceans, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, B.C., Canada. V9R 5K6 E-mail: [email protected] Two years of funding were approved to operate a Table 5 Taxonomic entities separately CPR survey in the North Pacific during 2000 and enumerated on the first 4 deployments of 2000, 2001. The resources were allocated so that the 137 distinct taxa were recorded. route from Alaska to California was sampled 5 times throughout the spring and summer of 2000, Zooplankton and the route from Vancouver west towards Japan Atlanta spp. Harpacticoida was operated once in summer (Fig. 5). The same Bryozoan larvae Hyperiidea sampling plan will operate in 2001 and perhaps Cephalopoda larvae Lamellibranch larvae into the future if further funding can be obtained. Chaetognatha Larvacea Cirripede larvae Ostracoda The CPR is towed behind merchant ‘ships of Cladocera Polychaete larvae opportunity’ (in this case a crude oil carrier and a Clione spp. Radiolaria container ship) at a fixed depth of about 7 m. The *Copepods Sergestidae filtering mesh within the CPR is 270 µm and each – 38 species/genera sample is equivalent to 18 km and about 3 m3 of Decapod larvae Siphonophora seawater filtered. Echinoderm larvae Thecosomes Euphausiidea *Tintinnids - 4 genera 1135 samples were collected during 2000, of Fish eggs/larvae Tomopteris which about 450 have been, or will be, fully Foraminifera processed.
Recommended publications
  • The Influence of Marine Phytoplankton on Iodine Speciation in the Tropical and Southern Atlantic Ocean
    The influence of marine phytoplankton on iodine speciation in the Tropical and Southern Atlantic Ocean Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Katrin Bluhm Kiel 2009 Referent/in: Prof. Dr. Karin Lochte Koreferent/in: Prof. Dr. Douglas Wallace Tag der mündlichen Prüfung: 12. Februar 2010 Zum Druck genehmigt: gez. Prof. Dr. Lutz Kipp, Dekan THIS THESIS IS BASED ON THE FOLLOWING MANUSCRIPTS: 1. Manuscript 1: K. Bluhm, P. L. Croot, J. Schafstall, T. Steinhoff, and K. Lochte. „Speciation of Iodine in the Mauritanian upwelling system and the adjacent Tropical Atlantic Ocean”, manuscript, 2009. Contribution: Katrin Bluhm performed the calculations, evaluated the data and wrote the paper. Peter L. Croot and Karin Lochte assisted with input to the manuscript and revision. Jens Schafstall provided the CTD data and assisted with the hydrography of the study area. Tobias Steinhoff did the flow velocity calculations of the water masses. 2. Manuscript 2: K. Bluhm, P. L. Croot, G. Rohardt, and K. Lochte. “Distribution of Iodide and Iodate in the Atlantic sector of the Southern Ocean during austral summer”, Deep Sea Research II, in revision, 2009. Contribution: Katrin Bluhm performed the calculations, evaluated the data and wrote the paper. Peter L. Croot and Karin Lochte assisted with input to the manuscript and revision. Gerd Rohardt provided the CTD data and assisted with the hydrography of the study area. 3. Manuscript 3: K. Bluhm, P. L. Croot, K. Wuttig, and K. Lochte. “Transformation of Iodate to Iodide in marine phytoplankton driven by cell senescence”, Marine Ecology Progress Series, submitted, 2009.
