Inferring Trimming Activity of Solid-State Drives Based on Energy Consumption

Total Page:16

File Type:pdf, Size:1020Kb

Inferring Trimming Activity of Solid-State Drives Based on Energy Consumption Inferring Trimming Activity of Solid-State Drives Based on Energy Consumption James Shey, Ryan Rakvic, Hau Ngo, Owens Walker, Thomas Tedesso, Justin A. Blanco, Kevin Fairbanks Electrical and Computer Engineering Department United States Naval Academy Annapolis, MD, US. fshey, rakvic, ngo, owalker, tedesso, blanco, [email protected] Abstract—Solid-state drives (SSDs) have become pervasive in power consumption behavior could signal that a device is modern computing and are replacing hard disk drives in many malfunctioning. Accordingly, it is important to develop various applications. However, the mechanism by which SSDs store and techniques to examine SSDs and ensure a particular device is modify data is intrinsically different from hard disk drives. For example, a memory location on a SSD must be erased behaving as expected. There has been work on the energy prior to being written. The main contribution of this paper efficiency of SSDs [4–6], but an extensive literature review is a set of measurement and analysis techniques for inferring indicates that this is the first effort to correlate a specific class the behavior of a SSD by observing its power consumption. of SSD functionality, such as TRIM, with power consumption. This paper measures and analyzes the energy consumption of This paper is organized as follows. A brief review of the the TRIM command for three separate SSDs. Energy and time models are derived for all three SSDs and it is shown that these architecture and operation of SSDs is provided in Section II models are approximately linear as a function of the size of the while Section III discusses related work. The experimental file being trimmed. Additionally, empirically obtained signatures design is presented in Section IV and the results are discussed are presented to identify when a TRIM command is issued to in Section V. Finally, Section VI draws conclusions and the SSD based on the observed waveform. Our findings support proposes future work. the hypothesis that energy and time models, as well as power signatures, differ among drive manufacturers. II. SSD ARCHITECTURE AND OPERATION Index Terms—SSD; power consumption; modeling; SSDs have faster access speeds because they do not have the I. INTRODUCTION moving mechanisms that are present their HDD counterparts. Solid State Drives (SSDs) come from a niche market, but Without the moving heads and rotating platters, every block on recently entered the mainstream storage-media market and are the same physical chip can be accessed with the same latency. available on a wide variety of consumer computers, including While SSDs can be built on either NOR or NAND flash laptops. As an alternative to conventional hard disk drives memory technology, most modern SSDs utilize the NAND (HDDs), SSDs have several benefits including lower read- architectures. Floating transistors in NAND-flash memory are write latency and lower energy consumption [1]. SSDs have arranged in rectangular grids known as memory blocks. Each become pervasive in modern computing, aided by the fact transistor in a column is connected in series such that the they are manufactured with equivalent interfaces and form drain terminal of one is connected to the source terminal of factors as magnetic HDDs, allowing an smooth transition. the next transistor in the column. A typical memory block has However, the mechanism by which SSDs store and modify 32 to 256 columns and 4096 to 65536 rows. Each row in a data is intrinsically different from HDDs. Many factors, which block is called a page. Within a memory block, word lines are are hardware and software related, affect the operation of SSDs connected to the gates of each row. The source terminal of the [2]. first transistor in each column, known as the source select, is The main contribution of this paper is a measurement and connected to the source line. Due to the setup of NAND flash analysis technique for inferring a specific SSD command, memory, it must be erased in blocks. TRIM, by observing the power consumption of the measured To ensure that the access time remains fast throughout the device. The impact of this work touches the fields of computer lifetime of the SSD, many manufacturers employ a technique security and privacy as an SSD’s power consumption can to reclaim pages with obsolete data known as garbage col- be profiled and aberrant behavior flagged similar to the side lection. The SSD controller keeps track of whether the data channel detection described in [3]. From a digital forensics within the pages of each block are valid or obsolete. When the and/or confidentiality concern standpoint, it may be impor- SSD is idle, the