Homeowners Guide to Landslides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hazard Identification and Vulnerability Analysis Revised January 2016
COMPREHENSIVE EMERGENCY HAZARD IDENTIFICATION MANAGEMENT PLAN AND VULNERABILITY ANALYSIS CITY OF OLYMPIA, WASHINGTON HAZARD IDENTIFICATION AND VULNERABILITY ANALYSIS REVISED JANUARY 2016 OLYMPIA FIRE DEPARTMENT, EMERGENCY MANAGEMENT DIVISION 100 EASTSIDE STREET, N. E., OLYMPIA, WA 98506 JANUARY 2016 PAGE 1 OF 48 COMPREHENSIVE EMERGENCY HAZARD IDENTIFICATION MANAGEMENT PLAN AND VULNERABILITY ANALYSIS THIS PAGE LEFT INTENTIONALLY BLANK. JANUARY 2016 PAGE 2 OF 48 COMPREHENSIVE EMERGENCY HAZARD IDENTIFICATION MANAGEMENT PLAN AND VULNERABILITY ANALYSIS EXECUTIVE SUMMARY The Hazard Identification and Vulnerability Analysis (HIVA) for the City of Olympia identifies various hazards in the region and then assesses the risk associated with each hazard. The City of Olympia Comprehensive Emergency Management Plan, which facilitates each phase of emergency management, is built upon and designed to coordinate with this HIVA in accordance with WAC 118-30-060 (1) which states, “Each political subdivision must base its Comprehensive Emergency Management Plan on a hazard analysis.” This HIVA serves as a foundation for city planning including preparedness, mitigation, response, and recovery activities and is a training tool, providing introductory knowledge of the hazards in City of Olympia. The data contained within the HIVA is not original, but extracted from many sources. The HIVA assesses potential hazards within the city, and surrounding areas with a focus on hazards that have the potential to cause large-scale disasters as well as hazards with less severe impacts that still require significant planning and response efforts to mitigate or neutralize. Even if the City of Olympia is not directly impacted by a hazard there is still a potential for significant indirect impact on the city as various critical infrastructure systems owned, operated, or utilized by the City extend beyond its borders. -
Landslides on the Loess Plateau of China: a Latest Statistics Together with a Close Look
Landslides on the Loess Plateau of China: a latest statistics together with a close look Xiang-Zhou Xu, Wen-Zhao Guo, Ya- Kun Liu, Jian-Zhong Ma, Wen-Long Wang, Hong-Wu Zhang & Hang Gao Natural Hazards Journal of the International Society for the Prevention and Mitigation of Natural Hazards ISSN 0921-030X Volume 86 Number 3 Nat Hazards (2017) 86:1393-1403 DOI 10.1007/s11069-016-2738-6 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Nat Hazards (2017) 86:1393–1403 DOI 10.1007/s11069-016-2738-6 SHORT COMMUNICATION Landslides on the Loess Plateau of China: a latest statistics together with a close look 1,2 2 2 Xiang-Zhou Xu • Wen-Zhao Guo • Ya-Kun Liu • 1 1 3 Jian-Zhong Ma • Wen-Long Wang • Hong-Wu Zhang • Hang Gao2 Received: 16 December 2016 / Accepted: 26 December 2016 / Published online: 3 January 2017 Ó Springer Science+Business Media Dordrecht 2017 Abstract Landslide plays an important role in landscape evolution, delivers huge amounts of sediment to rivers and seriously affects the structure and function of ecosystems and society. -
A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used As a Training Tool
A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Item Type Report Authors Darrow, Margaret M.; Huang, Scott L.; Obermiller, Kyle Publisher Alaska University Transportation Center Download date 26/09/2021 04:55:55 Link to Item http://hdl.handle.net/11122/7546 A Study of Unstable Slopes in Permafrost Areas: Alaskan Case Studies Used as a Training Tool Final Report December 2011 Prepared by PI: Margaret M. Darrow, Ph.D. Co-PI: Scott L. Huang, Ph.D. Co-author: Kyle Obermiller Institute of Northern Engineering for Alaska University Transportation Center REPORT CONTENTS TABLE OF CONTENTS 1.0 INTRODUCTION ................................................................................................................ 1 2.0 REVIEW OF UNSTABLE SOIL SLOPES IN PERMAFROST AREAS ............................... 1 3.0 THE NELCHINA SLIDE ..................................................................................................... 2 4.0 THE RICH113 SLIDE ......................................................................................................... 5 5.0 THE CHITINA DUMP SLIDE .............................................................................................. 6 6.0 SUMMARY ......................................................................................................................... 9 7.0 REFERENCES ................................................................................................................. 10 i A STUDY OF UNSTABLE SLOPES IN PERMAFROST AREAS 1.0 INTRODUCTION -