    [Show full text]
  • Sverdrup's Critical Depth Concept & the Vernal Phytoplankton Bloom
    EEOS 630 Biol. Ocean. Processes Chapter 11 Revised: 10/28/08 ©2008 E. D. Gallagher SVERDRUP’S CRITICAL DEPTH CONCEPT & THE VERNAL PHYTOPLANKTON BLOOM TABLE OF CONTENTS Page: List of Tables ............................................................................ 2 List of Figures ............................................................................ 2 Assignment...................................................................................... 2 Topics .................................................................................. 2 Required Readings ........................................................................ 2 Sverdrup, H. U. 1953 ............................................................... 2 Parsons, T. R., M. Takahashi, and B. Hargrave. 1984 . 2 Townsend, D. W. and R. W. Spinrad. 1986.............................................. 3 Recommended............................................................................ 3 Evans, G. T. and J. S. Parslow. 1985 ................................................... 3 Mann, K. H. and J. R. N. Lazier. 1991 ................................................. 3 Miller, C. B. 2004. ................................................................ 3 Mills, E. L. 1989 .................................................................. 3 Nelson, D. M. and W. O. Smith. 1991 .................................................. 3 Parsons, T. R., L. F. Giovando, and R. J. LeBrasseur. 1966 . 3 Siegel, D. A., S. C. Doney, and J. A. Yoder. 2002. 3 Smetacek, V. and U. Passow. 1990
    [Show full text]
  • DON As a Source of Bioavailable Nitrogen for Phytoplankton D
    DON as a source of bioavailable nitrogen for phytoplankton D. A. Bronk, J. H. See, P. Bradley, L. Killberg To cite this version: D. A. Bronk, J. H. See, P. Bradley, L. Killberg. DON as a source of bioavailable nitrogen for phy- toplankton. Biogeosciences Discussions, European Geosciences Union, 2006, 3 (4), pp.1247-1277. hal-00297839 HAL Id: hal-00297839 https://hal.archives-ouvertes.fr/hal-00297839 Submitted on 7 Aug 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biogeosciences Discuss., 3, 1247–1277, 2006 Biogeosciences www.biogeosciences-discuss.net/3/1247/2006/ Discussions BGD © Author(s) 2006. This work is licensed 3, 1247–1277, 2006 under a Creative Commons License. Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Phytoplankton DON uptake D. A. Bronk et al. Title Page DON as a source of bioavailable nitrogen Abstract Introduction for phytoplankton Conclusions References Tables Figures D. A. Bronk1, J. H. See2, P. Bradley1, and L. Killberg1 J I 1Department of Physical Sciences, The College of William and Mary, Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA 23062, USA J I 2 Geo-Marine Inc., 550 East 15th Street, Plano, TX 75074, USA Back Close Received: 26 June 2006 – Accepted: 14 July 2006 – Published: 7 August 2006 Full Screen / Esc Correspondence to: D.
    [Show full text]
  • Excretion of Zooplankton and Benthos
    PART IV: ASSIMILAT ION EFF ICI ENCY, EGESTION, AND EXCRETION OF ZOOPLANKTON AND BENTHOS I ntroduction 203 . Assimilat ion (A) i s t he f ood absorbed f rom a n i ndividual 's digestive syst em. Assimilation efficiency (A/G) is the proportion o f co ns umption (G) actuall y ab sorbed (Sushchenya 1969 , Odum 19 71, Wetzel 1975 ) . Although the t e rm A/G i s usua lly used in reference t o i ndividual o r ga ni sms , it also can be app lied to popu lations. Ege stion i s food that is not ass imi lated by the gu t a nd whi ch is elimina ted as feces (Pe nna k 1964 ). By co n t r ast , excretion is a waste product formed from assimilated f ood a nd gener a l ly i s e l imi nated in a d i s s o l ved form. 204 . Energy f low refe r s t o the assimilat ion of a population and i s de signated a s t he s um of produ cti on (P) and r espiration (R) , i .e ., A = P + R (Sus hchenya 1969 ; Odum 1971) . The e fficiency o f energy flow in a popul ation, p ~ R , may be approx ima tely e qua l t o the a ssimi l a ­ tion efficiency of an i nd i vidua l in t hat population (Sushchenya 1969) . However , since A/G o f t en de pends on age (Sch indler 1968, Waldbaue r 1968 , Winberg et al .
