Whole-Genome Analysis of Azoarcus Sp. Strain CIB Provides Genetic

Total Page:16

File Type:pdf, Size:1020Kb

Whole-Genome Analysis of Azoarcus Sp. Strain CIB Provides Genetic ManuscriptCORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC Whole-genome analysis of Azoarcus sp. strain CIB 1 2 provides genetic insights to its different lifestyles and predicts 3 novel metabolic features 4 5 6 7 Zaira Martín-Moldes a1 , María Teresa Zamarro a1 , Carlos del Cerro a1 , Ana Valencia a, 8 Manuel José Gómez b2 , Aida Arcas b3 , Zulema Udaondo a4 , José Luis García a, Juan 9 a a a* 10 Nogales , Manuel Carmona , and Eduardo Díaz 11 a 12 Centro de Investigaciones Biológicas-CSIC, 28040 Madrid, Spain 13 b Centro de Astrobiología, INTA-CSIC, 28850 Torrejón de Ardoz, Madrid, Spain 14 15 1 16 These authors contributed equally to this work 17 18 19 2 Present address: Centro Nacional de Investigaciones Cardiovasculares, ISCIII, 20 Madrid, Spain 21 3 22 Present address: Instituto de Neurociencias, UMH -CSIC, Alicante, Spain 4 23 Present address: Abengoa Research, Sevilla, Spain 24 25 26 * 27 Corresponding author. Tel.: +34915611800. E-mail address : [email protected] 28 (E.Díaz) 29 30 31 32 33 34 35 36 Abbreviations : ANI, average nucleotide identity; BIMEs, bacterial interspersed mosaic 37 38 elements; IAA, indoleacetic acid; ICE, integrative and conjugative element ; REPs, 39 repeated extragenic palindrome sequences; ROS, reactive oxygen species; TAS, toxin - 40 antitoxin system; TMAO, trimethylamine N-oxide. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 1 63 64 65 1 ABSTRACT 2 3 The genomic features of Azoarcus sp. CIB reflect its most distinguishing phenotypes as 4 5 a diazotroph, facultative anaerobe, capable of degrading either aerobically and/or 6 anaerobically a wide range of aromatic compounds, including some toxic hydrocarbons 7 such as toluene and m-xylene, as well as its endophytic lifestyle. The analyses of its 8 genome have expanded the catabolic potential of strain CIB towards common natural 9 10 compounds, such as certain diterpenes, that were not anticipated as carbon sources. The 11 high number of predicted solvent efflux pumps and heavy metal resistance gene clusters 12 has provided the first evidence for two environmentally-relevant features of this 13 bacterium that remained unknown. Genome mining has revealed several gene clusters 14 likely involved in the en dophytic lifestyle of strain CIB, opening the door to the 15 16 molecular characterization of some plant growth promoting traits . Horizontal gene 17 transfer and mobile genetic elements appear to have played a major role as a mechanism 18 of adaptation of this bacterium to different lifestyles. This work paves the way for a 19 systems biology-based understanding of the abilities of Azoarcus sp. CIB to integrate 20 21 aerobic and anaerobic metabolism of aromatic compounds, tolerate stress conditions, 22 and interact with plants as an endophyte of great potential for phytostimulation and 23 phytoremediation strategies . Comparative genomics provides an Azoarcus pan genome 24 that confirms the global metabolic flexibility of this genus, and suggests that its 25 26 phylogeny should be revisited. 27 28 29 30 31 32 33 34 35 36 37 38 Keywords : Azoarcus , aromatic compounds, endophyte, metals resistance, mobile genetic 39 elements, comparative genomics 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 2 63 64 65 Introduction 1 2 Azoarcus is a genus of betaproteobacteria that belongs to the family 3 Rhodocyclaceae , a physiologically versatile group encompassing bacteria with diverse 4 5 functions [60]. The environmental relevance of Azoarcus strains is supported by their 6 frequent detection in diverse soils, sludges, and wastewaters [39]. The Azoarcus genus, 7 that includes ten recognized species, namely A. indigens (type species of the genus), A. 8 communis, A. tolulyticus, A. toluvorans, A. toluclasticus, A. evansii, A. anaerobius, A. 9 10 buckelii, A. olearius, and A. taiwanensis [2,31,42,49], was shown to comprise bacteria 11 that fit into one of two major phylogenetic and eco-physiological groups [2 2,2 8,3 8,4 9]. 12 One gr oup includes free -living bacteria that usually inhabit waters and soils and 13 participate in the biogeochemical cycling of a large number of organic and inorganic 14 metabolites [3 1,40 ,4 3,4 9]. Many strains of this group have been described and/or 15 16 isolated by th eir ability to degrade aromatic compounds in anoxic conditions, being 17 strain EbN1 (currently "Aromatoleum aromaticum" EbN1) [3 8,3 9] and A. evansii 18 KB740 [2,1 4] the two most studied . The other group includes Azoarcus strains such as 19 A. communis strain SWub3 , A. indigens strain VB32 or the well -characterized Azoarcus 20 sp. strain BH72, that invade roots of Kallar grass and rice, living as endophytic bacteria 21 22 [4 2]. Interestingly, the free -living Azoarcus strains that are anaerobic biodegraders of 23 aromatic compou nds , and whose prototype is the EbN1 strain, have exclusively 24 received particular attention for their degradation and biotransformation abilities 25 [2 2,3 8,3 9]. 