5.4.5 Geological Hazards
Section 5.4.5: Risk Assessment – Geological Hazards 5.4.5 Geological Hazards The following section provides the hazard profile (hazard description, location, extent, previous occurrences and losses, probability of future occurrences, and impact of climate change) and vulnerability assessment for the geological hazards in Sussex County. 2016 Plan Update Changes The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, and potential change in climate and its impacts on the geological hazards is discussed. The geological hazards is now located in Section 5 of the plan update. It includes landslide, land subsidence and sinkholes, all of which were profiled separately in the 2011 HMP. New and updated figures from federal and state agencies are incorporated. U.S. 2010 Census data was incorporated, where appropriate. Previous occurrences were updated with events that occurred between 2008 and 2015. A vulnerability assessment was conducted for the geological hazards and it now directly follows the hazard profile. 5.4.5.1 Profile Hazard Description Geological hazards are any geological or hydrological processes that pose a threat to humans and natural properties. Every year, severe natural events destroy infrastructure and cause injuries and deaths. Geologic hazards may include volcanic eruptions and other geothermal related features, earthquakes, landslides and other slope failures, mudflows, sinkhole collapses, snow avalanches, flooding, glacial surges and outburst floods, tsunamis, and shoreline movements. For the purpose of this HMP update, only landslides and land subsidence/sinkholes will be discussed in the Geological Hazard profile. Landslides According to the U.S. -
Hurricane Response Annex Overview Introduction
TABLE OF CONTENTS SECTION I – HURICANE RESPONSE ANNEX OVERVIEW ............................................................... 2 INTRODUCTION .................................................................................................................................................. 3 PLANNING ASSUMPTIONS ................................................................................................................................... 4 COMMUNITY IMPACTS ........................................................................................................................................ 4 SECTION II – CONCEPT OF OPERATIONS ........................................................................................ 5 DEFINING THE HAZARD ...................................................................................................................................... 5 Tropical Cyclones ..................................................................................................................................................... 5 TIMELINES ........................................................................................................................................................... 6 HURRICANE SEASON ...................................................................................................................................... 6 RESPONDER REENTRY HOUR ......................................................................................................................... 7 SECTION III – ROLES & RESPONSIBILITIES -
Disaster Management of India
DISASTER MANAGEMENT IN INDIA DISASTER MANAGEMENT 2011 This book has been prepared under the GoI-UNDP Disaster Risk Reduction Programme (2009-2012) DISASTER MANAGEMENT IN INDIA Ministry of Home Affairs Government of India c Disaster Management in India e ACKNOWLEDGEMENT The perception about disaster and its management has undergone a change following the enactment of the Disaster Management Act, 2005. The definition of disaster is now all encompassing, which includes not only the events emanating from natural and man-made causes, but even those events which are caused by accident or negligence. There was a long felt need to capture information about all such events occurring across the sectors and efforts made to mitigate them in the country and to collate them at one place in a global perspective. This book has been an effort towards realising this thought. This book in the present format is the outcome of the in-house compilation and analysis of information relating to disasters and their management gathered from different sources (domestic as well as the UN and other such agencies). All the three Directors in the Disaster Management Division, namely Shri J.P. Misra, Shri Dev Kumar and Shri Sanjay Agarwal have contributed inputs to this Book relating to their sectors. Support extended by Prof. Santosh Kumar, Shri R.K. Mall, former faculty and Shri Arun Sahdeo from NIDM have been very valuable in preparing an overview of the book. This book would have been impossible without the active support, suggestions and inputs of Dr. J. Radhakrishnan, Assistant Country Director (DM Unit), UNDP, New Delhi and the members of the UNDP Disaster Management Team including Shri Arvind Sinha, Consultant, UNDP. -
