Baumann: the Multikernel: a New OS Architecture for Scalable Multicore

Total Page:16

File Type:pdf, Size:1020Kb

Baumann: the Multikernel: a New OS Architecture for Scalable Multicore The Multikernel: A new OS architecture for scalable multicore systems Andrew Baumann,∗ Paul Barham,y Pierre-Evariste Dagand,z Tim Harris,y Rebecca Isaacs,y Simon Peter,∗ Timothy Roscoe,∗ Adrian Schüpbach,∗ and Akhilesh Singhania∗ ∗Systems Group, ETH Zurich yMicrosoft Research, Cambridge zENS Cachan Bretagne Abstract App App App App Commodity computer systems contain more and more OS node OS node OS node OS node processor cores and exhibit increasingly diverse archi- Agreement algorithms State State State Async messages State tectural tradeoffs, including memory hierarchies, inter- replica replica replica replica connects, instruction sets and variants, and IO configu- Arch-specific code rations. Previous high-performance computing systems have scaled in specific cases, but the dynamic nature of Heterogeneous x86 x64 ARM GPU modern client and server workloads, coupled with the cores impossibility of statically optimizing an OS for all work- Interconnect loads and hardware variants pose serious challenges for operating system structures. Figure 1: The multikernel model. We argue that the challenge of future multicore hard- ware is best met by embracing the networked nature of the machine, rethinking OS architecture using ideas from Such hardware, while in some regards similar to ear- distributed systems. We investigate a new OS structure, lier parallel systems, is new in the general-purpose com- the multikernel, that treats the machine as a network of puting domain. We increasingly find multicore systems independent cores, assumes no inter-core sharing at the in a variety of environments ranging from personal com- lowest level, and moves traditional OS functionality to puting platforms to data centers, with workloads that are a distributed system of processes that communicate via less predictable, and often more OS-intensive, than tradi- message-passing. tional high-performance computing applications. It is no We have implemented a multikernel OS to show that longer acceptable (or useful) to tune a general-purpose the approach is promising, and we describe how tradi- OS design for a particular hardware model: the deployed tional scalability problems for operating systems (such hardware varies wildly, and optimizations become obso- as memory management) can be effectively recast using lete after a few years when new hardware arrives. messages and can exploit insights from distributed sys- tems and networking. An evaluation of our prototype on Moreover, these optimizations involve tradeoffs spe- multicore systems shows that, even on present-day ma- cific to hardware parameters such as the cache hierarchy, chines, the performance of a multikernel is comparable the memory consistency model, and relative costs of lo- with a conventional OS, and can scale better to support cal and remote cache access, and so are not portable be- future hardware. tween different hardware types. Often, they are not even applicable to future generations of the same architecture. Typically, because of these difficulties, a scalability prob- 1 Introduction lem must affect a substantial group of users before it will receive developer attention. Computer hardware is changing and diversifying faster We attribute these engineering difficulties to the ba- than system software. A diverse mix of cores, caches, in- sic structure of a shared-memory kernel with data struc- terconnect links, IO devices and accelerators, combined tures protected by locks, and in this paper we argue for with increasing core counts, leads to substantial scalabil- rethinking the structure of the OS as a distributed sys- ity and correctness challenges for OS designers. tem of functional units communicating via explicit mes- 1 sages. We identify three design principles: (1) make all In this section, we argue that the challenges facing a inter-core communication explicit, (2) make OS structure general-purpose operating system on future commodity hardware-neutral, and (3) view state as replicated instead hardware are different from those associated with tra- of shared. ditional ccNUMA and SMP machines used for high- The model we develop, called a multikernel (Figure 1), performance computing. In a previous paper [8] we ar- is not only a better match to the underlying hardware gued that single computers increasingly resemble net- (which is networked, heterogeneous, and dynamic), but worked systems, and should be programmed as such. allows us to apply insights from distributed systems to We rehearse that argument here, but also lay out addi- the problems of scale, adaptivity, and diversity in operat- tional scalability challenges for general-purpose system ing systems for future hardware. software. Even on present systems with efficient cache-coherent shared memory, building an OS using message-based rather than shared-data communication offers tangible 2.1 Systems are increasingly diverse benefits: instead of sequentially manipulating shared data structures, which is limited by the latency of re- A general-purpose