Non Commercial Use Only

Total Page:16

File Type:pdf, Size:1020Kb

Non Commercial Use Only MAP Kinase 2015; volume 4:5700 JNK inhibitors: unicellular organisms such as yeast and multi- cellular organisms such as plants, fungi, and Correspondence: Jonas Cicenas, MAP Kinase is there a future? vertebrates. There are three different alterna- Resource, Melchiorstrasse 9, CH-3027, Bern, tively spliced genes MAPK8 (JNK1), MAPK9 Switzerland. Jonas Cicenas (JNK2), and MAPK10 (JNK3) that produce ten E-mail: [email protected] MAP Kinase Resource and Institute of different isoforms. JNK1 and JNK2 are ubiqui- Key words: JNK inhibitors; editorial. Animal Pathology, Bern, Switzerland; tously expressed but JNK3 is expressed prima- rily in the nervous system.12-15 JNKs are acti- Vetsuisse Faculty, University of Bern and Conflict of interest: the author reports no conflict Proteomics Centre, Bern, Switzerland; vated by phosphorylation in the activation loop of interest. Institute of Biochemistry, Vilnius at residues Thr183/Tyr185 (JNK1, JNK2) or University, Lithuania pThr-221 and pTyr-223 (JNK3) by the MAP2Ks: Received for publication: 20 December 2015. MAP2K4 (MKK4), MAP2K5 (MKK5) and Accepted for publication: 21 December 2015. MAP2K7 (MKK7), and are dephosphorylated and thus deactivated by MAP kinase phos- This work is licensed under a Creative Commons phatases including DUSP1 (MKP1) and Attribution NonCommercial 3.0 License (CC BY- Abstract DUSP10 (MKP5). Signaling through the JNK- NC 3.0). pathway is organized through binding to scaf- ©Copyright J. Cicenas, 2015 JNK is a subfamily of MAP kinases that hat 16 fold proteins such as MAPK8IP1 (JIP1), Licensee PAGEPress, Italy regulates a range of biological processes impli- MAPK8IP2 (JIP2), MAPK8IP3 (JIP3), SPAG9 MAP Kinase 2015; 4:5700 cated in response to stress, such as cytokines, (JIP4)17 or WDR62,18 which assemble signal- doi:10.4081/mk.2015.5700 ultraviolet irradiation, heat shock, and osmotic ing complexes containing MAP3K, MAP2K and shock as well as growth factors like PDGF, EGF, MAPKs in addition to JNK-phosphorylated FGF, etc. They were originally identified as transcription factors such as JUN, ATF2 and kinases that bind and phosphorylate JUN on ELK1. neurites and decreased astrogliosis in a simi- S63 and Se73 within its transcriptional activa- JNKs are play a central role in the inflamma- lar study.33 Likewise, this inhibitor rescued tion domain. The deregulation of these kinas- tory signaling system, and thus it is not unex- neuronal apoptosis in the developing rat brain es is shown to be involved in human diseases, pected that deactivation of JNK signaling is after hypoxia-ischemia.34 AS601245 also such as cancer, immune diseases and neu- very common in a number of diseases, such as decreased cardiomyocyte apoptosis and infarct rodegenerative disorders. The realization of cancers, inflammatory, autoimmune and neu- size after myocardial ischemia and reperfu- the therapeutic potential of the inhibition of rodegenerative diseases. There’s plenty evi- sion in rat model of myocardial JNKs led to a thorough search for small-mole- dence showing that JNKs could be considered ischemia/reperfusion.35 cule inhibitors first for research purposes, but as therapeutic targets in Parkinson’s and Interesting findings have been obtained later also for therapeutic applications. Here, Alzheimer’s disease,19,20 obesity and insulin using AS601245 as an antiviral agent. we discuss some of the most well-known JNK resistance,21,22 rheumatoid arthritis,23 AS601245 as well as SP600125 inhibited cellu- inhibitors and their use in basic research or asthma,24-26 vascular disease and atherosclero- lar entry and replication of hepatitis C virus.36 clinical science. sis.27 In addition, the