Evolutionary Insights from an Ancient Bird
Total Page:16
File Type:pdf, Size:1020Kb
RESEARCH NEWS & VIEWS fields emit ultra violet radiation that energizes observatories7 will allow astronomers to study elements is something of a cosmic treasure, the planet’s atmosphere. the escaping atmospheres of planets as small providing ample scientific opportunities to Spake et al. observed WASP-107b using a as Neptune, which has a radius four times that study planetary formation and evolution. camera on board the Hubble Space Telescope, of Earth. Spake and colleagues’ detection of helium in and concluded that the planet’s atmosphere Theorists have predicted that the atmos- WASP-107b will enable astronomers to look escapes to form a comet-like tail (Fig. 1). pheres of Neptune-sized exoplanets could be for atmospheres that are rich in helium, and Astronomers have long known that giant plan- rich in helium8, owing to differences in the perhaps in heavier elements, thereby opening ets can lose their atmospheres in this fashion5, rates at which hydrogen and helium are lost a new subfield of exoplanetary science. ■ so this aspect of Spake and colleagues’ work is to space. Like other giant planets, these bodies not surprising. But the authors have added a are thought to start out with atmospheres of Drake Deming is in the Department key twist to the story. Until now, only hydro- predominantly hydrogen, abundant helium of Astronomy, University of Maryland, gen (the main component of giant planets) and smaller amounts of elements heavier College Park, Maryland 20742, USA. and a few elements with low abundances6 than helium. As their atmospheres escape, e-mail: [email protected] have been identified in eroding exoplanetary hydrogen is lost fastest, leading to a gradual 1. Alpher, R. A., Bethe, H. & Gamow, G. Phys. Rev. 73, atmospheres. relative enrichment in the helium content of 803–804 (1948). Atoms in the gaseous tail of an exoplanet are the atmosphere. 2. Seager, S. & Sasselov, D. D. Astrophys. J. 537, 916–921 (2000). most easily detected when they absorb stellar Heavier elements such as carbon and oxygen 3. Moutou, C., Coustenis, A., Schneider, J., Queloz, D. & light during a transit — a passage of the planet would be slow to escape, and could in prin- Mayor, M. Astron. Astrophys. 405, 341–348 (2003). in front of its host star. However, atoms in such ciple be present in exoplanetary atmospheres 4. Spake, J. J. et al. Nature 557, 68–70 (2018). 5. Vidal-Madjar, A. et al. Nature 422, 143–146 (2003). a tenuous tail have a tendency to relax to their in concentrated amounts. These heavier ele- 6. Ben-Jaffel, L. & Ballester, G. E. Astron. Astrophys. lowest-energy (ground) state. In this state, ments are key to understanding both how 553, A52 (2013). most atoms absorb mainly ultraviolet light, planets form and how they acquire their 7. Liske, J., Padovani, P. & Kissler-Patig, M. Proc. SPIE 8444, 84441I (2012). and measuring such absorption is difficult for atmospheres. For planetary astronomers, 8. Hu, R., Seager, S. & Yung, Y. L. Astrophys. J. 807, 8 two reasons. an escaping atmosphere that is rich in heavy (2015). First, Earth’s atmosphere is opaque to most ultraviolet light, which means that absorp- tion measurements must be made from space. PALAEONTOLOGY Currently, only Hubble has the capability for ultraviolet studies of exoplanetary atmos- pheres, and this telescope could reach the end of its mission lifetime in the next decade. Evolutionary insights Second, the pattern of how much ultraviolet stellar light is absorbed by transiting planets as a function of time or wavelength tends to from an ancient bird be complex. Such complexity makes it difficult to interpret ultraviolet measurements of a Ichthyornis dispar is a key extinct bird species from when birds were shedding transiting planet’s atmosphere. characteristics of their dinosaur ancestors and evolving their current features. A Fortunately, helium atoms have a long-lived reconstructed skull of I. dispar now illuminates this transition. See Letter p.96 (metastable) state, in addition to the ground state. Metastable helium atoms absorb near- infrared stellar light, which has a wavelength KEVIN PADIAN received a copy of the monograph from Marsh, only slightly beyond the limits of human the letter that he wrote back to Marsh said: vision. Measurements at this wavelength are he distinctive features of birds, from “Your work on these old birds and on the many much easier to interpret than those at ultra- beaks to feathers, provide a stark fossil animals of N. America has afforded the violet wavelengths. separation between avians and other best support to the theory of evolution, which Spake and colleagues observed a transit of Tanimal groups. But how did the features of has appeared within the last 20 years” (see WASP-107b, and measured the amount of the bird skull evolve? On page 96, Field et al.1 go.nature.com/2hhjxrd). near-infrared stellar light that was transmitted present a computerized reconstruction of the The specimens Marsh presented in through the planet’s eroding atmosphere as a skull of a pivotal