OS today must perform well on an mote data access, the ability to pipeline and batch mes- increasingly diverse range of system designs, each with sages encoding remote operations allows a single core different performance characteristics [60]. This means to achieve greater throughput and reduces interconnect that, unlike large systems for high-performance comput- utilization. Furthermore, the concept naturally accom- ing, such an OS cannot be optimized at design or im- modates heterogeneous hardware. plementation time for any particular hardware configura- The contributions of this work are as follows: tion. • We introduce the multikernel model and the design To take one specific example: Dice and Shavit show principles of explicit communication, hardware- how a reader-writer lock can be built to exploit the neutral structure, and state replication. shared, banked L2 cache on the Sun Niagara proces- sor [40], using concurrent writes to the same cache line • We present a multikernel, Barrelfish, which ex- to track the presence of readers [20]. On Niagara this is plores the implications of applying the model to a highly efficient: the line remains in the L2 cache. On a concrete OS implementation. traditional multiprocessor, it is highly inefficient: the line ping-pongs between the readers’ caches. • We show through measurement that Barrelfish sat- isfies our goals of scalability and adaptability to This illustrates a general problem: any OS design tied hardware characteristics, while providing compet- to a particular synchronization scheme (and data lay- itive performance on contemporary hardware. out policy) cannot exploit features of different hardware. Current OS designs optimize for the common hardware In the next section, we survey trends in hardware which case; this becomes less and less efficient as hardware be- further motivate our rethinking of OS structure. In Sec- comes more diverse. Worse, when hardware vendors in- tion 3, we introduce the multikernel model, describe its troduce a design that offers a new opportunity for op- principles, and elaborate on our goals and success crite- timization, or creates a new bottleneck for existing de- ria. We describe Barrelfish, our multikernel implemen- signs, adapting the OS to the new environment can be tation, in Section 4. Section 5 presents an evaluation prohibitively difficult. of Barrelfish on current hardware based on how well it Even so, operating systems are forced to adopt in- meets our criteria. We cover related and future work in creasingly complex optimizations [27, 46, 51, 52, 57] in Sections 6 and 7, and conclude in Section 8. order to make efficient use of modern hardware. The re- cent scalability improvements to Windows7 to remove 2 Motivations the dispatcher lock touched 6000 lines of code in 58 files and have been described as “heroic” [58]. The Most computers built today have multicore processors, Linux read-copy update implementation required numer- and future core counts will increase [12]. However, com- ous iterations due to feature interaction [50]. Backport- mercial multiprocessor servers already scale to hundreds ing receive-side-scaling support to Windows Server 2003 of processors with a single OS image, and handle ter- caused serious problems with multiple other network abytes of RAM and multiple 10Gb network connections. subsystems including firewalls, connection-sharing and Do we need new OS techniques for future multicore even Exchange servers1. hardware, or do commodity operating systems simply need to exploit techniques already in use in larger multi- 1See Microsoft Knowledge Base articles 927168, 927695 and processor systems? 948496. 2 12 CPU CPU CPU CPU SHM8 PCIe 0 2 4 6 SHM4 L1 L1 L1 L1 SHM2 10 SHM1 L2 L2 L2 L2 MSG8 MSG1 PCIe 1 3 5 7 Server L3 8 1000) HyperTransport links × RAM RAM 6 Figure 2: Node layout of an 8×4-core AMD system 4 Latency (cycles 2 2.2 Cores are increasingly diverse 0 2 4 6 8 10 12 14 16 Diversity is not merely a challenge across the range of Cores commodity machines. Within a single machine, cores can vary, and the trend is toward a mix of different cores. Figure 3: Comparison of the cost of updating shared state Some will have the same instruction set architecture using shared memory and message passing. (ISA) but different performance characteristics [34, 59], since a processor with large cores will be inefficient for readily parallelized programs, but one using only small chines and become substantially more important for per- cores will perform poorly on the sequential parts of a formance than at present. program [31, 42]. Other cores have different ISAs for specialized functions [29], and many peripherals (GPUs, network interfaces, and other, often FPGA-based, spe- 2.4 Messages cost less than shared memory cialized processors) are increasingly programmable. In 1978 Lauer and Needham argued that message- Current OS designs draw a distinction between passing and shared-memory operating systems are duals, general-purpose cores, which are assumed to be homo- and the choice of one model over another depends on geneous and run a single, shared instance of a kernel, the machine architecture on which the OS is built [43].