application of SP600125 and The importance of JNKs in many biological AS601245 reduced influenza A virus (H7N7 processes as well as pathologies led to a seri- and H1N1v) amplification by suppressing viral ous pursuit for small-molecule inhibitors, protein and RNA synthesis.37 AS601245 was Introduction which resulted in various small molecules also found to be a potent inhibitor of HIV-1 such as aminopyrazoles, aminopyridines, reactivation in latently infected primary T cells Protein kinases are a large family of aminopyrimidines, indazoles, pyridine carbox- and T cell lines.38 enzymes, which catalyze protein phosphoryla- amides, benzothien-2-ylamides and benzothia- Probably the most interesting are the find- tion. The phosphorylation of proteins results in zol-2-yl acetonitriles to be reported as JNK ings of AS601245 as an anticancer agent. a change in localization of protein and/or their inhibitors.28 Here we will discuss most inter- AS601245 decreased cell adhesion and migra- function such as interaction with other pro- esting and successful of those. tion via decrease in the fibrinogen release in teins, affinity or enzymatic activity.Non The commercial use humanonly colon cancer cells.39 It has also affected human genome contains more than 510 pro- the proliferation of colon cancer cell lines.40 tein kinase genes. Protein phosphorylation AS601245 also led T-cell acute lymphoblastic plays a crucial role in the regulation of many JNK inhibitors leukemia cells to cell cycle arrest and apoptosis cellular functions such as proliferation, differ- and increased sensitivity to Fas-mediated entiation, migration and apoptosis. Because of AS601245 is a potent and cell permeable ATP apoptosis41 and sensitized promonocytic that, deregulation of kinase activity can result competitive JNK inhibitor. IC50: JNK1 = leukemia cells to arsenic trioxide-induced in outstanding alterations in these processes. 150nM, JNK2 = 220nM, JNK3 = 70 nM (Figure apoptosis.42 For example, deregulated kinases are fre- 1). Displays anti-inflammatory properties as AS602801 (Bentamapimod) is a selective quently found to be oncogenic and can be shown in an experimental mouse model of JNK inhibitor that has been found to block T- essential for the survival of cancer cells.1 rheumatoid arthritis29 and has been shown to cell proliferation and induce apoptosis. IC50: Moreover, the phosphorylation of some pro- reduce TNF- plasma levels induced by LPS in JNK1 = 80 nM, JNK2 = 90 nM, JNK3 = 230 nM teins, such as ErbB2,2-4 EGFR,3,5 Erk,6-8 SchA,9 mice.30,31 It has also been shown to provide sig- (Figure 1). This inhibitor blocked T-lympho- Akt10,11 and many more, is associated with nificant protection against the loss of hip- cyte proliferation and induced apoptosis in prognosis in a number of human cancers. pocampal CA1 neurons in a gerbil model of relapsing-remitting multiple sclerosis c-Jun N-terminal kinases (JNKs) are mem- transient global ischemia, suggesting that it patients.43 In addition, it has been shown to bers of subfamily of MAP kinase family of ser- may be a pertinent approach in the therapy of induce the regression of endometriotic lesions ine/threonine kinases which are found in both ischemic insults,32 it also reduced damage to in human endometrial organ cultures, nude [MAP Kinase 2015; 4:5700] [page 31] Editorial mice xenograft as well as rat disease models.44 oxidative stress in rats,62 prevent the disrup- nM) (Figure 2).80 Pre-treatment of human AEG 3482 is a JNK inhibitor with an IC50 = 20 tion of blood-brain barrier induced by metham- astrocytes with either SP600125 or SU 3327, 63 μM (Figure 1). The action is not direct, since it phetamine and diminish neuronal cell death and trauma-induced human astrocyte retrac- binds