early bird that brings avian Odontornithes were predominantly from function of wavelength. The authors identified evolution into sharper focus. two contrasting bird genera: Hesperornis, a narrow absorption feature that they associ- In the late 1800s, the palaeontologist Othniel which was flightless and essentially wingless, ated with metastable helium atoms (see Fig. 1 C. Marsh and his field crews made many of the standing 1.3–1.8 metres tall and comparable of the paper4). This signal is more than five first reported discoveries of ancient dinosaurs to today’s loons, and a tern-like bird called times greater than any false signal that could and mammals from western North America, Ichthyornis, which had an average wingspan be produced by stellar activity. amassing a fossilized ‘bestiary’ that dwarfed of about 60 centimetres (ref. 3). However, Detecting helium in the escaping atmos- what was then known from Europe2. Marsh’s neither was closely related to living loons or pheres of other exoplanets will be difficult treasures were constantly in the headlines, per- terns. Both birds had many sharp, curved because the absorption signal is intrinsically haps never more so than when he published3 teeth, which were absent only from the front weak, especially for planets smaller than his monograph Odontornithes in 1880, which part of the upper jaw, and their beaks were WASP-107b. However, astronomers will reported several previously undescribed fossil covered by a horny sheath. Unfortunately, the eagerly rise to the challenge. The near-infrared birds of the mid-Cretaceous period (around excavated bones, being small, fragile and of an signature of metastable helium is readily trans- 80 million to 87 million years ago) from the elaborate architecture, were badly crushed, and mitted through Earth’s atmosphere, which shores of Kansas and nearby states. Familiar proved challenging to prepare. The restoration, means that eroding exoplanetary atmos- yet strange in many ways, these creatures were mounting and illustration of the specimens pheres could be probed using ground-based so archaic that they retained teeth and sub- were, shall we say, somewhat overenthusi- telescopes. The advent of a new generation of stantial bony tails, thus providing clues to the astic. The specimens could be convincingly extremely large telescopes at ground-based reptilian origin of birds. When Charles Darwin described only after the mounts had been 36 | NATURE | VOL 557 | 3 MAY 2018©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. NEWS & VIEWS RESEARCH disassembled and prepared afresh more than a century later1,4. a Fast forward to the twenty-first century, and in the past 20 years some of the most sen- sational dinosaur discoveries have been the seemingly endless reports of ‘feathered’ dino- saurs and newly identified early birds, mainly from Cretaceous deposits in China. These specimens are closer to Archaeopteryx (the earliest known bird, from the Late Jurassic of Germany about 145 million years ago) than to Hesperornis and Ichthyornis5. These discover- ies have shown that the evolution of feathers, b from hair-like down to flight feathers, broadly paralleled the sequence of development of the features of a single feather in living birds6. Such insights suggest a plausible sequence for the evolution of wings and flight in birds, whereby newly hatched ancient dinosaurs flapped their incipient wings as a way of boosting their ability to scale steep inclines when evading Figure 1 | Skull of the bird Ichthyornis dispar. Field et al.1 report the reconstruction of the skull of predators7. an extinct species. Their reconstruction fills in some structures missing from previously available But many questions persist about the fossils, thereby illuminating the transition between the loss of ancient dinosaur features and the anatomical changes in early bird evolution, and evolution of characteristics found in present-day birds. The sections in yellow are newly identified this is where the work of Field and colleagues fossil material, whereas the grey structures have been described previously. a, A side view of the skull. b, A view from above the skull (beak positioned on the left) showing cross-sections in two focal planes. comes in. Present-day birds have skulls that are The section above the black line is closer to the top of the skull than the region below the black line. different in many ways from those of all other Scale bar, 1 centimetre. (Adapted from Extended Data Fig. 2 of ref. 1.) animals, including the dinosaurs from which they evolved. Bird snouts are lightweight, usu- ally narrow and sometimes quite long. Indeed, tomography, in which a reconstruction of each invertebrates in the water column, whereas the bones of the bird snout are relatively light bone is compiled by taking extremely thin Ichthyornis seems to have been more a surface and fragile compared with those of other ani- cross-sectional images all the way through skimmer or perhaps a shallow plunger like a mals, and these structures are covered by a the bone, like slicing a salami sausage and tern or gull2–4.