Introduction to Building Automation Systems (BAS)

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Building Automation Systems (BAS) 3/11/2013 Introduction to Building Automation Systems (BAS) Ryan R. Hoger, LEED AP 708.670.6383 [email protected] Building Automation Systems z Centralized controls z Change scheduling for multiple HVAC units at same time z Monitor “health” of equipment z Internet accessible z Alarming via text msg or email z Collect/trend data z Integrate to lighting control or security system 1 3/11/2013 z DDC - Direct Digital Control of an HVAC system z A method of monitoring and controlling HVAC system performance by collecting, processing, and sending information using sensors, actuators, and microprocessors. What is DDC? z DDC is the concept or theory of HVAC system control that uses digital controls z Physically, DDC encompasses all the devices used to implement this control method: a whole group of DDC controllers/microprocessors, actuators, sensors, and other devices. What is DDC? 2 3/11/2013 DDC - the Control Theory input-process-output cycle z A point is ANY input or output device used to control the overall or specific performance of equipment or output devices related to the equipment. What Is a Point? 3 3/11/2013 AI z Analog input -a sensor that monitors physical data, such as temperature, flow, or pressure. DI z Discrete input -a sensor that monitors status. Momentary and maintained switches, ON-OFF equipment status, and digital pulses from flow and electric power meters are discrete inputs. AOz Analog output - a physical action of a proportional device in the controlled equipment - e.g., actuator opens air damper from 20% to 40%, other dampers, valves, inlet guide vanes, etc. DOz Discrete output - changes or maintains device status. Performs momentary or maintained switching for start/stop of pumps, fans, two-position dampers, and on/off control. Four Kinds of Points Input sensors and status Output devices act based devices react to changes in on sensor and status conditions. Conditions device reactions. include internal load, outside air temperature, and output actions. Ex. 1: Open cooling coil valve (output action). Supply air temperature sensor SAT detects (input reaction) decrease in temperature. Ex. 2: Filters on an air handler get dirty (conditions). Air switch reacts by closing contact for “filter dirty” alarm. DDC: Actions and Reactions 4 3/11/2013 Control Point Identification Exercise AI DI z Temperature z Switch dry contact – Thermistors (open or closed) – Resistance Temp. Detectors – Airflow (RTDs) – Water – Transmitters – Differential pressure z Pressure z High/low limit switch z Humidity (alarm or normal) z Flow (CFM, GPM) – Freeze alarm – Smoke detectors z Voltage z Wattmeter pulses z Current (pulse initiator or z CO2 counter) Sensor and Status Devices used as Input Points (Reactions) 5 3/11/2013 AO z Damper actuators DO z Solenoid valves z Modulating valves z Relays / z VFD contactors z Alarm signal Devices used as Output Points (Actions) Closed Loop Control is accomplished by the control signal being sent to the controlled device with constant feedback from the sensor/status device providing input to the controller. DDC: Closed Loop Control 6 3/11/2013 Closed loop control is determined by: z Control algorithms z Configuration values z Time schedule data z Setpoint schedule data Closed Loop Control • Heating/cooling coil control • Humidification/dehumidification • Mixed air damper optimization • VAV fan control • VAV supply & return fan tracking • Indoor air quality • Generic PID control • Control point reset Typical Control Algorithms 7 3/11/2013 • Time of day scheduling • Discrete device controlled as analog • Discrete interlock • Discrete staging • Proportional thermostat • Primary/secondary pump control • Night free cooling • Adaptable start/stop • Permissive interlock Typical Control Algorithms (cont’d) P Proportional PI Proportional-Integral PID Proportional-Integral-Derivative Algorithm Type Used by Processor Determines Control Strategy 8 3/11/2013 PID = Proportional-Integral-Derivative Control z What it is: This type of control algorithm is based on value/amount (proportion), rate of change (integral), and error allowances (derivative). PID control calculates and sends commands for outputs based on all three types of