controller performs the garbage collection task tant to know with some certainty how the behavior of a which relocates pages with valid data in a partially filled block particular SSD will affect the ability to retrieve information. to another (presumably better utilized) block, and then erases Additionally, from a reliability viewpoint, a change in the the original partially filled block. How aggressively and how often the SSDs perform garbage collection is manufacturer dependent [1, 7, 8]. To ensure longevity of the drive manufacturers employ wear leveling. Each transistor can be written to a finite number of times. Wear leveling works with garbage collecting to write data to blocks that have the lowest number of writes. TRIM is a command that allows the operating system to send the SSD a message indicating that a file (which translates to all pages that belong to that file) can be marked as obsolete so that all the pages belonging to a deleted file data can be erased [8]. III. RELATED WORK As SSDs continue to gain popularity, studying their perfor- mance characteristics has become an area of major interest Figure 1. System Setup including (a) Daughterboard and (b) Data Recorder [1, 7, 9]. In [7], the performance of SSDs using the TRIM feature is analyzed and it is shown that the TRIM feature can have a noticeable degradation on performance for SSDs. Table I SOLID-STATE DRIVES TESTED In [6, 8, 10, 11], it has been demonstrated that the fea- tures that SSD manufactures present in their datasheets are sometimes misleading. As an example, leading manufactures sometimes claim to perform TRIM, but a detailed black-box approach [8] found otherwise. This black-box analysis utilizes a software suite (including the algorithm outlined in [11]) to verify the bits on the drive in order to make inferences about SSD behavior [8]. In our work, we make use of the black- box approach [8] in our experimental setup and the algorithm in [11] to test whether a drive has actually been erased after A. Computer Setup having been given the command to erase it. There are numerous articles that have studied the power The testbed system is an Intel Core i5-2400 System with usage of different digital devices [12, 13] and, in particular, 16 GB DDR3 PC3-10600 running Windows 7 Service Pack hard drives [4–6, 14–16]. There has also been work on the 1. The system contains two drives, the first is an HDD that efficiency of SSDs by determining the relationship between contains the Operating System and all software required for workload and energy [3, 4] and one effort [6], through the use the experiments, and the second is the SSD to be tested. This of power analysis, demonstrated that a specific SSD performed setup ensures that the read, write, and delete commands for writes in coarser granularity than a single page. Other related the target SSD are controlled through the testbed programs (as work [14, 15] has focused primarily on modeling, whereas the opposed to the OS). The test SSDs are listed in Table I. research presented here is experimental. B. SSD Monitoring IV. EXPERIMENT DESIGN To monitor the test SSD, a daughterboard consisting of two This section describes the experimental setup used to mon- low-resistance precision resistors was inserted into the drive’s itor the power consumption of an SSD and map it to com- 4 pin Disk Drive Power Connector lines, as shown in Fig. mands provided to the SSD. The entire measurement system 1(a). A common measurement approach, this layout is similar is automated through the workload program to synchronize to the setup used in [14]. The daughterboard provides test the measurements of the executed commands with the data points to monitor the voltage across the resistor and across recorder via the computer’s serial port. The overall setup is the SSD. Both voltages are measured using 14 bits/sample at shown in Fig. 1. TRIM commands were evaluated for file 2 MS/s with 10:1 passive probes by a GEN3i High-Speed sizes of 1GB, 5 GB, 10 GB, 15 GB, 20 GB, and 25 GB Data Recorder with a GN412 High-Speed 100 MS/s Data as well as total disk usage of 25%, 50%, 75%, and 100%. Acquisition Card, shown in Fig. 1(b). This setup allowed The common, fixed file size measurements allow SSDs to be adequate sampling to capture all changes in the SSD current compared directly. Ten trial runs were conducted for each data and voltage while maintaining an error of less than 1mV. The point. The remainder of this section discusses the setup of data recorder also monitors the serial port of the computer, the computer, monitoring of the SSD, and operation of the enabling the recording of when commands are executed for workload program. different operations on the computer. for each drive which is shown in Fig. 6 and Fig. 7. Signature in this context is a unique pattern of energy consumption and not a mathematical model.
