Structural and Functional Characterization of Sulfonium Carbon− Oxygen Hydrogen Bonding in the Deoxyamino Sugar Methyltransferase Tylm1 Robert J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 21 the Chemistry of Carboxylic Acid Derivatives
Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 21 The Chemistry of Carboxylic Acid Derivatives Solutions to In-Text Problems 21.1 (b) (d) (e) (h) 21.2 (a) butanenitrile (common: butyronitrile) (c) isopentyl 3-methylbutanoate (common: isoamyl isovalerate) The isoamyl group is the same as an isopentyl or 3-methylbutyl group: (d) N,N-dimethylbenzamide 21.3 The E and Z conformations of N-acetylproline: 21.5 As shown by the data above the problem, a carboxylic acid has a higher boiling point than an ester because it can both donate and accept hydrogen bonds within its liquid state; hydrogen bonding does not occur in the ester. Consequently, pentanoic acid (valeric acid) has a higher boiling point than methyl butanoate. Here are the actual data: INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 21 2 21.7 (a) The carbonyl absorption of the ester occurs at higher frequency, and only the carboxylic acid has the characteristic strong, broad O—H stretching absorption in 2400–3600 cm–1 region. (d) In N-methylpropanamide, the N-methyl group is a doublet at about d 3. N-Ethylacetamide has no doublet resonances. In N-methylpropanamide, the a-protons are a quartet near d 2.5. In N-ethylacetamide, the a- protons are a singlet at d 2. The NMR spectrum of N-methylpropanamide has no singlets. 21.9 (a) The first ester is more basic because its conjugate acid is stabilized not only by resonance interaction with the ester oxygen, but also by resonance interaction with the double bond; that is, the conjugate acid of the first ester has one more important resonance structure than the conjugate acid of the second. -
Metabolic-Hydroxy and Carboxy Functionalization of Alkyl Moieties in Drug Molecules: Prediction of Structure Influence and Pharmacologic Activity
molecules Review Metabolic-Hydroxy and Carboxy Functionalization of Alkyl Moieties in Drug Molecules: Prediction of Structure Influence and Pharmacologic Activity Babiker M. El-Haj 1,* and Samrein B.M. Ahmed 2 1 Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, University of Science and Technology of Fujairah, Fufairah 00971, UAE 2 College of Medicine, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 00971, UAE; [email protected] * Correspondence: [email protected] Received: 6 February 2020; Accepted: 7 April 2020; Published: 22 April 2020 Abstract: Alkyl moieties—open chain or cyclic, linear, or branched—are common in drug molecules. The hydrophobicity of alkyl moieties in drug molecules is modified by metabolic hydroxy functionalization via free-radical intermediates to give primary, secondary, or tertiary alcohols depending on the class of the substrate carbon. The hydroxymethyl groups resulting from the functionalization of methyl groups are mostly oxidized further to carboxyl groups to give carboxy metabolites. As observed from the surveyed cases in this review, hydroxy functionalization leads to loss, attenuation, or retention of pharmacologic activity with respect to the parent drug. On the other hand, carboxy functionalization leads to a loss of activity with the exception of only a few cases in which activity is retained. The exceptions are those groups in which the carboxy functionalization occurs at a position distant from a well-defined primary pharmacophore. Some hydroxy metabolites, which are equiactive with their parent drugs, have been developed into ester prodrugs while carboxy metabolites, which are equiactive to their parent drugs, have been developed into drugs as per se. -
Methyl Substitution Effects on the Proton Chemical Shifts in Benzene *
Methyl Substitution Effects on the Proton Chemical Shifts in Benzene * G. S. REDDY E. I. du Pont de Nemours & Company, Inc. Explosives Department, Eastern Laboratory, Gibbstown, New Jersey, U.S.A. (Z. Naturforschg. 