information. z Advantages: More precise than P and PI controls, PID wastes less energy based on more frequent feedback and quicker responses. What Is PID Control? z What it is: Control algorithm based only on value/amount (proportion). z Disadvantages: Less precise than PID and PI control; cannot respond to error margins or time. Uses the most energy due to over- and under- outputs. Proportional Control (P) 9 3/11/2013 z What it is: Control algorithm based on value/amount (proportion), rate of change (integral). PID uses error allowances (derivative) as well. z Advantages: More precise control and less energy used than proportional (P); minimum swings from setpoints. Proportional-Integral Control (PI) & (PID) Exercise 1: Building Direct Digital Control on a CV Air Handler 10 3/11/2013 Exercise 1: Base CV Air Handler Unit -No Controls Exercise 1: AHU - DDC Control of Start / Stop Scheduling 11 3/11/2013 Exercise 1: AHU - Add DDC Damper Exercise 1: AHU - Add DDC Cooling Coil Control 12 3/11/2013 Exercise 1: AHU - Add DDC Outside Air reset and Enthalpy Control 13 3/11/2013 Control Point Summary for Base CV AHU Exercise 2: Building Direct Digital Control on a VAV Air Handler 14 3/11/2013 History z VAV systems came into favor for mid and large size facilities in the 1960s and 1970s – Save energy – Improve comfort – Take advantage of building diversity – Cooling needed year round for true interior core zones z Sequence – Main AHU provides morning warm-up heat until RAT setpoint is satisfied – all zones at 100% design airflow – AHU switches to 55°F discharge air controlled cooling – zones modulate CFM to controls space temp – No AHU heat remainder of day – individual zone reheat or baseboard as needed Zoning Systems 15 3/11/2013 Single Zone Systems Heating/Cooling Heating/Cooling Heating/Cooling Heating/Cooling Unit Unit Unit Unit ROOF TMT TM TMZC TM ZONE 1 ZONE 2 ZONE 3 ZONE 4 Multiple Zone Systems 16 3/11/2013 To Build DDC on a VAV AHU, Start with DDC on a CV AHU... Exercise 2: Create a VAV AHU with Inlet Guide * If using VFD, use two Variable Frequency Drives instead, but you will still need the same control points and HPS shown. 17 3/11/2013 • Filter Status (FLTS) • FreezeStat (FRZ) • Smoke Detector (SMK) Typical DDC Items You Can Add as Optional Items: Exercise 2: VAV AHU with DDC Filter Status 18 3/11/2013 Exercise 2: VAV AHU with DDC FreezeStat Exercise 2: VAV AHU with DDC Smoke Detector 19 3/11/2013 Control Point Summary for Base VAV AHU DDC Controllers Application Programmable Specific controllers controllers Factory integrated controllers 20 3/11/2013 Types of Direct Digital Control Networks z Interface - devices and software that work as a translator between a DDC system and the humans who operate it. z An interface is the operator’s window into a building’s operating systems and conditions. Interfaces to DDC 21 3/11/2013 User interfaces: • Allow more efficient system operation monitoring. You can look at what’s happening on all floors from the tenth floor if DDC network is peer-to-peer. • Allow immediate diagnosis of HVAC units and controls, including changes, without physically being in front of the unit. • Can provide reports (e.g., historical, consumable, run times, system activity) to be used as records of building operations. • Can provide graphical representations of the controlled system. User Interface Benefits User Interface Types 22 3/11/2013 Interface Examples Hand-held Connected to a DDC Controller PC Connected to a DDC Network Interface Examples 23 3/11/2013 Web Server Connected to DDC Network Interface Examples Web Interfaces z Standard web browser or WAP access z View system status z Access schedules and setpoints z Trending, alarming, reporting z Real time interactive graphics 24 3/11/2013 FLOOR PLAN GRAPHICS EQUIPMENT GRAPHICS 25 3/11/2013 EQUIPMENT GRAPHICS FLEXIBLE SCHEDULING 26 3/11/2013 TRENDING Internet Thermostats z Low cost alternative to BAS z Direct to Ethernet z No PC software – uses standard web browser z No access fees z Text/email alerts 27 3/11/2013 Internet Thermostats Internet Thermostats 28 3/11/2013 Phone Apps for Thermostats Integration z Information Transfer – Add new HVAC equipment to an existing Building Management System z Common User Interface z Building Integration – Lighting, HVAC, Security, Fire & Life Safety – Enterprise