Activation Domain of Stat5 Trans

Total Page:16

File Type:pdf, Size:1020Kb

Activation Domain of Stat5 Trans The IL-2 Receptor Promotes Lymphocyte Proliferation and Induction of the c-myc, bcl-2, and bcl-x Genes Through the trans-Activation Domain of Stat51 James D. Lord,*†‡ Bryan C. McIntosh,* Philip D. Greenberg,†‡§ and Brad H. Nelson2*‡ Studies assessing the role of Stat5 in the IL-2 proliferative signal have produced contradictory, and thus inconclusive, results. One factor confounding many of these studies is the ability of IL-2R to deliver redundant mitogenic signals from different cytoplasmic tyrosines on the IL-2R ␤-chain (IL-2R␤). Therefore, to assess the role of Stat5 in mitogenic signaling independent of any redun- dant signals, all cytoplasmic tyrosines were deleted from IL-2R␤ except for Tyr510, the most potent Stat5-activating site. This deletion mutant retained the ability to induce Stat5 activation and proliferation in the T cell line CTLL-2 and the pro-B cell line BA/F3. A set of point mutations at or near Tyr510 that variably compromised Stat5 activation also compromised the proliferative signal and revealed a quantitative correlation between the magnitude of Stat5 activation and proliferation. Proliferative signaling by a receptor mutant with a weak Stat5 activating site could be rescued by overexpression of wt Stat5a or b. Additionally, the ability of this receptor mutant to induce c-myc, bcl-x, and bcl-2 was enhanced by overexpression of wt Stat5. By contrast, overexpression of a version of Stat5a lacking the C-terminal trans-activation domain inhibited the induction of these genes and cell proliferation. Thus, Stat5 is a critical component of the proliferative signal from Tyr510 of the IL-2R and regulates expression of both mitogenic and survival genes through its trans-activation domain. The Journal of Immunology, 2000, 164: 2533–2541. he T cell mitogen IL-2 binds to a heterotrimeric receptor Stat5 refers to either of two highly homologous members of the complex consisting of IL-2R␣, IL-2R␤, and ␥c chains (1), larger Stat family of signal-transducing activators of transcription, T with the consequent heterodimerization of IL-2R␤ and ␥c Stat5a and Stat5b (16–18). Stat activation conventionally com- inducing the proliferative signal (2, 3). ␥c contributes to prolifer- mences with selective binding of a Stat SH2 domain to a phos- ative signaling by recruiting the tyrosine kinase Jak3(4–8), the phorylated tyrosine motif on a ligated receptor (19–22), approxi- activation of which also requires a membrane-proximal S region of mating the Stat molecule with a receptor-associated, activated IL-2R␤ (9, 10). Additionally, at least one of three cytoplasmic Janus kinase which phosphorylates a key tyrosine residue on the tyrosine phosphorylation sites (Tyr338, Tyr393,orTyr510) distal to Stat molecule (23, 24). These Stat phosphotyrosines preferentially the S region on IL-2R␤ must be present for proliferation, suggest- bind to Stat SH2 domains (21), causing Stat molecules to dimerize, ing that obligate mitogenic signaling molecules interact with these release from receptors, enter the nucleus, and bind palindromic phosphotyrosines (11, 12). Indeed, the adapter molecule Shc in- DNA sequences (22) in certain promoters (25–27), inducing gene teracts with Tyr338 (11, 13) and can deliver a proliferative signal transcription via a C-terminal trans-activation domain (TAD)3 (14). The other two tyrosines, Tyr510 and Tyr393, provide docking (28–31). Some members of the Stat family also demonstrate less sites for the transcription factor Stat5 (11), which has led to the conventional activities. Stat3, for example, serves as an adapter hypothesis that Stat5 mediates a proliferative signal parallel to the molecule between PI3 kinase and type I IFN receptors (32). Fur- one involving Shc. However, Shc and Stat5 have very different thermore, Stat1 