Recommended publications
  • Some Video Games Require a Operating System
    Some Video Games Require A Operating System Playing and woven Hiro never bail his trouncing! Tome colours his toils shambled obstructively, but noctuid Micah never prologize so accessibly. Unseparable Wittie hackney: he howl his drammock isometrically and dejectedly. There was a system requirements for some systems have to do i press a remote world, require you can pick up some urgent security. If you follow the internet service packs may not even ground, you have fallen out, enable embedded applications. It requires javascript in existence, videos of optimization, which is no. Are some systems? Vram do operating system. Sgi needed to some maintainers look around at different processes can. Your pc gamer, require some video games function checks for. Your system requirements in some systems run on your own respective owners in the required, require resource for instance. Desktop pc directly personal attacks, or just do in that can buy a dog in parallel gpu. Close to some are required for everyone else fancy gui has excellent servers are your annual tax on the requirements as full blown arch. Scroll on console or installation in your pc in beautiful places of. We will learn more, some time and capturing tools for bigger game? For residential clients, which disappeared from. As some urgent security, operating systems helps solve questions and a streamlined interface, images allow to. Api for server by default, it are done in more modern operating system? The updates available in love this for a date and mobile gaming purposes of. Fragmentation and secure a member only. Deepin os provides an operating system requirements as video games require different versions, requires two os list of electronic games on top game engine.
    [Show full text]
  • A Microkernel API for Fine-Grained Decomposition
    A Microkernel API for Fine-Grained Decomposition Sebastian Reichelt Jan Stoess Frank Bellosa System Architecture Group, University of Karlsruhe, Germany freichelt,stoess,[email protected] ABSTRACT from the microkernel APIs in existence. The need, for in- Microkernel-based operating systems typically require spe- stance, to explicitly pass messages between servers, or the cial attention to issues that otherwise arise only in dis- need to set up threads and address spaces in every server for tributed systems. The resulting extra code degrades per- parallelism or protection require OS developers to adopt the formance and increases development effort, severely limiting mindset of a distributed-system programmer rather than to decomposition granularity. take advantage of their knowledge on traditional OS design. We present a new microkernel design that enables OS devel- Distributed-system paradigms, though well-understood and opers to decompose systems into very fine-grained servers. suited for physically (and, thus, coarsely) partitioned sys- We avoid the typical obstacles by defining servers as light- tems, present obstacles to the fine-grained decomposition weight, passive objects. We replace complex IPC mecha- required to exploit the benefits of microkernels: First, a nisms by a simple function-call approach, and our passive, lot of development effort must be spent into matching the module-like server model obviates the need to create threads OS structure to the architecture of the selected microkernel, in every server. Server code is compiled into small self- which also hinders porting existing code from monolithic sys- contained files, which can be loaded into the same address tems. Second, the more servers exist | a desired property space (for speed) or different address spaces (for safety).
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) On the construction of operating systems for the Microgrid many-core architecture van Tol, M.W. Publication date 2013 Link to publication Citation for published version (APA): van Tol, M. W. (2013). On the construction of operating systems for the Microgrid many-core architecture. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 General Bibliography [1] J. Aas. Understanding the linux 2.6.8.1 cpu scheduler. Technical report, Silicon Graphics Inc. (SGI), Eagan, MN, USA, February 2005. [2] D. Abts, S. Scott, and D. J. Lilja. So many states, so little time: Verifying memory coherence in the Cray X1. In Proceedings of the 17th International Symposium on Parallel and Distributed Processing, IPDPS '03, page 10 pp., Washington, DC, USA, April 2003.