Integration-Utilities, Financial 29 3/11/2013 Building Management Systems Security Lighting HVAC Power Metering Common Protocols PT MODBUS® PT PT 30 3/11/2013 Integration Interoperability is the ability of different devices from the same or different manufacturers to function accurately together. Standard protocol - a set of guidelines for commands, inputs, and output encoding to create a universal language for all DDC devices. When the same standard protocol is used in DDC devices, interoperability is possible. Gateways - devices added to DDC networks to make standard protocols available and interoperability possible. Interoperability BACnet Standard protocol requirements for Building Automation and Control networking, created by ASHRAE to ensure interoperability. BACnet uses software and a LAN interface to DDC to provide: • Representation of all manufacturer devices’ internal functioning in a common, network-visible way. • A common command set for device services. • Common encoding of commands, understandable
Recommended publications
  • Add More Flexibility to Building Automation with New Communicating Thermostats More Choices
    Communicating Thermostats Add More Flexibility to Building Automation with New Communicating Thermostats More Choices. More Possibilities. From zone control to rooftop units and nearly everything in between, Honeywell’s lineup of TB7600, TB7300 and TB7200 Series communicating thermostats deliver fully integrated functionality. All work seamlessly with WEBs-AX™, giving you more flexibility to serve more applications. Features of all TB7600, TB7300 • BACnet® MS/TP and ZigBee® wireless mesh protocols and TB7200 Series • Backlit LCD display communicating • Fully integrated advanced occupancy thermostats include: functionality with passive infra-red (PIR) models; all models are PIR occupancy sensor ready with the addition of the occupancy sensor cover • Password protection to minimize • Support for single or dual setpoints and up parameter tampering to three setpoints on some models • Multi-level keypad lockout • Set display for °F or °C • Local menu-driven configuration • PI control with adjustable proportional band • Configurable control sequences • Removable terminal blocks and hinged PCB • Up to three programmable digital inputs board to simplify wiring and installation • Multifunction auxiliary output TB7600 Series For Rooftop and Heat Pump TB7600 Series Communicating RTU/Heat Pump Thermostats OS NUMBER DESCRIPTION NETWORK OUTPUTS SCHEDULING PIR TB7600A5014B Single Stage RTU BACnet 1H/1C No Ready TB7600A5514B Single Stage RTU BACnet 1H/1C No Yes TB7600B5014B Multi-stage RTU BACnet 2H/2C No Ready TB7600B5514B Multi-stage RTU BACnet 2H/2C
    [Show full text]
  • Iot Operating System Based Fuzzy Inference System for Home Energy Management System in Smart Buildings
    sensors Article IoT Operating System Based Fuzzy Inference System for Home Energy Management System in Smart Buildings Qurat-ul-Ain 1, Sohail Iqbal 1,∗ ID , Safdar Abbas Khan 1 ID , Asad Waqar Malik 1 ID , Iftikhar Ahmad 1 and Nadeem Javaid 2 1 School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; [email protected] (Q.-u.-A.); [email protected] (S.A.K.); [email protected] (A.W.M.); [email protected] (I.A.) 2 COMSATS Institute of Information Technology, Islamabad 44000, Pakistan; [email protected] * Correspondence: [email protected]; Tel.: +92-336-5501-539 Received: 2 August 2018; Accepted: 20 August 2018; Published: 25 August 2018 Abstract: Energy consumption in the residential sector is 25% of all the sectors. The advent of smart appliances and intelligent sensors have increased the realization of home energy management systems. Acquiring balance between energy consumption and user comfort is in the spotlight when the performance of the smart home is evaluated. Appliances of heating, ventilation and air conditioning constitute up to 64% of energy consumption in residential buildings. A number of research works have shown that fuzzy logic system integrated with other techniques is used with the main objective of energy consumption minimization. However, user comfort is often sacrificed in these techniques. In this paper, we have proposed a Fuzzy Inference System (FIS) that uses humidity as an additional input parameter in order to maintain the thermostat set-points according to user comfort.