and, in cooperation with the glucocorticoid recep- biochemical properties, which raises the question of whether they tor, Stat5 mediate the expression of certain genes through a TAD- could indeed generate redundant proliferative signals from IL- independent mechanism (33–35). Thus, not all signaling functions 2R␤. In addition, the fact that a single phosphotyrosine on a re- of Stat molecules involve the conventional trans-activation ceptor chain can interact with multiple signaling molecules, as domain. exemplified by studies of the platelet-derived growth factor recep- A critical role for Stat5 in IL-2-mediated mitogenesis has been tor (15), raises the possibility that a factor other than Stat5 medi- suggested by the failure of TCR-stimulated T cells from mice lack- ates the proliferative signal from Tyr393 and/or Tyr510. ing both the Stat5a and Stat5b genes to proliferate in response to IL-2 (36). However, the IL-2R can mediate proliferation in the absence of detectable Stat5 activation through alternative mito- *Virginia Mason Research Center, Seattle, WA 98101; †Fred Hutchinson Cancer Research Center, Seattle, WA 98104; and Departments of ‡Immunology and §Med- genic signaling molecules, such as Shc (11, 14). Indeed, IL-2R␤ icine, University of Washington, Seattle, WA 98195 mutants that fail to activate Stat5 mediate proliferation in cultured Received for publication September 3, 1999. Accepted for publication December cell lines (11, 37, 38), and primary T cells (39). Thus, the inability 10, 1999. of Stat5-null T cells to proliferate may reflect a recently described The costs of publication of this article were defrayed in part by the payment of page essential role for Stat5 in TCR signaling (40) rather than a requisite charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. role in IL-2 signaling. 1 This work was supported by Grant GM57931 from the National Institutes of Health. This report assesses the role of Stat5 in signals derived from the J.D.L. was supported by a National Defense Science and Engineering Graduate fel- IL-2R in cell lines that do not require TCR stimulation for prolif- lowship from the U.S. Department of Defense and by a grant from the Poncin Schol- eration. A receptor mutagenesis and rescue strategy was used to arship Fund. 2 Address correspondence and reprint requests to Dr. Brad Nelson, Virginia Mason Research Center, 1201 9th Avenue, Seattle, WA 98101-2795. 3 Abbreviations used in this paper: TAD, trans-activation domain; wt, wild type. Copyright © 2000 by The American Association of Immunologists 0022-1767/00/$02.00 2534 IL-2 MEDIATES PROLIFERATION THROUGH THE TAD OF Stat5 study signaling by Stat5 in the absence of any redundant signals resed on acrylamide gels and transferred to nitrocellulose. Nitrocellulose from Shc or other molecules potentially associating with IL-2R␤. blots were blocked with 0.1 M Tris base (pH 7.5), 0.9% sodium chloride, We demonstrate that Tyr510 of IL-2R␤ mediates proliferation 0.05% Tween 20 (TTBS) containing 1% BSA (for antiphosphotyrosine probes) or 5% powdered skim milk (Carnation, Glendale, CA), and probed through the activation of Stat5 and that either the Stat5a or the with rabbit antisera recognizing Jak1 (Santa Cruz Biotechnology) or Jak3 Stat5b isoform can transduce the mitogenic signal. Furthermore, (Upstate Biotechnology, Lake Placid, NY) or murine Abs recognizing proliferative signaling by Stat5 is critically dependent on its TAD, phosphotyrosine (4G10; Upstate Biotechnology) or Stat5 (Transduction indicating that Stat5a mediates proliferation through its conven- Laboratories, Lexington, KY). Blots were then washed with TTBS, probed with peroxidase-conjugated goat anti-rabbit or anti-mouse Abs (Life Tech- tional role as a transcription factor. Indeed, IL-2-induced transcrip- nologies), and washed again with TTBS. Bound Abs were detected by tion of the proliferative and