21 a, 609—615 [1966] ; received 16 December 1965) Methyl substitution effects on aromatic and methyl proton chemical shifts in several mono-, di-, and trimethyl benzenes are studied. A new method for obtaining the changes in the ring proton chemical shifts from those of methyl proton shifts at the corresponding positions is used. The extra jr-electron densities in toluene are calculated using the already known relation between the jr-elec- tron densities and the proton shifts in aromatic systems. An inverse relationship is obtained between the ionization potentials and the total methyl effects on the chemical shifts in this series of com- pounds as one would expect. Dipole moment of toluene is calculated, and a reasonably good agree- ment is found between the experimentally observed and the calculated dipole moment. Several efforts have been made from time to Considerable work has also been done in estimat- time to study the substitution effects on chemical ing ir-electron densities from chemical shift meas- shifts and coupling constants. One of the earliest urements in unsaturated systems. This study in- attempts in this line are those of CAVANAUGH and volves extension of the substitution effects and also DAILEY 1 who tried to study the effect of multiple estimating jr-electron densities in methyl benzenes. methyl substitution in methane. They encountered Eight mono-, di-, and trimethyl substituted benzenes negative shifts contrary to expectations based on have been studied, and a new technique has been inductive and hyperconjugative effects of the methyl deployed to obtain the methyl substitution effects group which eventually was attributed to the an- on the chemical shifts of ring protons from proton isotropy effect of the added C — C bonds 2-7. -
1 Reactive Methylene Compounds As Synthons for Various Bio Active
Reactive methylene compounds as synthons for various bio active molecules Mohd. Shahnawaz khan1*, Saba Parveen Siddiqui2, Daya S. Seth3 1Department of Chemistry, JK. Lakshmipat University Jaipur (Raj) -302026, India 2Department of Chemistry Kendriya Vidhayalaya N0-1 Pratap Nagar, Udaipur (Raj) 313001, India 3Department of Chemistry, School of Chemical Sciences, St. John's College, Agra (UP)-282002, India *E-mail: [email protected] Abstract: Novel malonamic acid, hydrazide and amide were efficiently synthesized from the condensation of 3-NO2 aniline with diethyl malonate. Also the synthesis of coumarins, azo coumarins. benzocoumarins, cinnamamide, and α:β-unsaturated acid, were achieved by the reaction of above synthesized compounds in a single step reaction in good to excellent yields. And these eight compounds were tested for their antibacterial activities with two bacteria E. coli and S. aureus. Compounds are showing slightly to moderate antibacterial activities against same bacterias. Key words: Reactive methylene compounds, antibacterial activity. Introduction: Organic compounds containing the reactive methylene group provide excellent intermediates in synthetic organic chemistry. Such substances have been found to be useful as synthons for various bioactive agents. Using such type of compounds as starting material quiet a large number of heterocyclic and non-heterocyclic compounds can be prepared by condensing them with other substances. Heterocycles form by far the largest of classical divisions of organic chemistry. A broad spectrum of biological activity associated with heterocyclic compounds has attracted interest in drug discovery research. As evident from literature, both synthetic as well as natural oxygen and nitrogen containing heterocyclic molecules possesses significant antimicrobial activities and a large number have been made up to clinics for health care worldwide. -
United States Patent (19) 11 Patent Number: 4,880,935 Thorpe 45 Date of Patent: Nov
United States Patent (19) 11 Patent Number: 4,880,935 Thorpe 45 Date of Patent: Nov. 14, 1989 (54. HETEROBIFUNCTIONAL LINKING Wang et al., Israel Journal of Chem., vol. 12, 1974, pp. AGENTS DERVED FROM 375-389. N-SUCCNMDO-DTHO-ALPHIA Vallero et al., Science, 222, 1983, pp. 512-515. METHYL-METHYLENE-BENZOATES Camber et al., Method of Enzymol, 112, 1985, pp. 201-225. 75 Inventor: Philip E. Thorpe, London, England Langone et al., Method of Enzymol, 93, 1983, p. 280. Masuho et al., J. Biochem, 91, 1982, pp. 1583-1591. 73 Assignee: ICRF (Patents) Limited, London, Carlsson et al., Biochem. J., 1978, 173, pp. 723-737. England Calombatti et al., J. Immunol, 131, 1983, pp. 3091-3095. Brown et al., Cancer Res., vol. 45, 1985, pp. 1214-1221. 21 Appl. No.: 90,386 Ramakrishnonet al., Cancer Res., 44, 1984, pp. 201-208. 22 Filed: Aug. 27, 1987 Gras et al., J. of Immunol Methods, 81, 1985, pp. 283-297. Related U.S. Application Data Primary Examiner-Alan L. Rotman Attorney, Agent, or Firm-Nixon & Vanderhye 63 Continuation of Ser. No. 884,641, Jul 11, 1986, aban doned. (57 ABSTRACT The efficacy of immunotoxins having an antibody that 51) Int. Cl.".................. C07D 207/46; CO7D 207/48; recognizes a tumour associated antigen linked to a cyto CO7D 401/12 toxin through a heterobifunctional agent of the disul 52 U.S. Cl. ..................................... 546/281; 548/542 phide type is improved by providing in the heterobi 58 Field of Search ......................... 548/542; 546/281 functional agent a molecular grouping creating steric 56 References Cited hindrance in relation to the disulphide link. -