Hsp90 and facilitates HSF1 release, in experimental cerebral malaria in mice.64 tion in in vitro study.81 Inhibition of JNK by induces expression of Hsp70, which in turn Worth mentioning is anticancer activity of SU3327 was shown to aggravate the recovery blocks JNK activation. It also reduces apoptosis SP600125 as well. It was shown to induce cell of rat hearts after global ischemia.82 SU 3327 of neonatal sympathetic neurons after NGF with- death selectively in undifferentiated thyroid was also shown to reduced mitochondrial dys- drawal.45 It was also shown to decrease neuron cancer cell lines,65 sensitize the multidrug- function and liver damage in acute liver injury 46 83 specific toxicity of oligomeric amyloid b. resistant KBV20C human oral squamous carci- mouse model. 66 BI 78D3 is a JNK inhibitor with an IC50 = noma cell line, enhance TGF--induced apop- 280 nM. It displays >100 fold selectivity over tosis of human cholangiocarcinoma cell line p38 kinases and no activity towards mTOR and RBE,67 suppress glioblastoma cells,68 selective- PI-3K (Figure 1). BI 78D3 acts via inhibition of ly kill p53-deficient human colon carcinoma Tanzisertib (CC-930) and D- JIP1-JNK binding. It has also been shown to cells in mouse xenograft model,69 enhance JNKI-1 (XG-102, AM-111) - restores insulin sensitivity in mouse disease dihydroartemisinin-induced apoptosis in First JNK inhibitors in clinical models of type 2 diabetes.47 BI-78D3 as well as human lung adenocarcinoma cells70 and SP600125 reduced phenylephrine- and nora- reduce the viability of doxorubicin resistant trials drenaline-induced contractions of human stomach cancer cells.71 Inflammation is anoth- prostate smooth muscle.48 Interestingly, BI- er area where SP600125 has been extensively Tanzisertib (CC-930) is a potent, selective, 78D3 pretreatment sensitized osteosarcoma studied. It was shown to have protective effects and orally active JNK inhibitor, developed by in an experimental model of cerulein-induced cells (but not normal osteoblasts) to doxoru- Cellgene company, with IC50: JNK1 = 0.06 μM, 49 pancreatitis,72 diet-induced rat model of non- bicin-induced apoptosis, which gives some JNK2 = 0.007 μM and JNK3 = 0.006 μM and ground for thoughts regarding the future com- alcoholic steatohepatitis73 and mouse model of selective against MAP kinases ERK1 and p38 allergic airway inflammation74 and promote 84 bination treatment. with IC50 of 0.48 and 3.4 μM respectively. Of CC-401 is a specific inhibitor of JNK with resolution of allergic airway inflammation in a panel of 240 kinases, EGFR was the only non- murine acute asthma model.75 In addition, IC50 = 25-50nM.
Recommended publications
  • Functional Genomics Analysis of Phelan-Mcdermid Syndrome 22Q13 Region During Human Neurodevelopment
    Delft University of Technology Functional genomics analysis of Phelan-McDermid syndrome 22q13 region during human neurodevelopment Ziats, Catherine A.; Grosvenor, Luke P.; Sarasua, Sara M.; Thurm, Audrey E.; Swedo, Susan E.; Mahfouz, Ahmed; Rennert, Owen M.; Ziats, Mark N. DOI 10.1371/journal.pone.0213921 Publication date 2019 Document Version Final published version Published in PLoS ONE Citation (APA) Ziats, C. A., Grosvenor, L. P., Sarasua, S. M., Thurm, A. E., Swedo, S. E., Mahfouz, A., Rennert, O. M., & Ziats, M. N. (2019). Functional genomics analysis of Phelan-McDermid syndrome 22q13 region during human neurodevelopment. PLoS ONE, 14(3), 1-13. [e0213921]. https://doi.org/10.1371/journal.pone.0213921 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. RESEARCH ARTICLE Functional genomics analysis of Phelan- McDermid syndrome 22q13 region during human neurodevelopment 1☯ 2,3☯ 4 2 Catherine A. ZiatsID *, Luke P. Grosvenor , Sara M. Sarasua , Audrey E.