    [Show full text]
  • IBM Z Systems Introduction May 2017
    IBM z Systems Introduction May 2017 IBM z13s and IBM z13 Frequently Asked Questions Worldwide ZSQ03076-USEN-15 Table of Contents z13s Hardware .......................................................................................................................................................................... 3 z13 Hardware ........................................................................................................................................................................... 11 Performance ............................................................................................................................................................................ 19 z13 Warranty ............................................................................................................................................................................ 23 Hardware Management Console (HMC) ..................................................................................................................... 24 Power requirements (including High Voltage DC Power option) ..................................................................... 28 Overhead Cabling and Power ..........................................................................................................................................30 z13 Water cooling option .................................................................................................................................................... 31 Secure Service Container .................................................................................................................................................
    [Show full text]
  • Android Operating System
    Software Engineering ISSN: 2229-4007 & ISSN: 2229-4015, Volume 3, Issue 1, 2012, pp.-10-13. Available online at http://www.bioinfo.in/contents.php?id=76 ANDROID OPERATING SYSTEM NIMODIA C. AND DESHMUKH H.R. Babasaheb Naik College of Engineering, Pusad, MS, India. *Corresponding Author: Email- [email protected], [email protected] Received: February 21, 2012; Accepted: March 15, 2012 Abstract- Android is a software stack for mobile devices that includes an operating system, middleware and key applications. Android, an open source mobile device platform based on the Linux operating system. It has application Framework,enhanced graphics, integrated web browser, relational database, media support, LibWebCore web browser, wide variety of connectivity and much more applications. Android relies on Linux version 2.6 for core system services such as security, memory management, process management, network stack, and driver model. Architecture of Android consist of Applications. Linux kernel, libraries, application framework, Android Runtime. All applications are written using the Java programming language. Android mobile phone platform is going to be more secure than Apple’s iPhone or any other device in the long run. Keywords- 3G, Dalvik Virtual Machine, EGPRS, LiMo, Open Handset Alliance, SQLite, WCDMA/HSUPA Citation: Nimodia C. and Deshmukh H.R. (2012) Android Operating System. Software Engineering, ISSN: 2229-4007 & ISSN: 2229-4015, Volume 3, Issue 1, pp.-10-13. Copyright: Copyright©2012 Nimodia C. and Deshmukh H.R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • High Performance Computing Systems
    High Performance Computing Systems Multikernels Doug Shook Multikernels Two predominant approaches to OS: – Full weight kernel – Lightweight kernel Why not both? – How does implementation affect usage and performance? Gerolfi, et. al. “A Multi-Kernel Survey for High- Performance Computing,” 2016 2 FusedOS Assumes heterogeneous architecture – Linux on full cores – LWK requests resources from linux to run programs Uses CNK as its LWK 3 IHK/McKernel Uses an Interface for Heterogeneous Kernels – Resource allocation – Communication McKernel is the LWK – Only operable with IHK Uses proxy processes 4 mOS Embeds LWK into the Linux kernel – LWK is visible to Linux just like any other process Resource allocation is performed by sysadmin/user 5 FFMK Uses the L4 microkernel – What is a microkernel? Also uses a para-virtualized Linux instance – What is paravirtualization? 6 Hobbes Pisces Node Manager Kitten LWK Palacios Virtual Machine Monitor 7 Sysadmin Criteria Is the LWK standalone? Which kernel is booted by the BIOS? How and when are nodes partitioned? 8 Application Criteria What is the level of POSIX support in the LWK? What is the pseudo file system support? How does an application access Linux functionality? What is the system call overhead? Can LWK and Linux share memory? Can a single process span Linux and the LWK? Does the LWK support NUMA? 9 Linux Criteria Are LWK processes visible to standard tools like ps and top? Are modifications to the Linux kernel necessary? Do Linux kernel changes propagate to the LWK?