Functional Groups Kimberly Hatch Harrison
Functional Groups Kimberly Hatch Harrison Functional groups are those small chemical species you see hanging off the outside of a molecule. Just a handful of these functional groups de- termine most of the chemical reactions that happen between biological molecules. If you memorize the chemical behavior of these functional groups, you’ll be able to predict what kinds of reactions biological molecules can do. You can’t open a lock with a screwdriver–the shape of a screwdriver is quite different from a key, which means it has a dif- ferent function. "Form determines function" is something you’ll hear over and over in biochemistry, and that’s because it’s true. The over- all 3-dimensional shape of a molecule allows it to fit into another molecule, like how a key fits into a lock. But not all keys are the same. You have to look closely at the teeth of a key to see which lock it can open. Similarly, you need to look at the details of the outside of a molecule to understand what kinds of chemical interactions it can do with other molecules. How the carbon skeleton of a biological molecule is folded up de- termines its general 3D shape. So that’s one level of understanding– this molecule looks like a key, this one looks like a lock, etc. But then you must look closer, at the surface details, to understand exactly which key, exactly what kind of lock. When you examine the outside of a biological molecule, you can identify which functional groups are standing out on its surface, like little flags. -
Converting Disulfide Bridges in Native Peptides to Stable Methylene Thioacetals
Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Converting disulfide bridges in native peptides to stable methylene thioacetals† Cite this: Chem. Sci.,2016,7, 7007 C. M. B. K. Kourra and N. Cramer* Disulfide bridges play a crucial role in defining and rigidifying the three-dimensional structure of peptides. However, disulfides are inherently unstable in reducing environments. Consequently, the development of strategies aiming to circumvent these deficiencies – ideally with little structural disturbance – are highly sought after. Herein, we report a simple protocol converting the disulfide bond of peptides into highly stable methylene thioacetal. The transformation occurs under mild, biocompatible conditions, enabling the conversion of unprotected native peptides into analogues with enhanced stability. The developed Received 23rd May 2016 protocol is applicable to a range of peptides and selective in the presence of a multitude of potentially Accepted 24th July 2016 reactive functional groups. The thioacetal modification annihilates the reductive lability and increases the DOI: 10.1039/c6sc02285e serum, pH and temperature stability of the important peptide hormone oxytocin. Moreover, it is shown www.rsc.org/chemicalscience that the biological activities for oxytocin are retained. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction disulde bond engineering emerged as an important strategy to improve the metabolic stability of disulde-containing peptides, Peptides have recently been enjoying a renewed interest in whilst maintaining their biological activity. For instance, their application as therapeutic agents.1 They provide a large replacements of the disulde group with a lactam,10 thioether,11 a chemical space with a diverse array of molecular frameworks selenium12 or dicarba13 analogues have been reported.5 Many of for the development of novel therapeutics for a plethora of these methods require signicant modication of the synthetic biomedical applications. -
Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of Electrons Above and Below Its Sigma Bond Framework
Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product. -
Transcription 11.12.07