Recommended publications
  • Technology of Enterprise Solid State Drive
    White Paper | April 2014 Technology of Enterprise Solid State Drive Recently, large capacity and high-performance storages are highly required in the cloud computing and data center due to rapidly increasing amount of information and number of access. When many people heavily access to internet services such as social network service (SNS) or web search engine, they will always expect an instant response from the service. In the corporate on-premise network system and financial trading system, micro seconds range of the response time makes big difference to the business outcome. As an evolution of the enterprise server and storage system, more focus is placed on speed, response time and latency to support large number of SNS user accesses and time-critical business transactions. Then Solid State Drive (SSD) plays an important role for server system to make the transactions faster. Enterprise class SSD is a storage device with NAND flash memories and required the design to store and retrieve data at very high speed under high duty operation conditions with reliable endurance performance. It will be very beneficial for system managers to deploy SSD for boosting up computing process and storage access speed. By positioning between host processor and hard disk drive (HDD) storage pools as a large cache memory, SSD increases the system transaction speed. SSD has also good points, in addition to higher performance, such as smaller footprint and lower power consumption. Toshiba has matured leading edge technologies in the SSD as the first company developing NAND flash memory. Interfaces Host Controller Interface) is popular for client application.
    [Show full text]
  • Filesystem Considerations for Embedded Devices ELC2015 03/25/15
    Filesystem considerations for embedded devices ELC2015 03/25/15 Tristan Lelong Senior embedded software engineer Filesystem considerations ABSTRACT The goal of this presentation is to answer a question asked by several customers: which filesystem should you use within your embedded design’s eMMC/SDCard? These storage devices use a standard block interface, compatible with traditional filesystems, but constraints are not those of desktop PC environments. EXT2/3/4, BTRFS, F2FS are the first of many solutions which come to mind, but how do they all compare? Typical queries include performance, longevity, tools availability, support, and power loss robustness. This presentation will not dive into implementation details but will instead summarize provided answers with the help of various figures and meaningful test results. 2 TABLE OF CONTENTS 1. Introduction 2. Block devices 3. Available filesystems 4. Performances 5. Tools 6. Reliability 7. Conclusion Filesystem considerations ABOUT THE AUTHOR • Tristan Lelong • Embedded software engineer @ Adeneo Embedded • French, living in the Pacific northwest • Embedded software, free software, and Linux kernel enthusiast. 4 Introduction Filesystem considerations Introduction INTRODUCTION More and more embedded designs rely on smart memory chips rather than bare NAND or NOR. This presentation will start by describing: • Some context to help understand the differences between NAND and MMC • Some typical requirements found in embedded devices designs • Potential filesystems to use on MMC devices 6 Filesystem considerations Introduction INTRODUCTION Focus will then move to block filesystems. How they are supported, what feature do they advertise. To help understand how they compare, we will present some benchmarks and comparisons regarding: • Tools • Reliability • Performances 7 Block devices Filesystem considerations Block devices MMC, EMMC, SD CARD Vocabulary: • MMC: MultiMediaCard is a memory card unveiled in 1997 by SanDisk and Siemens based on NAND flash memory.
    [Show full text]
  • SATA 6Gb/S 3I+1 SSD Hybrid Pcie Quick Installation Guide
    SATA 6Gb/s 3i+1 SSD Hybrid PCIe Quick Installation Guide Introduction The SATA 6Gb/s 3i+1 SSD Hybrid PCIe is a high performance SATA host adapter which adds three Serial ATA 6Gb/s channels and one SATA SSD socket to your PCIe-equipped computer and helps users to save more space in their computer. Features and Benefits • Compliant with Serial ATA specification, Revision 3.0 • Built-in socket for a 2.5" SATA SSD for space saving and superior drive performance • Hybrid (HyperDuo) enables 80% of SSD performance at one-third the cost • Hardware RAID to offload the host CPU for max performance. Supports RAID 0, 1 & 10 04-0897A 1 • Supports Port Multiplier FIS-based and Native Command Queuing (NCQ) • Supports TRIM to extend the life of SSDs for maximum durability System Requirements • Desktop PC with an available 4-lane (or more) PCIe slot • Windows® 8 (32-/64-bit) / 7 (32-/64-bit) / Vista (32-/64-bit) / XP (32-/64-bit) /Server 2003 & 2008 (32/64-bit) / Server 2008 R2 Package Contents • SATA 6Gb/s 3i+1 SSD Hybrid PCIe • SATA data cables (2) • Screws (4) • Driver CD • Quick installation guide 2 Layout + - HDD LED pins (Front chassis LED) 3 SATA internal connectors Screw holes SSD slot Figure 1: Layout Application Three HDDs or SSDs connected to the internal SATA channels One SSD installed to the SSD slot Figure 2: Application 3 Hardware Installation SSD Installation Install the 2.5" SATA SSD to the SATA 6Gb/s 3i+1 SSD Hybrid PCIe before card installation. 1. Simply insert the SATA SSD to end of the SSD slot.