    [Show full text]
  • Mapk8ip1 (NM 011162) Mouse Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MG226852 Mapk8ip1 (NM_011162) Mouse Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Mapk8ip1 (NM_011162) Mouse Tagged ORF Clone Tag: TurboGFP Symbol: Mapk8ip1 Synonyms: IB1; JIP-1; Jip1; mjip-2a; Prkm8ip; Skip Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 5 Mapk8ip1 (NM_011162) Mouse Tagged ORF Clone – MG226852 ORF Nucleotide >MG226852 representing NM_011162 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGCGGAGCGAGAGAGCGGCCTGGGCGGGGGCGCCGCGTCCCCACCGGCCGCTTCCCCATTCCTGGGAC TGCACATCGCGTCGCCTCCCAATTTCAGGCTCACCCATGACATCAGCCTGGAGGAGTTTGAGGATGAAGA CCTTTCGGAGATCACTGACGAGTGTGGCATCAGCCTGCAGTGCAAAGACACCCTGTCTCTCCGGCCCCCG CGCGCCGGGCTGCTGTCTGCGGGTAGCAGCGGCAGCGCGGGGAGCCGGCTGCAGGCGGAGATGCTGCAGA TGGACCTGATCGACGCGGCAGGTGACACTCCGGGCGCCGAGGACGACGAGGAGGAGGAGGACGACGAGCT CGCTGCCCAACGACCAGGAGTGGGGCCTCCCAAAGCGGAGTCCAACCAGGATCCGGCGCCTCGCAGCCAG GGCCAGGGCCCGGGCACAGGCAGCGGAGACACCTACCGACCCAAGAGGCCTACCACGCTCAACCTTTTCC CGCAGGTGCCGCGGTCTCAGGACACGCTGAATAATAACTCTTTAGGCAAAAAGCACAGTTGGCAGGACCG TGTGTCTCGATCATCCTCCCCTCTGAAGACAGGAGAACAGACGCCTCCACATGAACACATCTGCCTGAGT
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Functional Parsing of Driver Mutations in the Colorectal Cancer Genome Reveals Numerous Suppressors of Anchorage-Independent
    Supplementary information Functional parsing of driver mutations in the colorectal cancer genome reveals numerous suppressors of anchorage-independent growth Ugur Eskiocak1, Sang Bum Kim1, Peter Ly1, Andres I. Roig1, Sebastian Biglione1, Kakajan Komurov2, Crystal Cornelius1, Woodring E. Wright1, Michael A. White1, and Jerry W. Shay1. 1Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039. 2Department of Systems Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77054. Supplementary Figure S1. K-rasV12 expressing cells are resistant to p53 induced apoptosis. Whole-cell extracts from immortalized K-rasV12 or p53 down regulated HCECs were immunoblotted with p53 and its down-stream effectors after 10 Gy gamma-radiation. ! Supplementary Figure S2. Quantitative validation of selected shRNAs for their ability to enhance soft-agar growth of immortalized shTP53 expressing HCECs. Each bar represents 8 data points (quadruplicates from two separate experiments). Arrows denote shRNAs that failed to enhance anchorage-independent growth in a statistically significant manner. Enhancement for all other shRNAs were significant (two tailed Studentʼs t-test, compared to none, mean ± s.e.m., P<0.05)." ! Supplementary Figure S3. Ability of shRNAs to knockdown expression was demonstrated by A, immunoblotting for K-ras or B-E, Quantitative RT-PCR for ERICH1, PTPRU, SLC22A15 and SLC44A4 48 hours after transfection into 293FT cells. Two out of 23 tested shRNAs did not provide any knockdown. " ! Supplementary Figure S4. shRNAs against A, PTEN and B, NF1 do not enhance soft agar growth in HCECs without oncogenic manipulations (Student!s t-test, compared to none, mean ± s.e.m., ns= non-significant).