    [Show full text]
  • HVAC Controls (DDC/EMS/BAS) Evaluation Protocol
    Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 – December 2014 Jeff Romberger SBW Consulting, Inc. Bellevue, Washington NREL Technical Monitor: Charles Kurnik NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Subcontract Report NREL/SR-7A40-63167 November 2014 Contract No. DE-AC36-08GO28308 Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Created as part of subcontract with period of performance September 2011 – December 2014 Jeff Romberger SBW Consulting, Inc. Bellevue, Washington NREL Technical Monitor: Charles Kurnik Prepared under Subcontract No. LGJ-1-11965-01 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Subcontract Report 15013 Denver West Parkway NREL/SR-7A40-63167 Golden, CO 80401 November 2014 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Innovate-UK-Energy-Catalyst-Round-4-Directory-Of-Projects
    Directory of projects Energy Catalyst – Round 4 1 Introduction Energy markets around the world – private and public, household and industry, developed and developing – are all looking for solutions to the same problem: how to provide a resilient energy system that delivers affordable and clean energy with access for all. Solving this trilemma requires innovation and collaboration on an international scale and UK businesses and researchers are at the forefront of addressing the energy revolution. Innovate UK is the UK’s innovation agency. We work with business, policy-makers and the research base to help support the development of new ideas, technologies, products and services, and to help companies de-risk their innovations as they journey towards commercialisation and business growth. The Energy Catalyst was established as a national open competition, run by Innovate UK and co-funded with the Engineering & Physical Sciences Research Council (EPSRC), the Department for Business, Energy & Industrial Strategy (BEIS) and the Department for International Development (DFID). Since 2013, the Energy Catalyst has invested almost £100m in grant funding across more than 750 organisations and 250 projects. The Energy Catalyst exists to accelerate development, commercialisation and deployment of the very best of UK energy technology and business innovation. Support from the Energy Catalyst has enabled many companies to validate their technology and business propositions, to forge key supply-chain partnerships, to accelerate their growth and to secure investment for the next stages of their business development. Affordable access to clean and reliable energy supplies is a key requirement for sustainable and inclusive economic growth. With funding through DFID’s “Transforming Energy Access” programme, the Energy Catalyst is helping UK energy innovators to forge new international partnerships, and directly address the energy access needs of poor households, communities and enterprises in Sub-Saharan Africa and South Asia.
    [Show full text]
  • Smart Buildings: Using Smart Technology to Save Energy in Existing Buildings
    Smart Buildings: Using Smart Technology to Save Energy in Existing Buildings Jennifer King and Christopher Perry February 2017 Report A1701 © American Council for an Energy-Efficient Economy 529 14th Street NW, Suite 600, Washington, DC 20045 Phone: (202) 507-4000 • Twitter: @ACEEEDC Facebook.com/myACEEE • aceee.org SMART BUILDINGS © ACEEE Contents About the Authors ..............................................................................................................................iii Acknowledgments ..............................................................................................................................iii Executive Summary ........................................................................................................................... iv Introduction .......................................................................................................................................... 1 Methodology and Scope of This Study ............................................................................................ 1 Smart Building Technologies ............................................................................................................. 3 HVAC Systems ......................................................................................................................... 4 Plug Loads ................................................................................................................................. 9 Lighting ..................................................................................................................................
    [Show full text]
  • Healthy Building Industry Review Resources
    Healthy Building Industry Review Resources Pacific Northwest National Laboratory December 31, 2019 Contact: Kevin Keene ([email protected]) PNNL-SA-159876 The Department of Energy and Pacific Northwest National Laboratory do not endorse any of the products, services, or companies included in this document. This industry review investigates existing resources for facility managers, owners, operators, and other decision-makers to make informed decisions relating to energy efficient buildings that also support occupant health and productivity. Healthy building practices have had limited adoption due to lack of awareness and limited research compared to energy efficiency. This review explores some of the most impactful existing resources for healthy buildings and their integration with energy efficiency. The focus is on the commercial and federal sector and healthy building categories that intersect with energy use New or Existing Name Type Summary IEQ Elements Sector Buildings? Energy Connection Reference The Financial Case for High Performance Business Case By applying financial impact calculations to findings from Lighting, Indoor Air Quality, Commercial Existing No https://stok.com/wp- Buildings over 60 robust research studies on the effect of HPBs in Thermal Comfort content/uploads/2018/10/stok_report_financial-case-for- three key occupant impact areas (Productivity, Retention, high-performance-buildings.pdf and Wellness), this paper arrives at the financial impacts below to help owneroccupants and tenants quantify the benefits of