Lab 17A • 12/07/11 [lab quiz] Nomenclature of alkenes The first molecule that I want to look at is this one, where we have the two methyl groups on one side, two hydrogens on the other side. Would it be appropriate to use cis or trans, or E or Z, or both, or neither? One carbon of the double bond versus the other, those are the two different sides of the double, then the top versus the bottom are the two faces of the double bond. If we notice, on both the top face and the bottom face, we have a methyl group that is pointed the same way as a hydrogen. There is a steric factor as far as what alkene would prefer to form thermodynamically, so there is an importance that there’s some interaction there. That methyl group with one hydrogen is exactly the same interaction as you’d have the methyl group and the other hydrogen pointed the opposite way – meaning that if you were to switch the two hydrogens, you’d end up with exactly the same molecule again. The only reason that we use the term cis or trans or E or Z is to describe that it is one configuration versus another, but since there’s only one configuration possible, there’s therefore no term that should be used. It would, in fact, be wrong to call this cis, trans, E, or Z. When an alkene has two of the same substituent on the same side, there is only one unique configuration of that alkene, and so it cannot be called cis, trans, E, or Z. -
Reactions of Alkenes and Alkynes
05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each. -
Isolation and Structure Elucidation of Pyridine Alkaloids from the Aerial
www.nature.com/scientificreports OPEN Isolation and structure elucidation of pyridine alkaloids from the aerial parts of the Mongolian medicinal plant Caryopteris mongolica Bunge Dumaa Mishig1,2,3, Margit Gruner1, Tilo Lübken1, Chunsriimyatav Ganbaatar1,2, Duger Regdel2 & Hans‑Joachim Knölker1* The seven pyridine alkaloids 1–7, the favonoid acacetin (8), and L‑proline anhydride (9) have been isolated from the aerial parts of the Mongolian medicinal plant Caryopteris mongolica Bunge. The structures of the natural products 1–9 have been assigned by MS, as well as IR, 1D NMR (1H, 13C, DEPT), and 2D NMR (COSY, HSQC, HMBC, NOESY) spectroscopic methods. The compounds 2 and 4–7 represent new chemical structures. Acacetin (8) and L‑proline anhydride (9) have been obtained from C. mongolica for the frst time. Caryopteris mongolica Bunge is a deciduous shrub and belongs to the Verbenaceae family. C. mongolica which is widely distributed in the mountainous and Gobi regions of Mongolia (Khentei, Khangai, Mongol-Daurian, Mid- dle Khalkha, Mongolian Altai, East Mongolia Valley of Lakes, Govi-Altai, East Govi, Trans-Altai Gobi, Gobi and Alashan Gobi)1. In fact only this species of Caryopteris is growing in Mongolia, whereas about 16 species of this genus occur all over the world. In traditional Mongolian medicine, the aerial parts of this plant have been prepared as decoction and used for haemorrhage, increasing muscle strength, urinary excretion, pulmonary windy oedema and chronic bronchitis2. In Chinese folk medicine, Caryopteris ternifora has been used as anti- pyretic, detoxifying, expectorant, and anti-infammatory agent and for the treatment of cold, tuberculosis and rheumatism3. -
Bioresorbable Stereochemically Defined Polymers for Tissue Engineering and Wireless Bio-Integrated Electronic Device Applications
© 2021 Yen-Hao Hsu ALL RIGHTS RESERVED BIORESORBABLE STEREOCHEMICALLY DEFINED POLYMERS FOR TISSUE ENGINEERING AND WIRELESS BIO-INTEGRATED ELECTRONIC DEVICE APPLICATIONS A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Yen-Hao Hsu March, 2021 BIORESORBABLE STEREOCHEMICALLY DEFINED POLYMERS FOR TISSUE ENGINEERING AND WIRELESS BIO-INTEGRATED ELECTRONIC DEVICE APPLICATIONS Yen-Hao Hsu Dissertation Approved: Accepted: _______________________________ ______________________________ Advisor Interim Director of SPSPE Dr. Matthew L. Becker Dr. Ali Dhinojwala _______________________________ ______________________________ Committee Member Interim Dean of the College Dr. Yu Zhu Dr. Craig Menzemer _______________________________ ______________________________ Committee Member Interim Director, Graduate School Dr. Chrys Wesdemiotis Dr. Marnie Saunders _______________________________ ______________________________ Committee Member Date Dr. Xiong Gong _______________________________ Committee Member Dr. Kevin A. Cavicchi iii ABSTRACT In most synthetic bioresorbable polymers, changing the physical properties such as elasticity and toughness by monomers results in a change to the crystallinity of the material, which manifests through alteration of its mechanical performance. “Thiol-yne” click chemistry has been discovered as an efficient methodology for step-growth polymerization between thiols and activated alkynes. Variation of the solvent polarity