survival genes c-myc, bcl-2, and bcl-x enhanced chemiluminescence (DuPont NEN, Boston, MA). Blots were is mediated by Stat5a through the TAD. stripped between probings with a 30-min, 50°C incubation in 62.6 mM Tris-HCl (pH 6.7), 0.1 M ␤-mercaptoethanol, and 2% SDS. Materials and Methods Plasmid construction Electrophoretic mobility shift assays Expression vectors encoding the chimeric ␣␥- and ␤␤-chains (formerly Cells stimulated as indicated were washed once with buffer H (20 mM denoted GM␣/2␥ and GM␤/2␤) under the control of the human ␤-actin HEPES (pH 7.9), 1 mM EDTA, 0.1 mM EGTA, 2 mM magnesium chlo- promoter have been described previously (2, 9, 14, 41). Mutants of ␤␤ ride, 1 mM sodium o-vanadate, 20 mM sodium fluoride, 1 mM DTT, 0.1 were generated by annealing sense and antisense oligonucleotides encod- mM 4-(2-aminoethyl)benzenesulfonyl fluoride, and 1 mg/ml leupeptin) ing novel C-terminal sequences for ␤␤ and/or premature stop codons, and and lysed in buffer H plus 0.2% Nonidet P-40 at 0°C. Nuclei were pelleted cloning overhanging ends of these annealed primers between a unique AflII by centrifugation and extracted with buffer K (buffer H plus 0.42 M sodium site in the cytoplasmic domain of ␤␤ and a unique XbaI site immediately chloride and 20% v/v glycerol). To generate a probe for Stat activity, 3Ј to the stop codon of ␤␤. For analyses in BA/FG cells, the full length, incompletely overlapping oligonucleotides corresponding to the sense and nonchimeric human IL-2R␤ cDNA was cloned into the expression vector antisense strands of the Stat-responsive DNA element from the Fc␥R1 used above, and the C terminus of this chain, between the AflII site and a promoter were annealed, radiolabeled with [␣-32P]dCTP by an end-filling unique 3Ј ScaI site, was then replaced with the respective mutated se- T4 polymerase reaction, and purified with a MicroSpin G-25 column (Phar- quences. The ⌬713 mutant of Stat5a was generated by PCR with an anti- macia, Piscataway, NJ). The probe was added to nuclear extracts in 50 mM sense oligonucleotide encoding residues 708 to 712 of Stat5a followed by potassium chloride, 10 mM HEPES (pH 7.9), 10% glycerol, 1 mM DTT, the flag epitope, a stop codon, and an EcoRV site.
Recommended publications
  • An Immunoevasive Strategy Through Clinically-Relevant Pan-Cancer Genomic and Transcriptomic Alterations of JAK-STAT Signaling Components
    bioRxiv preprint doi: https://doi.org/10.1101/576645; this version posted March 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An immunoevasive strategy through clinically-relevant pan-cancer genomic and transcriptomic alterations of JAK-STAT signaling components Wai Hoong Chang1 and Alvina G. Lai1, 1Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7FZ, United Kingdom Since its discovery almost three decades ago, the Janus ki- Although cytokines are responsible for inflammation in nase (JAK)-signal transducer and activator of transcription cancer, spontaneous eradication of tumors by endoge- (STAT) pathway has paved the road for understanding inflam- nous immune processes rarely occurs. Moreover, the matory and immunity processes related to a wide range of hu- dynamic interaction between tumor cells and host immu- man pathologies including cancer. Several studies have demon- nity shields tumors from immunological ablation, which strated the importance of JAK-STAT pathway components in overall limits the efficacy of immunotherapy in the clinic. regulating tumor initiation and metastatic progression, yet, the extent of how genetic alterations influence patient outcome is far from being understood. Focusing on 133 genes involved in Cytokines can be pro- or anti-inflammatory and are inter- JAK-STAT signaling, we found that copy number alterations dependent on each other’s function to maintain immune underpin transcriptional dysregulation that differs within and homeostasis(3).