Marine Litter Legislation: a Toolkit for Policymakers
Marine Litter Legislation: A Toolkit for Policymakers The views expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations Environment Programme. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, DCPI, UNEP, P.O. Box 30552, Nairobi, Kenya. Acknowledgments This report was developed by the Environmental Law Institute (ELI) for the United Nations Environment Programme (UNEP). It was researched, drafted, and produced by Carl Bruch, Kathryn Mengerink, Elana Harrison, Davonne Flanagan, Isabel Carey, Thomas Casey, Meggan Davis, Elizabeth Hessami, Joyce Lombardi, Norka Michel- en, Colin Parts, Lucas Rhodes, Nikita West, and Sofia Yazykova. Within UNEP, Heidi Savelli, Arnold Kreilhuber, and Petter Malvik oversaw the development of the report. The authors express their appreciation to the peer reviewers, including Catherine Ayres, Patricia Beneke, Angela Howe, Ileana Lopez, Lara Ognibene, David Vander Zwaag, and Judith Wehrli. Cover photo: Plastics floating in the ocean The views expressed in this report do not necessarily reflect those of the United Nations Environment Programme. © 2016. United Nations Environment Programme. Marine Litter Legislation: A Toolkit for Policymakers Contents Foreword .................................................................................................. -
Lahars in Crescent River Valley, Lower Cook Inlet, Alaska
LAHARS IN CRESCENT RIVER VALLEY, LOWER COOK INLET, ALASKA BY James R. Riehle, Juergen Kienle, and Karen S. Emmel GEOLOGIC REPORT 53 STATE OF ALASKA Jay S. Hammond, Governor Robert E. LeResche, Commissioner, Dept. of Natural Resources Geoffrey Haynes, Deputy Commissioner Ross G. Schaff, State Geologist Cover photo: Redoubt Volcano in eruption, January 1966. (Taken by Jon Gardey from an airplane on north side of volcano looking west.) Available from Alaska Division of Geological and Geophysical Surveys, P.O. Box 80007. College. 99708; 941 Dowling Rd., Anchorage. 99502; P.O. Box 7438, Ketchikan, 99901; and 230 So. Franklin St. (Rm 407), Juneau, 99801. CONTENTS Page Abstract ................................................................................ Introduction............................................................................. Description and inferred origin of the deposits................................................... Location .............................................................................. Internal characteristics .................................................................. Interpretation of observations ............................................................ Ageofthelahars.......................................................................... Originofthelahars........................................................................ Potential hazards of lahars .................................................................. Acknowledgments ........................................................................ -
Types of Landslides.Indd
Landslide Types and Processes andslides in the United States occur in all 50 States. The primary regions of landslide occurrence and potential are the coastal and mountainous areas of California, Oregon, Land Washington, the States comprising the intermountain west, and the mountainous and hilly regions of the Eastern United States. Alaska and Hawaii also experience all types of landslides. Landslides in the United States cause approximately $3.5 billion (year 2001 dollars) in dam- age, and kill between 25 and 50 people annually. Casualties in the United States are primar- ily caused by rockfalls, rock slides, and debris flows. Worldwide, landslides occur and cause thousands of casualties and billions in monetary losses annually. The information in this publication provides an introductory primer on understanding basic scientific facts about landslides—the different types of landslides, how they are initiated, and some basic information