    [Show full text]
  • How Controllers Maximize SSD Life
    SSSI TECH NOTES How Controllers Maximize SSD Life January 2013 by SNIA SSSI Member: Jim Handy Objective Analysis “The SSD Guy” www.snia.org1 About the Solid State Storage Initiative The SNIA Solid State Storage Initiative (SSSI) fosters the growth and success of the market for solid state storage in both enterprise and client environ- ments. Members of the SSSI work together to promote the development of technical standards and tools, educate the IT communities about solid state storage, perform market outreach that highlights the virtues of solid state storage, and collaborate with other industry associations on solid state stor- age technical work. SSSI member companies come from a wide variety of segments in the SSD industry www.snia.org/forums/sssi/about/members. How Controllers Maximize SSD Life by SNIA SSSI Member: Jim Handy “The SSD Guy”, Objective Analysis Table of Contents Introduction 2 How Controllers Maximize SSD Life 2 Better Wear Leveling 3 External Data Buffering 6 Improved ECC 7 Other Error Management 9 Reduced Write Amplification 10 Over Provisioning 11 Feedback on Block Wear 13 Internal NAND Management 14 1 Introduction This booklet contains a collection of posts from Jim Handy’s SSD Guy blog www.TheSSDGuy.com which explores the various techniques designers use to increase SSD life. How Controllers Maximize SSD Life How do controllers maximize the life of an SSD? After all, MLC flash has a lifetime of only 10,000 erase/write cycles or fewer and that is a very small number compared to the write traffic an SSD is expected to see in a high- workload environment, especially in the enterprise.
    [Show full text]
  • Parafs: a Log-Structured File System to Exploit the Internal Parallelism of Flash Devices
    ParaFS: A Log-Structured File System to Exploit the Internal Parallelism of Flash Devices Jiacheng Zhang, Jiwu Shu, Youyou Lu Tsinghua University 1 Outline • Background and Motivation • ParaFS Design • Evaluation • Conclusion 2 Solid State Drives – Internal Parallelism • Internal Parallelism – Channel Level, Chip Level, Die Level, Plane Level – Chips in one package share the same 8/16-bit-I/O bus, but have separated chip enable (CE) and ready/busy (R/B) control signals. – Each die has one internal R/B signal. – Each plane contains thousands of flash blocks and one data register. ü Internal Parallelism à High Bandwidth. Die Level Plane Level Channel Level Block 0 Block 0 Block 1 Block 1 H/W Interface Flash Flash Chip Chip Block ... Block ... Host FTL Register Register Interconnect Plane 0 Plane 1 Flash Flash Die 0 Die 1 Chip Chip Chip Level Flash File Systems • Log-structured File System – Duplicate Functions: Space Allocation, Garbage Collection. – Semantic Isolation: FTL Abstraction, Block I/O Interface, Log on Log. Log-structured File System Namespace Alloc. GC READ / WRITE / TRIM FTL Mapping Alloc. GC WL ECC Channel 0 Channel 1 Channel N … Flash Flash Flash Flash Memory 4 Observation • F2FS vs. EXt4 (under heavy write traffic) – YCSB: 1000w random Read and Update operations – 16GB flash space + 24GB write traffic 100 EXT4 F2FS 75 7 50 6 5 25 4 (%) Efficiency GC 0 3 1 4 8 16 32 25000 2 20000 1 Blocks Normalized Throughput Normalized 0 15000 1 4 8 16 32 10000 Number of Channels 5000 F2FS has poorer performance than Ext4 Recycled of # 0 on SSDs.