    [Show full text]
  • The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse
    The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse Kidneys A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Samantha J. Shaw May 2014 © 2014 Samantha J. Shaw. All Rights Reserved. 2 This thesis titled The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse Kidneys by SAMANTHA J. SHAW has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Karen T. Coschigano Associate Professor of Biomedical Sciences Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT SHAW, SAMANTHA J., M.S., May 2014, Biological Sciences The Effect of STAT5 on Inflammation-Related Gene Expression in Diabetic Mouse Kidneys Director of Thesis: Karen T. Coschigano Diabetic nephropathy (DN) is the leading cause of end-stage renal disease and renal failure in humans. The molecular pathways that lead to DN are not well known. This research investigates possible roles of several signal transducers and activators of transcription (STAT) proteins in this disease using a STAT5A/B knockout (SKO) mouse model. Based on previous observations of increased inflammation-related gene expression in the kidneys of diabetic SKO mice, the hypothesis of the current project was that the combination of the loss of STAT5 repression and increase of STAT3 activity escalates inflammation-related gene expression in the kidneys of diabetic SKO mice. In support of this hypothesis, an increase of IRF-1 RNA expression, reflective of the loss of STAT5 repression, was observed in the kidneys of diabetic SKO mice.
    [Show full text]
  • Myeloid-Derived Suppressor Cell Development Is Regulated by a STAT/IRF-8 Axis
    Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis Jeremy D. Waight, … , Kebin Liu, Scott I. Abrams J Clin Invest. 2013;123(10):4464-4478. https://doi.org/10.1172/JCI68189. Research Article Immunology Myeloid-derived suppressor cells (MDSCs) comprise immature myeloid populations produced in diverse pathologies, including neoplasia. Because MDSCs can impair antitumor immunity, these cells have emerged as a significant barrier to cancer therapy. Although much research has focused on how MDSCs promote tumor progression, it remains unclear how MDSCs develop and why the MDSC response is heavily granulocytic. Given that MDSCs are a manifestation of aberrant myelopoiesis, we hypothesized that MDSCs arise from perturbations in the regulation of interferon regulatory factor–8 (IRF-8), an integral transcriptional component of myeloid differentiation and lineage commitment. Overall, we demonstrated that (a) Irf8-deficient mice generated myeloid populations highly homologous to tumor-induced MDSCs with respect to phenotype, function, and gene expression profiles; (b) IRF-8 overexpression in mice attenuated MDSC accumulation and enhanced immunotherapeutic efficacy; (c) the MDSC-inducing factors G-CSF and GM-CSF facilitated IRF-8 downregulation via STAT3- and STAT5-dependent pathways; and (d) IRF-8 levels in MDSCs of breast cancer patients declined with increasing MDSC frequency, implicating IRF-8 as a negative regulator in human MDSC biology. Together, our results reveal a previously unrecognized role for IRF-8 expression in MDSC subset development, which may provide new avenues to target MDSCs in neoplasia. Find the latest version: https://jci.me/68189/pdf Research article Myeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axis Jeremy D.
    [Show full text]
  • Modulation of STAT Signaling by STAT-Interacting Proteins
    Oncogene (2000) 19, 2638 ± 2644 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Modulation of STAT signaling by STAT-interacting proteins K Shuai*,1 1Departments of Medicine and Biological Chemistry, University of California, Los Angeles, California, CA 90095, USA STATs (signal transducer and activator of transcription) play important roles in numerous cellular processes Interaction with non-STAT transcription factors including immune responses, cell growth and dierentia- tion, cell survival and apoptosis, and oncogenesis. In Studies on the promoters of a number of IFN-a- contrast to many other cellular signaling cascades, the induced genes identi®ed a conserved DNA sequence STAT pathway is direct: STATs bind to receptors at the named ISRE (interferon-a stimulated response element) cell surface and translocate into the nucleus where they that mediates IFN-a response (Darnell, 1997; Darnell function as transcription factors to trigger gene activa- et al., 1994). Stat1 and Stat2, the ®rst known members tion. However, STATs do not act alone. A number of of the STAT family, were identi®ed in the transcription proteins are found to be associated with STATs. These complex ISGF-3 (interferon-stimulated gene factor 3) STAT-interacting proteins function to modulate STAT that binds to ISRE (Fu et al., 1990, 1992; Schindler et signaling at various steps and mediate the crosstalk of al., 1992). ISGF-3 consists of a Stat1:Stat2 heterodimer STATs with other cellular signaling pathways. This and a non-STAT protein named p48, a member of the article reviews the roles of STAT-interacting proteins in IRF (interferon regulated factor) family (Levy, 1997).