    [Show full text]
  • Meiobenthos of the Discovery Bay Lagoon, Jamaica, with an Emphasis on Nematodes
    Meiobenthos of the discovery Bay Lagoon, Jamaica, with an emphasis on nematodes. Edwards, Cassian The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author For additional information about this publication click this link. https://qmro.qmul.ac.uk/jspui/handle/123456789/522 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] UNIVERSITY OF LONDON SCHOOL OF BIOLOGICAL AND CHEMICAL SCIENCES Meiobenthos of The Discovery Bay Lagoon, Jamaica, with an emphasis on nematodes. Cassian Edwards A thesis submitted for the degree of Doctor of Philosophy March 2009 1 ABSTRACT Sediment granulometry, microphytobenthos and meiobenthos were investigated at five habitats (white and grey sands, backreef border, shallow and deep thalassinid ghost shrimp mounds) within the western lagoon at Discovery Bay, Jamaica. Habitats were ordinated into discrete stations based on sediment granulometry. Microphytobenthic chlorophyll-a ranged between 9.5- and 151.7 mg m -2 and was consistently highest at the grey sand habitat over three sampling occasions, but did not differ between the remaining habitats. It is suggested that the high microphytobenthic biomass in grey sands was related to upwelling of nutrient rich water from the nearby main bay, and the release and excretion of nutrients from sediments and burrowing heart urchins, respectively. Meiofauna abundance ranged from 284- to 5344 individuals 10 cm -2 and showed spatial differences depending on taxon.
    [Show full text]
  • Islands in the Stream 2002: Exploring Underwater Oases
    Islands in the Stream 2002: Exploring Underwater Oases NOAA: Office of Ocean Exploration Mission Three: SUMMARY Discovery of New Resources with Pharmaceutical Potential (Pharmaceutical Discovery) Exploration of Vision and Bioluminescence in Deep-sea Benthos (Vision and Bioluminescence) Microscopic view of a Pachastrellidae sponge (front) and an example of benthic bioluminescence (back). August 16 - August 31, 2002 Shirley Pomponi, Co-Chief Scientist Tammy Frank, Co-Chief Scientist John Reed, Co-Chief Scientist Edie Widder, Co-Chief Scientist Pharmaceutical Discovery Vision and Bioluminescence Harbor Branch Oceanographic Institution Harbor Branch Oceanographic Institution ABSTRACT Harbor Branch Oceanographic Institution (HBOI) scientists continued their cutting-edge exploration searching for untapped sources of new drugs, examining the visual physiology of deep-sea benthos and characterizing the habitat in the South Atlantic Bight aboard the R/V Seaward Johnson from August 16-31, 2002. Over a half-dozen new species of sponges were recorded, which may provide scientists with information leading to the development of compounds used to study, treat, or diagnose human diseases. In addition, wondrous examples of bioluminescence and emission spectra were recorded, providing scientists with more data to help them understand how benthic organisms visualize their environment. New and creative Table of Contents ways to outreach and educate the public also Key Findings and Outcomes................................2 Rationale and Objectives ....................................4
    [Show full text]
  • Benthic Invertebrate Bycatch from a Deep-Water Trawl Fishery, Chatham Rise, New Zealand
    AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, VOL. 7, 27±40 (1997) CASE STUDIES AND REVIEWS Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand P. KEITH PROBERT1, DON G. MCKNIGHT2 and SIMON L. GROVE1 1Department of Marine Science, University of Otago, PO Box 56, Dunedin, New Zealand 2National Institute of Water and Atmospheric Research Ltd, PO Box 14-901, Kilbirnie, Wellington, New Zealand ABSTRACT 1. Benthic invertebrate bycatch was collected during trawling for orange roughy (Hoplostethus atlanticus) at water depths of 662±1524 m on the northern and eastern Chatham Rise, New Zealand, in July 1994. Seventy-three trawl tows were examined, 49 from `flat' areas and 24 from two groups of `hills' (small seamounts). Benthos was recorded from 82% of all tows. 2. Some 96 benthic species were recorded including Ophiuroidea (12 spp.), Natantia (11 spp.), Asteroidea (11 spp.), Gorgonacea (11 spp.), Holothuroidea (7 spp.), and Porifera (6 spp.). 3. Cluster analysis showed the bycatch from flats and hills to differ significantly. Dominant taxa from flats were Holothuroidea, Asteroidea and Natantia; whereas taxa most commonly recorded from hills were Gorgonacea and Scleractinia. Bycatch from the two geographically separate groups of hills also differed significantly. 4. The largest bycatch volumes comprised corals from hills: Scleractinia (Goniocorella dumosa), Stylasteridae (Errina chathamensis) and Antipatharia (?Bathyplates platycaulus). Such large sessile epifauna may significantly increase the complexity of benthic habitat and trawling damage may thereby depress local biodiversity. Coral patches may require 4100 yr to recover. 5. Other environmental effects of deep-water trawling are briefly reviewed. 6. There is an urgent need to assess more fully the impact of trawling on seamount biotas and, in consequence, possible conservation measures.