    [Show full text]
  • Improving Endurance with Garbage Collection, TRIM and Wear Leveling
    ® Application Note Solid State Storage and Memory AN07-0819-01 Improving Endurance with Garbage Collection, TRIM and Wear Leveling Introduction Prior to the advent of solid state drives (SSD), hard disk drives (HDD) were the primary storage medium. HDDs use heads and platters to store data and can be written to and erased an almost unlimited number of times, assuming no failure of mechanical or circuit components (one of the main drawbacks of HDDs for industrial applications). SSDs, on the other hand, have no moving parts, thus are much more durable; however, they only support a finite number of program/erase (P/E)1 operations. For single-level cell (SLC) NAND, each cell can be programmed/erased 60,000 to 100,000 times. Wear-leveling and other flash management techniques, while will use some of the cycles, provide protection for the NAND and the data on the SSD. These are part of the Write amplification factor (WAF)3. The final number is typically translated as Terabytes Written (TBW)2. For (industrial-grade) multi-level cell (MLC) and triple-level cell (TLC), each cell can be programmed/erased 3,000 to 10,000 times. These conventional NAND flash types use what is referred to as “floating gate” technology whereby during writing operations, tunnel current passes through the oXide layer of the floating gate in the NAND cell (Figure 1.). Figure 1. NAND Flash Floating Gate This occurrence, known as electron tunneling causes the oxide layer to degrade with each charged/trapped electron; the more the cell is programmed (written to or erased), the faster it degrades, eventually causing the cell block to wear out where it then cannot be programmed any longer and turns into a read-only device.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Model and Analysis of Trim
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Model and Analysis of Trim Commands in Solid State Drives A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics, and Control) by Tasha Christine Frankie Committee in charge: Ken Kreutz-Delgado, Chair Pamela Cosman Philip Gill Gordon Hughes Gert Lanckriet Jan Talbot 2012 The Dissertation of Tasha Christine Frankie is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2012 iii TABLE OF CONTENTS Signature Page . iii Table of Contents . iv List of Figures . vi List of Tables . x Acknowledgements . xi Vita . xii Abstract of the Dissertation . xiv Chapter 1 Introduction . 1 Chapter 2 NAND Flash SSD Primer . 5 2.1 SSD Layout . 5 2.2 Greedy Garbage Collection . 6 2.3 Write Amplification . 8 2.4 Overprovisioning . 10 2.5 Trim Command . 11 2.6 Uniform Random Workloads . 11 2.7 Object Based Storage . 13 Chapter 3 Trim Model . 15 3.1 Workload as a Markov Birth-Death Chain . 15 3.1.1 Steady State Solution . 17 3.2 Interpretation of Steady State Occupation Probabilities . 18 3.3 Region of Convergence of Taylor Series Expansion . 22 3.4 Higher Order Moments . 23 3.5 Effective Overprovisioning . 24 3.6 Simulation Results . 26 Chapter 4 Application to Write Amplification . 35 4.1 Write Amplification Under the Standard Uniform Random Workload . 35 4.2 Write Amplification Analysis of Trim-Modified Uniform Random Workload . 37 4.3 Alternate Models for Write Amplification Under the Trim-Modified Uniform Random Workload .