    [Show full text]
  • Batf3 and Id2 Have a Synergistic Effect on Irf8-Directed Classical Cd8α+ Dendritic Cell Development
    Batf3 and Id2 Have a Synergistic Effect on Irf8-Directed Classical CD8α+ Dendritic Cell Development This information is current as Hemant Jaiswal, Monika Kaushik, Rachid Sougrat, Monica of October 3, 2021. Gupta, Anup Dey, Rohit Verma, Keiko Ozato and Prafullakumar Tailor J Immunol 2013; 191:5993-6001; Prepublished online 13 November 2013; doi: 10.4049/jimmunol.1203541 http://www.jimmunol.org/content/191/12/5993 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/11/13/jimmunol.120354 Material 1.DC1 http://www.jimmunol.org/ References This article cites 57 articles, 38 of which you can access for free at: http://www.jimmunol.org/content/191/12/5993.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 3, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Batf3 and Id2 Have a Synergistic Effect on Irf8-Directed Classical CD8a+ Dendritic Cell Development Hemant Jaiswal,* Monika Kaushik,* Rachid Sougrat,† Monica Gupta,‡ Anup Dey,‡ Rohit Verma,* Keiko Ozato,‡ and Prafullakumar Tailor* Dendritic cells (DCs) are heterogeneous cell populations represented by different subtypes, each varying in terms of gene expression patterns and specific functions.
    [Show full text]
  • Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors—A Strategy for Hematological Malignancies?
    cancers Review Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors—A Strategy for Hematological Malignancies? Klara Klein 1, Dagmar Stoiber 2, Veronika Sexl 1 and Agnieszka Witalisz-Siepracka 1,2,* 1 Department of Biomedical Science, Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] (K.K.); [email protected] (V.S.) 2 Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; [email protected] * Correspondence: [email protected] or [email protected] Simple Summary: The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Citation: Klein, K.; Stoiber, D.; Sexl, Abstract: The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway V.; Witalisz-Siepracka, A. Untwining propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Anti-Tumor and Immunosuppressive Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being Effects of JAK Inhibitors—A Strategy the main driver mutation in myeloproliferative neoplasms (MPN).
    [Show full text]
  • Mutation of Thyroid Hormone Receptor-&Beta
    Oncogene (2011) 30, 3381–3390 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc ORIGINAL ARTICLE Mutation of thyroid hormone receptor-b in mice predisposes to the development of mammary tumors CJ Guigon1, DW Kim1, MC Willingham2 and S-y Cheng1 1Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA and 2Department of Pathology, Wake Forest University, Winston-Salem, NC, USA Correlative data suggest that thyroid hormone receptor-b Introduction (TRb) mutations could increase the risk of mammary tumor development, but unequivocal evidence is still Thyroid hormone receptors (TRs) belong to the lacking. To explore the role of TRb mutants in vivo in superfamily of nuclear receptors that are ligand- breast tumor development and progression, we took dependent transcription factors. Two TR genes, THRA advantage of a knock-in mouse model harboring a and THRB, located on chromosomes 17 and 3, respec- mutation in the Thrb gene encoding TRb (ThrbPV mouse). tively, encode four thyroid hormone (T3)-binding Although in adult nulliparous females, a single ThrbPV receptors: TRa1, TRb1, TRb2 and TRb3. They bind allele did not contribute to mammary gland abnormalities, T3 that has critical roles in differentiation, growth and the presence of two ThrbPV alleles led to mammary metabolism (Yen, 2001). hyperplasia in B36% ThrbPV/PV mice. The ThrbPV Several findings support the notion that mutations of mutation further markedly augmented the risk of TRs can be associated with cancer. Early evidence mammary hyperplasia in a mouse model with high suggested that mutated TRs could be involved in susceptibility to mammary tumors (Pten þ /À mouse), as carcinogenesis came from the discovery that v-erbA, a demonstrated by the occurrence of mammary hyperplasia highly mutated chicken THRA1 that has lost the ability in B60% of ThrbPV/ þ Pten þ /À and B77% of ThrbPV/PV to activate gene transcription, leads to neoplastic trans- Pten þ /À mice versus B33% of Thrb þ / þ Pten þ /À mice.