    [Show full text]
  • Bioluminescence and Fluorescence of Three Sea Pens in the North-West
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.416396; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bioluminescence and fluorescence of three sea pens in the north-west Mediterranean sea Warren R Francis* 1, Ana¨ısSire de Vilar 1 1: Dept of Biology, University of Southern Denmark, Odense, Denmark Corresponding author: [email protected] Abstract Bioluminescence of Mediterranean sea pens has been known for a long time, but basic parameters such as the emission spectra are unknown. Here we examined bioluminescence in three species of Pennatulacea, Pennatula rubra, Pteroeides griseum, and Veretillum cynomorium. Following dark adaptation, all three species could easily be stimulated to produce green light. All species were also fluorescent, with bioluminescence being produced at the same sites as the fluorescence. The shape of the fluorescence spectra indicates the presence of a GFP closely associated with light production, as seen in Renilla. Our videos show that light proceeds as waves along the colony from the point of stimulation for all three species, as observed in many other octocorals. Features of their bioluminescence are strongly suggestive of a \burglar alarm" function. Introduction Bioluminescence is the production of light by living organisms, and is extremely common in the marine environment [Haddock et al., 2010, Martini et al., 2019]. Within the phylum Cnidaria, biolumiescence is widely observed among the Medusazoa (true jellyfish and kin), but also among the Octocorallia, and especially the Pennatulacea (sea pens).
    [Show full text]
  • Multi-System Analysis of Nitrogen Use by Phytoplankton and Heterotrophic Bacteria
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2009 Multi-system analysis of nitrogen use by phytoplankton and heterotrophic bacteria Paul B. Bradley College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Biogeochemistry Commons, and the Marine Biology Commons Recommended Citation Bradley, Paul B., "Multi-system analysis of nitrogen use by phytoplankton and heterotrophic bacteria" (2009). Dissertations, Theses, and Masters Projects. Paper 1539616580. https://dx.doi.org/doi:10.25773/v5-8hgt-2180 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Multi-System Analysis of Nitrogen Use by Phytoplankton and Heterotrophic Bacteria A Dissertation Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Paul B Bradley 2008 APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy r-/~p~J~ "--\ Paul B Bradle~ Approved, August 2008 eborah A. Bronk, Ph. Committee Chair/Advisor ~vVV Hugh W. Ducklow, Ph.D. ~gc~ Iris . Anderson, Ph.D. Lisa~~but Campbell, P . Department of Oceanography Texas A&M University College Station, Texas 11 DEDICATION Ami querida esposa, Silvia, por tu amor, apoyo, y paciencia durante esta aventura que has compartido conmigo, y A mi hijo, Dominic, por tu sonrisa y tus carcajadas, que pueden alegrar hasta el mas melanc61ico de los dias 111 TABLE OF CONTENTS Page ACKNOWLEDGEMENTS .......................................................................