    [Show full text]
  • TOSHIBA Storage Utilities Version 3.11
    TOSHIBA Storage Utilities Version 3.11 User’s Manual Version 1.0 Notice The information contained in this manual, including but not limited to any product specifications, is subject to change without notice. TOSHIBA CORPORATION AND ITS AFFILIATES (“TOSHIBA”) PROVIDE NO WARRANTY WITH REGARD TO THIS MANUAL OR ANY OTHER INFORMATION CONTAINED HEREIN AND HEREBY EXPRESSLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE WITH REGARD TO ANY OF THE FOREGOING. TOSHIBA ASSUMES NO LIABILITY FOR ANY DAMAGES INCURRED DIRECTLY OR INDIRECTLY FROM ANY TECHNICAL OR TYPOGRAPHICAL ERRORS OR OMISSIONS CONTAINED HEREIN OR FOR DISCREPANCIES BETWEEN THE PRODUCT AND THE MANUAL. IN NO EVENT SHALL TOSHIBA BE LIABLE FOR ANY INCIDENTAL, CONSEQUENTIAL, SPECIAL, OR EXEMPLARY DAMAGES, WHETHER BASED ON TORT, CONTRACT OR OTHERWISE, ARISING OUT OF OR IN CONNECTION WITH THIS MANUAL OR ANY OTHER INFORMATION CONTAINED HEREIN OR THE USE THEREOF. DISCLAIMER We assume no responsibility whatsoever for any damage or loss resulting from the use of this application. THIS APPLICATION IS PROVIDED "AS IS" WITHOUT WARRANTIES OF ANY KIND. WITHOUT LIMITING THE FOREGOING, TOSHIBA DISCLAIMS ALL WARRANTIES AND REPRESENTATIONS OF ANY KIND RELATING TO THE APPLICATION, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY, OR NONINFRINGEMENT OF THIRD PARTY RIGHTS. TOSHIBA DOES NOT WARRANT THAT THE OPERATION OF THE APPLICATION WILL BE UNINTERRUPTED, ERROR-FREE, OR SECURE. ANY INSTALLATION AND/OR USE OF THE APPLICATION SHALL BE AT YOUR OWN RISK. About Trademarks Microsoft, Windows, Internet Explorer, SuperFetch are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries.
    [Show full text]
  • EXCERIA Nvme™
    Capacity 250GB 500GB 1TB ™ EXCERIA NVMe SSD Max Sequential Read/Write Speed1 250GB: 1,700/1,200 MB/s Upgrade Your Productivity 500GB, 1TB: 1,700/1,600 MB/s Max Random Read/Write Speed2 250GB: 200,000/290,000 IOPS 500GB, 1TB: 350,000/400,000 IOPS Features BiCS FLASH™ NVMe™ 1.3c Technology M.2 2280 Form Factor PCIe® Gen3 x4 Lane SSD Utility Management Software Upgrading from a hard drive or SATA SSD should be easy and affordable and that’s where EXCERIA SSDs come in. KIOXIA EXCERIA SSD Series is built to boost your mobile or PC experience and deliver balanced performance and value that will transform your system. Leveraging BiCS FLASH™ 3D flash memory, this new mainstream-class SSD series offers up to 1TB of capacity in a M.2 2280 form factor suitable for both desktops and notebooks. Application Peformance Maximized KIOXIA EXCERIA SSD series redefine mainstream storage for everyday users that feel held back by SATA-based hardware. Say goodbye to hard drive lag and get a computing experience worthy of your applications. Small and Compact for an Easy Upgrade Featuring a slim and light M.2 2280 form factor, the EXCERIA SSD series plugs directly into thin notebooks’ motherboard, reducing additional cable clutter for a sleeker and an easy system upgrade. NVMe™ Technology Why keep using an interface that was designed for hard drives? Utilizing the latest NVMe™ 1.3c technology, EXCERIA SSDs reduce latency in your system’s I/O path between your SSD and your CPU, resulting in smooth and responsive performance.