    [Show full text]
  • Chapter 1: Introduction
    Chapter 1: Introduction Operating System Concepts Silberschatz, Galvin and Gagn Objectives To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization Operating System Concepts 1.2 Silberschatz, Galvin and Gagne What is an Operating System? A program that acts as an intermediary between a user of a computer and the computer hardware Operating system goals: Execute user programs and make solving user problems easier Make the computer system convenient to use Use the computer hardware in an efficient manner Operating System Concepts 1.3 Silberschatz, Galvin and Gagne Computer System Structure Computer system can be divided into four components Hardware – provides basic computing resources CPU, memory, I/O devices Operating system Controls and coordinates use of hardware among various applications and users Application programs – define the ways in which the system resources are used to solve the computing problems of the users Word processors, compilers, web browsers, database systems, video games Users People, machines, other computers Operating System Concepts 1.4 Silberschatz, Galvin and Gagne Four Components of a Computer System Operating System Concepts 1.5 Silberschatz, Galvin and Gagne Operating System Definition OS is a resource allocator Manages all resources Decides between conflicting requests for efficient and fair resource use OS is a control program Controls execution of programs to prevent errors and improper use of the computer Operating System Concepts 1.6 Silberschatz, Galvin and Gagne Computer Startup bootstrap program is loaded at power-up or reboot Typically stored in ROM or EPROM, generally known as firmware Initializes all aspects of system Loads operating system kernel and starts execution “The one program running at all times on the computer” is the kernel.
    [Show full text]
  • Hardware Configuration with Dynamically-Queried Formal Models
    Master’s Thesis Nr. 180 Systems Group, Department of Computer Science, ETH Zurich Hardware Configuration With Dynamically-Queried Formal Models by Daniel Schwyn Supervised by Reto Acherman Dr. David Cock Prof. Dr. Timothy Roscoe April 2017 – October 2017 Abstract Hardware is getting increasingly complex and heterogeneous. With different compo- nents having different views of the system, the traditional assumption of unique phys- ical addresses has become an illusion. To adapt to such hardware, an operating system (OS) needs to understand the complex address translation chains and be able to handle the presence of multiple address spaces. This thesis takes a recently proposed model that formally captures these aspects and applies it to hardware configuration in the Barrelfish OS. To this end, I present Sockeye, a domain specific language that uses the model to de- scribe hardware. I then show, that code relying on knowledge about the address spaces in a system can be statically generated from these specifications. Furthermore, the model is successfully applied to device management, showing that it can also be used to configure hardware at runtime. The implementation presented here does not rely on any platform specific code and it reduced the amount of such code in Barrelfish’s device manager by over 30%. Applying the model to further hardware configuration tasks is expected to have similar effects. i Acknowledgements First of all, I want to thank my advisers Timothy Roscoe, David Cock and Reto Acher- mann for their guidance and support. Their feedback and critical questions were a valuable contribution to this thesis. I’d also like to thank the rest of the Barrelfish team and other members of the Systems Group at ETH for the interesting discussions during meetings and coffee breaks.
    [Show full text]
  • Introducing Linux on IBM Z Systems IT Simplicity with an Enterprise Grade Linux Platform
    Introducing Linux on IBM z Systems IT simplicity with an enterprise grade Linux platform Wilhelm Mild IBM Executive IT Architect for Mobile, z Systems and Linux © 2016 IBM Corporation IBM Germany What is Linux? . Linux is an operating system – Operating systems are tools which enable computers to function as multi-user, multitasking, and multiprocessing servers. – Linux is typically delivered in a Distribution with many useful tools and Open Source components. Linux is hardware agnostic by design – Linux runs on multiple hardware architectures which means Linux skills are platform independent. Linux is modular and built to coexist with other operating systems – Businesses are using Linux today. More and more businesses proceed with an evolutionary solution strategy based on Linux. 2 © 2016 IBM Corporation What is IBM z Systems ? . IBM z Systems is the family name used by IBM for its mainframe computers – The z Systems families were named for their availability – z stands for zero downtime. The systems are built with spare components capable of hot failovers to ensure continuous operations. IBM z Systems paradigm – The IBM z Systems family maintains full backward compatibility. In effect, current systems are the direct, lineal descendants of System/360, built in 1964, and the System/370 from the 1970s. Many applications written for these systems can still run unmodified on the newest z Systems over five decades later. IBM z Systems variety of Operating Systems – There are different traditional Operating Systems that run on z Systems like z/OS, z/VSE or TPF. With z/VM IBM delivers a mature Hypervisor to virtualize the operating systems.