    [Show full text]
  • DSM Pocket Guidebook Volume 1: Residential Technologies DSM Pocket Guidebook Volume 1: Residential Technologies
    IES RE LOG SIDE NO NT CH IA TE L L TE A C I H T N N E O D L I O S G E I R E S R DSML Pocket Guidebook E S A I I D VolumeT 1: Residential Technologies E N N E T D I I A S L E R T E S C E H I N G O O L L O O G N I H E C S E T R E L S A I I D T E N N E T D I I A S L E R T E S C E H I N G O O L Western Area Power Administration August 2007 DSM Pocket Guidebook Volume 1: Residential Technologies DSM Pocket Guidebook Volume 1: Residential Technologies Produced and funded by Western Area Power Administration P.O. Box 281213 Lakewood, CO 80228-8213 Prepared by National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 August 2007 Table of Contents List of Tables v List of Figures v Foreword vii Acknowledgements ix Introduction xi Energy Use and Energy Audits 1 Building Structure 9 Insulation 10 Windows, Glass Doors, and Sky lights 14 Air Sealing 18 Passive Solar Design 21 Heating and Cooling 25 Programmable Thermostats 26 Heat Pumps 28 Heat Storage 31 Zoned Heating 32 Duct Thermal Losses 33 Energy-Efficient Air Conditioning 35 Air Conditioning Cycling Control 40 Whole-House and Ceiling Fans 41 Evaporative Cooling 43 Distributed Photovoltaic Systems 45 Water Heating 49 Conventional Water Heating 51 Combination Space and Water Heaters 55 Demand Water Heaters 57 Heat Pump Water Heaters 60 Solar Water Heaters 62 Lighting 67 Incandescent Alternatives 69 Lighting Controls 76 Daylighting 79 Appliances 83 Energy-Efficient Refrigerators and Freezers 89 Energy-Efficient Dishwashers 92 Energy-Efficient Clothes Washers and Dryers 94 Home Offices
    [Show full text]
  • Building Automation – Impact on Energy Efficiency
    Building automation – impact on energy efficiency Application per EN 15232:2012 eu.bac product certification Answers for infrastructure. Contents 1 Introduction .............................................................................................5 1.1 Use, targets and benefits ..........................................................................5 1.2 What constitutes energy efficiency? .........................................................6 2 Global situation: energy and climate....................................................7 2.1 CO2 emissions and global climate ............................................................7 2.2 Primary energy consumption in Europe....................................................8 2.3 Turning the tide – a long-term process .....................................................8 2.4 Reduce energy usage in buildings............................................................9 2.5 Siemens contribution to energy savings ................................................. 11 3 Building automation and control system standards.........................13 3.1 EU measures ..........................................................................................13 3.2 The standard EN 15232..........................................................................17 3.3 eu.bac certification ..................................................................................19 3.4 Standardization benefits..........................................................................19 4 The EN 15232 standard
    [Show full text]
  • Theoretical Study of the Flow in a Fluid Damper Containing High Viscosity
    Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: effects of shear-thinning and viscoelasticity Alexandros Syrakosa,∗, Yannis Dimakopoulosa, John Tsamopoulosa aLaboratory of Fluid Mechanics and Rheology, Department of Chemical Engineering, University of Patras, 26500 Patras, Greece Abstract The flow inside a fluid damper where a piston reciprocates sinusoidally inside an outer casing containing high-viscosity silicone oil is simulated using a Finite Volume method, at various excitation frequencies. The oil is modelled by the Carreau-Yasuda (CY) and Phan-Thien & Tanner (PTT) constitutive equations. Both models account for shear-thinning but only the PTT model accounts for elasticity. The CY and other gener- alised Newtonian models have been previously used in theoretical studies of fluid dampers, but the present study is the first to perform full two-dimensional (axisymmetric) simulations employing a viscoelastic con- stitutive equation. It is found that the CY and PTT predictions are similar when the excitation frequency is low, but at medium and higher frequencies the CY model fails to describe important phenomena that are predicted by the PTT model and observed in experimental studies found in the literature, such as the hysteresis of the force-displacement and force-velocity loops. Elastic effects are quantified by applying a decomposition of the damper force into elastic and viscous components, inspired from LAOS (Large Am- plitude Oscillatory Shear) theory. The CY model also overestimates the damper force relative to the PTT, because it underpredicts the flow development length inside the piston-cylinder gap. It is thus concluded that (a) fluid elasticity must be accounted for and (b) theoretical approaches that rely on the assumption of one-dimensional flow in the piston-cylinder gap are of limited accuracy, even if they account for fluid viscoelasticity.