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Areca Catechu-(Betel-Nut)-Induced Whole Transcriptome Changes Associated With
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.233932; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Areca catechu-(Betel-nut)-induced whole transcriptome changes associated with 2 diabetes, obesity and metabolic syndrome in a human monocyte cell line 3 4 Short title: Betel-nut induced whole transcriptome changes 5 6 7 Shirleny Cardoso1¶ , B. William Ogunkolade1¶, Rob Lowe2, Emanuel Savage3, Charles A 8 Mein3, Barbara J Boucher1, Graham A Hitman1* 9 10 11 1Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of 12 Medicine and Dentistry, Queen Mary University of London, United Kingdom 13 14 2Omnigen Biodata Ltd, Cambridge, United Kingdom 15 16 3Barts and The London Genome Centre, Blizard Institute, Queen Mary University of London, 17 United Kingdom 18 19 * Corresponding author 20 Email: [email protected] 21 22 ¶These authors contributed equally to the work 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.233932; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 25 Abstract 26 Betel-nut consumption is the fourth most common addictive habit globally and there is good 27 evidence to link it with obesity, type 2 diabetes and the metabolic syndrome.
    [Show full text]
  • E6-Induced Selective Translation of WNT4 and JIP2 Promotes the Progression of Cervical Cancer Via a Noncanonical WNT Signaling Pathway
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans ARTICLE OPEN E6-induced selective translation of WNT4 and JIP2 promotes the progression of cervical cancer via a noncanonical WNT signaling pathway Lin Zhao1,2, Longlong Wang1, Chenglan Zhang1, Ze Liu1, Yongjun Piao 1, Jie Yan1, Rong Xiang1, Yuanqing Yao1,2 and Yi Shi 1 mRNA translation reprogramming occurs frequently in many pathologies, including cancer and viral infection. It remains largely unknown whether viral-induced alterations in mRNA translation contribute to carcinogenesis. Most cervical cancer is caused by high-risk human papillomavirus infection, resulting in the malignant transformation of normal epithelial cells mainly via viral E6 and E7 oncoproteins. Here, we utilized polysome profiling and deep RNA sequencing to systematically evaluate E6-regulated mRNA translation in HPV18-infected cervical cancer cells. We found that silencing E6 can cause over a two-fold change in the translation efficiency of ~653 mRNAs, most likely in an eIF4E- and eIF2α-independent manner. In addition, we identified that E6 can selectively upregulate the translation of WNT4, JIP1, and JIP2, resulting in the activation of the noncanonical WNT/PCP/JNK pathway to promote cell proliferation in vitro and tumor growth in vivo. Ectopic expression of WNT4/JIP2 can effectively rescue the decreased cell proliferation caused by E6 silencing, strongly suggesting that the WNT4/JIP2 pathway mediates the role of E6 in promoting cell proliferation. Thus, our results revealed a novel oncogenic mechanism
    [Show full text]
  • Autophagy-Related Gene Expression Is an Independent Prognostic Indicator of Glioma
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 37), pp: 60987-61000 Research Paper Autophagy-related gene expression is an independent prognostic indicator of glioma Huixue Zhang1,*, Xiaoyan Lu1,*, Ning Wang1,*, Jianjian Wang1, Yuze Cao2,1, Tianfeng Wang1, Xueling Zhou1, Yang Jiao1, Lei Yang1, Xiaokun Wang1, Lin Cong1, Jianlong Li3, Jie Li1, He-Ping Ma4, Yonghui Pan5, Shangwei Ning6 and Lihua Wang1 1Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China 2Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China 3Department of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, China 4Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA 5Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China 6College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China *These authors have contributed equally to this work Correspondence to: Lihua Wang, email: [email protected] Shangwei Ning, email: [email protected] Yonghui Pan, email: [email protected] Keywords: autophagy, glioma, prognostic signature, survival Received: November 01, 2016 Accepted: April 17, 2017 Published: May 09, 2017 Copyright: Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT In this study, we identified 74 differentially expressed autophagy-related genes in glioma patients. Analysis using a Cox proportional hazard regression model showed that MAPK8IP1 and SH3GLB1, two autophagy-related genes, were associated with the prognostic signature for glioma.