    [Show full text]
  • Locus IL-10 Enhancer in the Through a STAT5-Responsive Intronic Regulatory T Cells Is Enhanced by IL-2 the Production of IL-10 B
    The Production of IL-10 by Human Regulatory T Cells Is Enhanced by IL-2 through a STAT5-Responsive Intronic Enhancer in the IL-10 Locus This information is current as of September 26, 2021. Kazue Tsuji-Takayama, Motoyuki Suzuki, Mayuko Yamamoto, Akira Harashima, Ayumi Okochi, Takeshi Otani, Toshiya Inoue, Akira Sugimoto, Terumasa Toraya, Makoto Takeuchi, Fumiyuki Yamasaki, Shuji Nakamura and Masayoshi Kibata Downloaded from J Immunol 2008; 181:3897-3905; ; doi: 10.4049/jimmunol.181.6.3897 http://www.jimmunol.org/content/181/6/3897 http://www.jimmunol.org/ References This article cites 51 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/181/6/3897.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767
    [Show full text]
  • Src Directly Tyrosine-Phosphorylates STAT5 on Its Activation Site and Is Involved in Erythropoietin-Induced Signaling Pathway
    Oncogene (2001) 20, 6643 ± 6650 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Src directly tyrosine-phosphorylates STAT5 on its activation site and is involved in erythropoietin-induced signaling pathway Yuichi Okutani1, Akira Kitanaka1, Terukazu Tanaka*,2, Hiroshi Kamano6, Hiroaki Ohnishi3, Yoshitsugu Kubota4, Toshihiko Ishida1 and Jiro Takahara5 1First Department of Internal Medicine, Kagawa Medical University, Kagawa 761-0793, Japan; 2Environmental Health Sciences, Kagawa Medical University, Kagawa 761-0793, Japan; 3Laboratory Medicine, Kagawa Medical University, Kagawa 761-0793, Japan; 4Transfusion Medicine, Kagawa Medical University, Kagawa 761-0793, Japan; 5Kagawa Medical University, Kagawa 761- 0793, Japan; 6Health Science Center, Kagawa University, Kagawa 760-8521, Japan Signal transducers and activators of transcription Growth and dierentiation of hematopoietic cells are (STAT) proteins are transcription factors activated by regulated by the interaction of cell surface receptors phosphorylation on tyrosine residues after cytokine with their speci®c cytokines or growth factors. While stimulation. In erythropoietin receptor (EPOR)-mediated some of these receptors transmit signals via their signaling, STAT5 is tyrosine-phosphorylated by EPO intrinsic protein tyrosine kinase (PTK) activity, others stimulation. Although Janus Kinase 2 (JAK2) is reported use cytoplasmic non-receptor PTK for mediating to play a crucial role in EPO-induced activation of signals (van der Geer et al., 1994). The binding of STAT5, it is unclear whether JAK2 alone can tyrosine- erythropoietin (EPO) to an erythropoietin receptor phosphorylate STAT5 after EPO stimulation. Several (EPOR) which does not contain any intrinsic PTK studies indicate that STAT activation is caused by activity induces rapid and transient tyrosine phosphor- members of other families of protein tyrosine kinases ylation of intracellular proteins (Constantinescu et al., such as the Src family.