    [Show full text]
  • Lonworks® Platform Revision 2
    Introduction to the LonWorks® Platform revision 2 ® 078-0183-01B Echelon, LON, LonWorks, LonMark, NodeBuilder, , LonTalk, Neuron, 3120, 3150, LNS, i.LON, , ShortStack, LonMaker, the Echelon logo, and are trademarks of Echelon Corporation registered in the United States and other countries. LonSupport, , , OpenLDV, Pyxos, LonScanner, LonBridge, and Thinking Inside the Box are trademarks of Echelon Corporation. Other trademarks belong to their respective holders. Neuron Chips, Smart Transceivers, and other OEM Products were not designed for use in equipment or systems which involve danger to human health or safety or a risk of property damage and Echelon assumes no responsibility or liability for use of the Neuron Chips in such applications. Parts manufactured by vendors other than Echelon and referenced in this document have been described for illustrative purposes only, and may not have been tested by Echelon. It is the responsibility of the customer to determine the suitability of these parts for each application. ECHELON MAKES AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS, IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Echelon Corporation. Printed in the United States of America. Copyright
    [Show full text]
  • American Standard Installer's Guide Air Conditioner Heat Pump 4A7Z0
    11-BC25D1-7 Installer’s Guide Air Conditioner/Heat Pumps 4A7Z0/4A6Z0 with AccuLinkTM and Charge AssistTM ALL phases of this installation must comply with NATIONAL, STATE AND LOCAL CODES IMPORTANT — This Document is customer property and is to remain with this unit. Please return to service informa- tion pack upon completion of work. These instructions do not cover all variations in systems or provide for every possible contingency to be met in connection with the installation. Should further information be desired or should particular problems arise which are not covered sufficiently for the purchaser’s purposes, the matter should be referred to your installing dealer or local distributor. NOTE: The manufacturer recommends installing only approved matched indoor and outdoor systems. All of the manufacture’s split systems are A.H.R.I. rated only with TXV/EEV indoor systems. Some of the benefits of installing approved matched indoor and outdoor split systems are maximum efficiency, optimum performance and the best overall system reliability. Table of Contents Section 1. Safety ..................................................................................... 2 Section 2. Unit Location Considerations.............................................. 3 Section 3. Unit Preparation .................................................................... 5 Section 4. Setting the Unit ..................................................................... 5 Section 5. Refrigerant Line Considerations ......................................... 6 Section
    [Show full text]
  • Geometry of Thermodynamic Processes
    Article Geometry of Thermodynamic Processes Arjan van der Schaft 1, and Bernhard Maschke 2 1 Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Jan C. Willems Center for Systems and Control, University of Groningen, the Netherlands; [email protected] 2 Univ. Lyon 1, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, Villeurbanne, France; [email protected] * Correspondence: [email protected]; Tel.: +31-50-3633731 Received: date; Accepted: date; Published: date Abstract: Since the 1970s contact geometry has been recognized as an appropriate framework for the geometric formulation of the state properties of thermodynamic systems, without, however, addressing the formulation of non-equilibrium thermodynamic processes. In [3] it was shown how the symplectization of contact manifolds provides a new vantage point; enabling, among others, to switch between the energy and entropy representations of a thermodynamic system. In the present paper this is continued towards the global geometric definition of a degenerate Riemannian metric on the homogeneous Lagrangian submanifold describing the state properties, which is overarching the locally defined metrics of Weinhold and Ruppeiner. Next, a geometric formulation is given of non-equilibrium thermodynamic processes, in terms of Hamiltonian dynamics defined by Hamiltonian functions that are homogeneous of degree one in the co-extensive variables and zero on the homogeneous Lagrangian submanifold. The correspondence between objects in contact geometry and their homogeneous counterparts in symplectic geometry, as already largely present in the literature [2,18], appears to be elegant and effective. This culminates in the definition of port-thermodynamic systems, and the formulation of interconnection ports.
    [Show full text]