    [Show full text]
  • Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer
    Epigenetic mechanisms are involved in the oncogenic properties of ZNF518B in colorectal cancer Francisco Gimeno-Valiente, Ángela L. Riffo-Campos, Luis Torres, Noelia Tarazona, Valentina Gambardella, Andrés Cervantes, Gerardo López-Rodas, Luis Franco and Josefa Castillo SUPPLEMENTARY METHODS 1. Selection of genomic sequences for ChIP analysis To select the sequences for ChIP analysis in the five putative target genes, namely, PADI3, ZDHHC2, RGS4, EFNA5 and KAT2B, the genomic region corresponding to the gene was downloaded from Ensembl. Then, zoom was applied to see in detail the promoter, enhancers and regulatory sequences. The details for HCT116 cells were then recovered and the target sequences for factor binding examined. Obviously, there are not data for ZNF518B, but special attention was paid to the target sequences of other zinc-finger containing factors. Finally, the regions that may putatively bind ZNF518B were selected and primers defining amplicons spanning such sequences were searched out. Supplementary Figure S3 gives the location of the amplicons used in each gene. 2. Obtaining the raw data and generating the BAM files for in silico analysis of the effects of EHMT2 and EZH2 silencing The data of siEZH2 (SRR6384524), siG9a (SRR6384526) and siNon-target (SRR6384521) in HCT116 cell line, were downloaded from SRA (Bioproject PRJNA422822, https://www.ncbi. nlm.nih.gov/bioproject/), using SRA-tolkit (https://ncbi.github.io/sra-tools/). All data correspond to RNAseq single end. doBasics = TRUE doAll = FALSE $ fastq-dump -I --split-files SRR6384524 Data quality was checked using the software fastqc (https://www.bioinformatics.babraham. ac.uk /projects/fastqc/). The first low quality removing nucleotides were removed using FASTX- Toolkit (http://hannonlab.cshl.edu/fastxtoolkit/).
    [Show full text]
  • Construction of a Natural Panel of 11P11.2 Deletions and Further Delineation of the Critical Region Involved in Potocki–Shaffer Syndrome
    European Journal of Human Genetics (2005) 13, 528–540 & 2005 Nature Publishing Group All rights reserved 1018-4813/05 $30.00 www.nature.com/ejhg ARTICLE Construction of a natural panel of 11p11.2 deletions and further delineation of the critical region involved in Potocki–Shaffer syndrome Keiko Wakui1,12, Giuliana Gregato2,3,12, Blake C Ballif2, Caron D Glotzbach2,4, Kristen A Bailey2,4, Pao-Lin Kuo5, Whui-Chen Sue6, Leslie J Sheffield7, Mira Irons8, Enrique G Gomez9, Jacqueline T Hecht10, Lorraine Potocki1,11 and Lisa G Shaffer*,2,4 1Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; 2Health Research and Education Center, Washington State University, Spokane, WA, USA; 3Dip. Patologia Umana ed Ereditaria, Sez. Biologia Generale e Genetica Medica, Universita` degli Studi di Pavia, Italy; 4Sacred Heart Medical Center, Spokane, WA, USA; 5Department of Obstetrics and Gynecology, National Cheng-Kung University Medical College, Taiwan; 6Department of Pediatrics, Taipei Municipal Women and Children’s Hospital, Taiwan; 7Genetic Health Services Victoria, Murdoch Children’s Research Institute, Department of Paediatrics, University of Melbourne, Victoria, Australia; 8Division of Genetics, Department of Medicine, Children’s Hospital, Harvard Medical School, Boston, MA, USA; 9Area de Gene´tica, Centro de Desarrollo Infantil y Departamento de Pediatrı´a Hospital Materno Infantil-Hospital Regional Universitario ‘Infanta Cristina’, Badajoz, Spain; 10Department of Pediatrics, University of Texas Medical School at Houston, TX, USA; 11Texas Children’s Hospital, Houston, TX, USA Potocki–Shaffer syndrome (PSS) is a contiguous gene deletion syndrome that results from haploinsufficiency of at least two genes within the short arm of chromosome 11[del(11)(p11.2p12)].