    [Show full text]
  • Interpretation of Cytokine Signaling Through the Transcription Factors STAT5A and STAT5B
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B Lothar Hennighausen1 and Gertraud W. Robinson Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA Transcription factors from the family of Signal Trans- the “wrong” STATs and thus acquire inappropriate cues. ducers and Activators of Transcription (STAT) are acti- We propose that mice with mutations in various com- vated by numerous cytokines. Two members of this fam- ponents of the JAK–STAT signaling pathway are living ily, STAT5A and STAT5B (collectively called STAT5), laboratories, which will provide insight into the versa- have gained prominence in that they are activated by a tility of signaling hardware and the adaptability of the wide variety of cytokines such as interleukins, erythro- software. poietin, growth hormone, and prolactin. Furthermore, constitutive STAT5 activation is observed in the major- ity of leukemias and many solid tumors. Inactivation Historical perspective studies in mice as well as human mutations have pro- In 1994, Bernd Groner and colleagues (Wakao et al. vided insight into many of STAT5’s functions. Disrup- 1994), then at the Friedrich Miescher Institute in Basel, tion of cytokine signaling through STAT5 results in a cloned a cDNA from lactating ovine mammary tissue variety of cell-specific effects, ranging from a defective that encoded a transcription factor promoting prolactin- immune system and impaired erythropoiesis, the com- induced transcription of milk protein genes in mammary plete absence of mammary development during preg- epithelium.
    [Show full text]
  • Direct Targets of Pstat5 Signalling in Erythropoiesis
    RESEARCH ARTICLE Direct targets of pSTAT5 signalling in erythropoiesis Kevin R. Gillinder1, Hugh Tuckey1,2, Charles C. Bell1, Graham W. Magor1, Stephen Huang1,2, Melissa D. Ilsley1,2, Andrew C. Perkins1,2,3* 1 Cancer Genomics Group, Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Queensland, Australia, 2 Faculty of Medicine and Biomedical Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia, 3 Princess Alexandra Hospital, Brisbane, Queensland, Australia a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 Erythropoietin (EPO) acts through the dimeric erythropoietin receptor to stimulate prolifera- tion, survival, differentiation and enucleation of erythroid progenitor cells. We undertook two complimentary approaches to find EPO-dependent pSTAT5 target genes in murine ery- throid cells: RNA-seq of newly transcribed (4sU-labelled) RNA, and ChIP-seq for pSTAT5 OPEN ACCESS 30 minutes after EPO stimulation. We found 302 pSTAT5-occupied sites: ~15% of these Citation: Gillinder KR, Tuckey H, Bell CC, Magor GW, Huang S, Ilsley MD, et al. (2017) Direct reside in promoters while the rest reside within intronic enhancers or intergenic regions, targets of pSTAT5 signalling in erythropoiesis. some >100kb from the nearest TSS. The majority of pSTAT5 peaks contain a central palin- PLoS ONE 12(7): e0180922. https://doi.org/ dromic GAS element, TTCYXRGAA. There was significant enrichment for GATA motifs and 10.1371/journal.pone.0180922 CACCC-box motifs within the neighbourhood of pSTAT5-bound peaks, and GATA1 and/or Editor: Kevin D Bunting, Emory University, UNITED KLF1 co-occupancy at many sites. Using 4sU-RNA-seq we determined the EPO-induced STATES transcriptome and validated differentially expressed genes using dynamic CAGE data and Received: May 19, 2017 qRT-PCR.
    [Show full text]
  • Mast Cell STAT6 IL-4 Induces the Proteolytic Processing Of
    IL-4 Induces the Proteolytic Processing of Mast Cell STAT6 Melanie A. Sherman, Doris R. Powell and Melissa A. Brown This information is current as J Immunol 2002; 169:3811-3818; ; of September 28, 2021. doi: 10.4049/jimmunol.169.7.3811 http://www.jimmunol.org/content/169/7/3811 Downloaded from References This article cites 74 articles, 47 of which you can access for free at: http://www.jimmunol.org/content/169/7/3811.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 28, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IL-4 Induces the Proteolytic Processing of Mast Cell STAT61 Melanie A. Sherman, Doris R. Powell, and Melissa A. Brown2 IL-4 is a potent, pleiotropic cytokine that, in general, directs cellular activation, differentiation, and rescue from apoptosis. However, in mast cells, IL-4 induces the down-regulation of activation receptors and promotes cell death.
    [Show full text]