about how they can begin to be managed as a hazard. TYPES OF LANDSLIDES porate additional variables, such as the rate of movement and the water, air, or ice content of The term “landslide” describes a wide variety the landslide material. of processes that result in the downward and outward movement of slope-forming materials Although landslides are primarily associ- including rock, soil, artificial fill, or a com- ated with mountainous regions, they can bination of these. The materials may move also occur in areas of generally low relief. In by falling, toppling, sliding, spreading, or low-relief areas, landslides occur as cut-and- La Conchita, coastal area of southern Califor- flowing. Figure 1 shows a graphic illustration fill failures (roadway and building excava- nia. -
Coastal and Other Hazards (Se)
Goleta General Plan /Coastal Land Use Plan 5.0 Safety Element CHAPTER 5.0 SAFETY ELEMENT: COASTAL AND OTHER HAZARDS (SE) 5.1 INTRODUCTION General Plan Law Requirements [GP] The Safety Element is one of seven general Safety Element Policies plan elements mandated by state law. The SE 1: Safety in General scope of the Safety Element is specified in SE 2: Bluff Erosion and Retreat Section 65302 (g) of the California SE 3: Beach Erosion and Shoreline Hazards SE 4: Seismic and Seismically Induced Hazards Government Code as follows: SE 5: Soil and Slope Stability Hazards SE 6: Flood Hazards The general plan shall include a safety SE 7: Urban and Wildland Fire Hazards element for the protection of the SE 8: Oil and Gas Industry Hazards community from any unreasonable SE 9: Airport-Related Hazards. SE 10: Hazardous Materials and Facilities risks associated with the effects of SE 11: Emergency Preparedness seismically induced surface rupture, ground shaking, ground failure, tsunami, seiche, and dam failure; slope instability leading to mudslides and landslides; subsidence and other geologic hazards known to the legislative body; flooding; and wild land and urban fires. The safety element shall include mapping of known seismic and other geologic hazards. It shall also address evacuation routes, peak-load water supply requirements, and minimum road widths and clearances around structures, as those items relate to identified fire and geologic hazards. Coastal hazards such as bluff retreat and shoreline erosion are also addressed in this element, as are hazards associated with oil and gas production, processing, and transport. California Coastal Act Requirements [CP] The California Coastal Act (Coastal Act) requires new development to be sited and designed to minimize risks, ensure stability and structural integrity, and neither create nor contribute significantly to erosion or require the construction of new shoreline protective devices that would substantially alter natural landforms along coastal bluffs and cliffs. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Landslide Triggering Mechanisms
kChapter 4 GERALD F. WIECZOREK LANDSLIDE TRIGGERING MECHANISMS 1. INTRODUCTION 2.INTENSE RAINFALL andslides can have several causes, including Storms that produce intense rainfall for periods as L geological, morphological, physical, and hu- short as several hours or have a more moderate in- man (Alexander 1992; Cruden and Vames, Chap. tensity lasting several days have triggered abun- 3 in this report, p. 70), but only one trigger (Varnes dant landslides in many regions, for example, 1978, 26). By definition a trigger is an external California (Figures 4-1, 4-2, and 4-3). Well- stimulus such as intense rainfall, earthquake shak- documented studies that have revealed a close ing, volcanic eruption, storm waves, or rapid stream relationship between rainfall intensity and acti- erosion that causes a near-immediate response in vation of landslides include those from California the form of a landslide by rapidly increasing the (Campbell 1975; Ellen et al. 1988), North stresses or by reducing the strength of slope mate- Carolina (Gryta and Bartholomew 1983; Neary rials. In some cases landslides may occur without an and Swift 1987), Virginia (Kochel 1987; Gryta apparent attributable trigger because of a variety or and Bartholomew 1989; Jacobson et al. 1989), combination of causes, such as chemical or physi- Puerto Rico (Jibson 1989; Simon et al. 1990; cal weathering of materials, that gradually bring the Larsen and Torres Sanchez 1992)., and Hawaii slope to failure. The requisite short time frame of (Wilson et al. 1992; Ellen et al. 1993). cause and effect is the critical element in the iden- These studies show that shallow landslides in tification of a landslide trigger.