    [Show full text]
  • Sandisk SSD U100 Product Manual (Preliminary) Rev 0.90
    SanDisk® SSD U100 Product Manual (Preliminary) Rev 0.90 August 2011 The content of this document is confidential & subject to change without notice Document No. 80-11-XXXXX SanDisk Corporation Corporate Headquarters • 601 McCarthy Blvd. • Milpitas, CA 95035 Phone (408) 801-1000 • Fax (408) 801-8657 www.sandisk.com SanDisk SSD U100 Product Manual (Preliminary) Rev 0.90 SanDisk Corporation general policy does not recommend the use of its products in life support applications wherein a failure or malfunction of the product may directly threaten life or injury. Without limitation to the foregoing, SanDisk shall not be liable for any loss, injury or damage caused by use of its products in any of the following applications: Special applications such as military related equipment, nuclear reactor control, and aerospace Control devices for automotive vehicles, train, ship and traffic equipment Safety system for disaster prevention and crime prevention Medical-related equipment including medical measurement device Accordingly, in any use of SanDisk products in life support systems or other applications where failure could cause damage, injury or loss of life, the products should only be incorporated in systems designed with appropriate redundancy, fault tolerant or back-up features. Per SanDisk Terms and Conditions of Sale, the user of SanDisk products in life support or other such applications assumes all risk of such use and agrees to indemnify, defend and hold harmless SanDisk Corporation and its affiliates against all damages. Security safeguards, by their nature, are capable of circumvention. SanDisk cannot, and does not, guarantee that data will not be accessed by unauthorized persons, and SanDisk disclaims any warranties to that effect to the fullest extent permitted by law.
    [Show full text]
  • 4 Channel, 2 Msata + 2 SATA 6Gb/S RAID Card with Hyperduo
    4 Channel, 2 mSATA + 2 SATA 6Gb/s RAID Card with HyperDuo User Manual Model: UGT-MST644R All brand names and trademarks are properties of their respective owners. www.vantecusa.com Contents: Chapter 1: Introduction ................................................... 3 1.1 Features .................................................................. 3 1.2 System Requirements ............................................. 4 1.3 Package Contents .................................................... 4 Chapter 2: Getting Started ............................................... 5 2.1 Hardware Layout .................................................... 5 2.2 Hardware Installation ............................................. 5 2.3 Creating and Managing Virtual Disk ....................... 7 2.3.1 Creating Virtual Disks .................................... 7 2.3.2 Managing Virtual Disks ............................... 12 2.4 Driver Installation ................................................. 19 2.5 To Verify Driver Installation .................................. 20 2.6 What is HyperDuo? ............................................... 20 UGT-MST644R Page 2 Chapter 1: Introduction 1.1 Features Two 7Pin SATA connectors and two mSATA (mini PCIe) socket on board Mounts two mSATA SSDs onboard and two SATA HDDs connectors Compliant with PCI-Express Specification v2.0 and backward compatible with PCI-Express 1.x Compliant with Serial ATA Specification 3.0 PCI Express x2 interface, and compatible with PCI Express x4, x8 and x16 slots Supports communication
    [Show full text]
  • Understanding Implications of Trim, Discard, and Background Command for Emmc Storage Device
    2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE) Understanding Implications of Trim, Discard, and Background Command for eMMC Storage Device Byungjo Kim1,2, Dong Hyun Kang1, Changwoo Min1,2, and Young Ik Eom1 Sungkyunkwan University, Republic of Korea1 Samsung Electronics, Republic of Korea2 {rough981, kkangsu1, multics691, yieom1}@skku.edu, {byungjo4530.kim2, changwoo.min2}@samsung.com Abstract—Recently, eMMC is widely being used in mobile characteristics of eMMC features. We also propose a method devices because of its characteristics such as low cost, small size, to improve the random write performance of eMMC on and low power consumption. In this paper, we analyze features of mobile device environments. eMMC based on commands such as Trim, Discard, and Background to investigate how do commands affect the random write performance and lifetime of the NAND flash memory. Also, II. PROPOSAL METHOD we propose a method that uses the Background command to improve the random write performance of eMMC. Our A. Understanding of Trim/Discard command experimental results clearly show that our method outperforms the normal power-off method, on average, by 173% in terms of the It is generally known that the Trim and Discard command random write performance. are used to improve the random write performance and lifetime of eMMC[3][4]. When a file is deleted, the file Keywords—Performance and Lifetime of eMMC; Trim system issues Trim or Discard command with the data of command; Discard Command; Background command deleted file to eMMC. If eMMC receives the Trim and Discard command, the FTL marks pages, which belong to I.
    [Show full text]