    [Show full text]
  • Ontario Benthos Biomonitoring Network
    ONTARIO BENTHOS BIOMONITORING NETWORK PROTOCOL MANUAL Version 1.0 May 2004 Ontario Benthos Biomonitoring Network Protocol Manual Version 1.0 May 2004 Report prepared by: C. Jones1, K.M. Somers1, B. Craig2, and T. Reynoldson3 1Ontario Ministry of Environment, Environmental Monitoring and Reporting Branch, Biomonitoring Section, Dorset Environmental Science Centre, 1026 Bellwood Acres Road, P.O. Box 39, Dorset, ON, P0A 1E0 2Environment Canada, EMAN Coordinating Office, 867 Lakeshore Road, Burlington, ON, L7R 4A6 3Acadia Centre for Estuarine Research, Box 115 Acadia University, Wolfville, Nova Scotia, B4P 2R6 2 1 Executive Summary The main purpose of the Ontario Benthos Biomonitoring Network (OBBN) is to enable assessment of aquatic ecosystem condition using benthos as indicators of water and habitat quality. This manual is a companion to the OBBN Terms of Reference, which detail the network’s objectives, deliverables, development schedule, and implementation plan. Herein we outline recommended sampling, sample processing, and analytical procedures for the OBBN. To test whether an aquatic system has been impaired by human activity, a reference condition approach (RCA) is used to compare benthos at “test sites” (where biological condition is in question) to benthos from multiple, minimally impacted “reference sites”. Because types and abundances of benthos are determined by environmental attributes (e.g., catchment size, substrate type), a combination of catchment- and site-scale habitat characteristics are used to ensure test sites are compared to appropriate reference sites. A variety of minimally impacted sites must be sampled in order to evaluate the wide range of potential test sites in Ontario. We detail sampling and sample processing methods for lakes, streams, and wetlands.
    [Show full text]
  • Comparison of Benthos and Plankton for Waukegan Harbor Area of Concern, Illinois, and Burns Harbor-Port of Indiana Non-Area of Concern, Indiana, in 2015
    Prepared in cooperation with the Illinois Department of Natural Resources and the U.S. Environmental Protection Agency-Great Lakes National Program Office Comparison of Benthos and Plankton for Waukegan Harbor Area of Concern, Illinois, and Burns Harbor-Port of Indiana Non-Area of Concern, Indiana, in 2015 Scientific Investigations Report 2017–5039 U.S. Department of the Interior U.S. Geological Survey Cover. Waukegan Harbor, Illinois, in February 2015. Comparison of Benthos and Plankton for Waukegan Harbor Area of Concern, Illinois, and Burns Harbor-Port of Indiana Non-Area of Concern, Indiana, in 2015 By Barbara C. Scudder Eikenberry, Hayley A. Templar, Daniel J. Burns, Edward G. Dobrowolski, and Kurt L. Schmude Prepared in cooperation with the Illinois Department of Natural Resources and the U.S. Environmental Protection Agency-Great Lakes National Program Office Scientific Investigations Report 2017–5039 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text.
    [Show full text]
  • First Insights Into the Impacts of Benthic Cyanobacterial Mats on Fish
    www.nature.com/scientificreports OPEN First insights into the impacts of benthic cyanobacterial mats on fsh herbivory functions on a nearshore coral reef Amanda K. Ford 1,2*, Petra M. Visser 3, Maria J. van Herk3, Evelien Jongepier 4 & Victor Bonito5 Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they infuence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantifed the coverage of various BCM-types and estimated the biomass of key herbivorous fsh functional groups. Using remote video observations, we compared fsh herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fsh (opportunistically) consuming BCMs. Samples of diferent BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fsh biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were signifcantly reduced on BCM-dominated substratum, and no fsh were unambiguously observed consuming BCMs. Seven diferent BCM-types were identifed, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacifc reefs. Tough scarcely mentioned in the literature a decade ago, benthic cyanobacterial mats (BCMs) are receiving increasing attention from researchers and managers as being a nuisance on tropical coral reefs worldwide1–4.
    [Show full text]