    [Show full text]
  • Compound Phenotype in a Girl with R(22), Concomitant Microdeletion 22Q13.32- Q13.33 and Mosaic Monosomy 22 Anna A
    Kashevarova et al. Molecular Cytogenetics (2018) 11:26 https://doi.org/10.1186/s13039-018-0375-3 RESEARCH Open Access Compound phenotype in a girl with r(22), concomitant microdeletion 22q13.32- q13.33 and mosaic monosomy 22 Anna A. Kashevarova1* , Elena O. Belyaeva1, Aleksandr M. Nikonov2, Olga V. Plotnikova2, Nikolay A. Skryabin1, Tatyana V. Nikitina1, Stanislav A. Vasilyev1, Yulia S. Yakovleva1,3, Nadezda P. Babushkina1, Ekaterina N. Tolmacheva1, Mariya E. Lopatkina1, Renata R. Savchenko1, Lyudmila P. Nazarenko1,3 and Igor N. Lebedev1,3 Abstract Background: Ring chromosome instability may influence a patient’s phenotype and challenge its interpretation. Results: Here, we report a 4-year-old girl with a compound phenotype. Cytogenetic analysis revealed her karyotype to be 46,XX,r(22). aCGH identified a 180 kb 22q13.32 duplication, a de novo 2.024 Mb subtelomeric 22q13.32-q13.33 deletion, which is associated with Phelan-McDermid syndrome, and a maternal single gene 382-kb TUSC7 deletion of uncertain clinical significance located in the region of the 3q13.31 deletion syndrome. All chromosomal aberrations were confirmed by real-time PCR in lymphocytes and detected in skin fibroblasts. The deletions were also found in the buccal epithelium. According to FISH analysis, 8% and 24% of the patient’s lymphocytes and skin fibroblasts, respectively, had monosomy 22. Conclusions: We believe that a combination of 22q13.32-q13.33 deletion and monosomy 22 in a portion of cells can better define the clinical phenotype of the patient. Importantly, the in vivo presence of monosomic cells indicates ring chromosome instability, which may favor karyotype correction that is significant for the development of chromosomal therapy protocols.
    [Show full text]
  • Rabbit Anti-JIP1/MAPK8IP1/FITC Conjugated Antibody
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-JIP1/MAPK8IP1/FITC Conjugated antibody SL6255R-FITC Product Name: Anti-JIP1/MAPK8IP1/FITC Chinese Name: FITC标记的丝裂原活化蛋白激酶8相互作用蛋白1抗体 C jun amino terminal kinase interacting protein 1; IB 1; IB1; Islet brain 1; JIP 1; JNK interacting protein 1; JNK MAP kinase scaffold protein 1; MAPK8IP 1; MAPK8IP1; Alias: Mitogen activated protein kinase 8 interacting protein 1; PRKM8 interacting protein; PRKM8IP; JIP1_HUMAN. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Dog,Pig,Cow,Horse,Sheep, IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 77kDa Cellular localization: The cell membrane Form: Lyophilized or Liquid Concentration: 1mg/mlwww.sunlongbiotech.com immunogen: KLH conjugated synthetic peptide derived from human JIP1/MAPK8IP1 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: This gene encodes a regulator of the pancreatic beta-cell function. It is highly similar to Product Detail: JIP-1, a mouse protein known to be a regulator of c-Jun amino-terminal kinase (Mapk8).
    [Show full text]