    [Show full text]
  • Message Passing for Programming Languages and Operating Systems
    Master’s Thesis Nr. 141 Systems Group, Department of Computer Science, ETH Zurich Message Passing for Programming Languages and Operating Systems by Martynas Pumputis Supervised by Prof. Dr. Timothy Roscoe, Dr. Antonios Kornilios Kourtis, Dr. David Cock October 7, 2015 Abstract Message passing as a mean of communication has been gaining popu- larity within domains of concurrent programming languages and oper- ating systems. In this thesis, we discuss how message passing languages can be ap- plied in the context of operating systems which are heavily based on this form of communication. In particular, we port the Go program- ming language to the Barrelfish OS and integrate the Go communi- cation channels with the messaging infrastructure of Barrelfish. We show that the outcome of the porting and the integration allows us to implement OS services that can take advantage of the easy-to-use concurrency model of Go. Our evaluation based on LevelDB benchmarks shows comparable per- formance to the Linux port. Meanwhile, the overhead of the messag- ing integration causes the poor performance when compared to the native messaging of Barrelfish, but exposes an easier to use interface, as shown by the example code. i Acknowledgments First of all, I would like to thank Timothy Roscoe, Antonios Kornilios Kourtis and David Cock for giving the opportunity to work on the Barrelfish OS project, their supervision, inspirational thoughts and critique. Next, I would like to thank the Barrelfish team for the discussions and the help. In addition, I would like to thank Sebastian Wicki for the conversations we had during the entire period of my Master’s studies.
    [Show full text]
  • Assessmentof Open Source GIS Software for Water Resources
    Assessment of Open Source GIS Software for Water Resources Management in Developing Countries Daoyi Chen, Department of Engineering, University of Liverpool César Carmona-Moreno, EU Joint Research Centre Andrea Leone, Department of Engineering, University of Liverpool Shahriar Shams, Department of Engineering, University of Liverpool EUR 23705 EN - 2008 The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union’s Policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Cesar Carmona-Moreno Address: via fermi, T440, I-21027 ISPRA (VA) ITALY E-mail: [email protected] Tel.: +39 0332 78 9654 Fax: +39 0332 78 9073 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC [49291] EUR 23705 EN ISBN 978-92-79-11229-4 ISSN 1018-5593 DOI 10.2788/71249 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of Content Introduction............................................................................................................................4 1.
    [Show full text]
  • 2020 Linux on IBM Z and Linuxone Client Workshop November 9-13
    2020 Linux on IBM Z and LinuxONE Client Workshop November 9-13 Securing Workloads with Red Hat OpenShift Container Platform on IBM Z / LinuxONE — Pradeep Parameshwaran Security & Compliance Lead, Linux on IBM Z & LinuxONE [email protected] Linux on IBM Z and LinuxONE Client WS 2020 / © 2020 IBM Corporation Contents • Why OpenShift on IBM Z ? • The cloud with the Privacy and Security • Deployment architecture: OpenShift on IBM Z • Security blueprint: OpenShift on IBM Z • Summary of native and augmented security capabilities IDC estimates that 71% of organizations are in the process of implementing containers and orchestration or are already using them regularly. Containers are the next generation of software-defined compute that enterprises will leverage to accelerate their digital transformation initiatives,” says Gary Chen, Research Director at IDC. “IDC estimates that 71% of organizations are in the process of implementing containers and orchestration or are already using them regularly, and IDC forecasts that the worldwide container infrastructure software opportunity is growing at a 63.9 % 5-year CAGR and is predicted to reach over $1.5B by 2022. 3 Why Red Hat OpenShift on IBM Z? OpenShift a smart Kubernetes platform 5 Build once • Fully integrated and automated architecture • Seamless Kubernetes deployment on any cloud or on-premises environment • Fully automated installation, from cloud infrastructure to OS to application services • One click platform and application updates • Auto-scaling of cloud resources • Enterprise-grade security
    [Show full text]