26 27 Azoarcus sp. CIB (CECT#5669) was isolated from a DSMZ 12184 culture (not 28 available anymore), which was supposed to be Azoarcus sp. strain M3, isolated from a 29 diesel fuel-contaminated aquifer at Menziken (Switzerland) [20,32]. Azoarcus sp. CIB is 30 a free-living bacterium with the ability to degrade a high number of aromatic 31 compounds under aerobic and/or anaerobic conditions, including some toxic 32 33 hydrocarbons such as toluene and m-xylene [9,25,32,57]. Recently, we have 34 demonstrated that Azoarcus sp. CIB has also the ability to grow in association with 35 plants, colonizing the intercellular spaces of the exodermis of rice roots. In addition, the 36 strain CIB displays plant growth promoting traits such the ability to uptake insoluble 37 38 phosphorous, production of indoleacetic acid (IAA) or nitrogen fixation [1 6]. Thus, 39 Azoarcus sp. CIB may represent the prototype of a subgroup of Azoarcus strains that 40 share the anaerobic biodegradation of aromatic hydrocarbons with a facultative 41 endophytic lifestyle [1 6]. Since Azoarcus sp. CIB presents a robust growth and it is 42 susceptible of genetic manipulation, it became a mode l system to study the complex 43 44 regulatory networks that control the expression of the aerobic and anaerobic aromatic 45 degradation clusters [ 5,9,1 3,5 7,5 8], and some recombinants strains have been 46 engineered for biotechnological prospects [6 3]. 47 In this work, we sequenced the whole genome of Azoarcus sp. CIB and 48 49 accomplished a comparative analysis with the genomes of other strains, such as 50 Azoarcus sp. BH72 and strain EbN1, that are the prototypes of obligate endophytes and 51 free-living strains, respectively. This work provides new insights into the genetic 52 determinants that may account for some of the reported metabolic abilities of the CIB 53 strain, and offers information on genetic characteristics that may be relevant for the 54 55 adoption of a particular lifesytle or that can be of biotechnological interest. 56 57 58 59 60 61 62 3 63 64 65 1 Materials and Methods 2 3 Genome sequence, contigs assembling, and gaps filling 4 5 6 Azoarcus sp. CIB was anaerobically grown at 30 ºC in MC medium [32] 7 containing 3 mM benzoate as sole carbon and energy source and 10 mM nitrate as 8 electron acceptor. Cultures were collected when they reached the early stationary phase 9 10 and genomic DNA was extracted using previously published protocols [32]. 11 The genome sequencing of Azoarcus sp. CIB was carried out using the 454 Life 12 Sciences high-density pyrosequencing methodology in a GSFLX sequencer from Roche 13 at LifeSequencing (Valencia, Spain). FASTQ reads (about 250-nt long) were assembled 14 in contigs by using the Newbler software from Roche. Contigs were ordered in scaffolds 15 16 by performing a long-tag paired-end sequencing according to Roche protocols at 17 LifeSequencing (Valencia, Spain). Gap filling on the scaffolds was performed by 18 manual assembly of FASTQ reads with BioEdit (Ibis Biosciences) and by conventional 19 sequencing methods (ABI Prism 377; Applied Biosystems) of PCR products (purified 20 with Gene Clean Turbo, Q-BIOgene) spanning the regions between flanking contigs. 21 22 23 Gene prediction and genome annotation 24 25 The genome of Azoarcus sp. CIB was annotated by means of a bacterial genome 26 27 annotation pipeline [56], which used tRNAscan-SE to predict tRNA genes, RNAmmer 28 to predict rRNA genes and Glimmer to predict coding sequences. Functional 29 annotations for proteins were generated by comparison against several protein sequence 30 and protein family databases (SwissProt, NCBI protein, COG, Pfam, Smart, Prk) with 31 BLAST and RPS-BLAST [1]. Annotations were summarized in different output 32 33 formats. One of them was used as input for Pathway Tools, for automatic metabolic 34 reconstruction [27]. 35 Transposase and integrase encoding genes were manually annotated with the 36 assistance of the ISFinder database ( http://www-is.biotoul.fr/ ). 37 38 39 Comparative genomics 40 41 The complete genome of Azoarcus sp. CIB was compared with that of all 42 currently sequenced strains: " Aromatoleum aromaticum " strain EbN1 (NC_006513.1 ; 43 44 NC_006823.1 ; NC_006824.1 ); Azoarcus sp. BH72 (NC_008702.1) ; Azoarcus sp. 45 KH32C (NC_020516.1; NC_020548.1); and Azoarcus toluclasticus strain MF63 46 (NZ_ARJX00000000.1). The closely related Thauera sp. strain MZ1T (CP001281.2, 47 CP001282.1) was used as outgroup. Comparative genomic analyses, including Venn 48 49 diagrams, synteny analyses and phylogenetic trees were performed with EDGAR [6]. 50 Average nucleotide identity among the genomes based on MUMmer (ANIm) was 51 calculated with Jspecies [44].
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Draft Genome Sequence of the Nitrogen-Fixing Endophyte Azoarcus Communis Swub3
    Lawrence Berkeley National Laboratory Recent Work Title Draft Genome Sequence of the Nitrogen-Fixing Endophyte Azoarcus communis SWub3. Permalink https://escholarship.org/uc/item/2cd6v88c Journal Microbiology resource announcements, 7(13) ISSN 2576-098X Authors Zorraquino, Violeta Toubiana, David Yan, Dawei et al. Publication Date 2018-10-04 DOI 10.1128/mra.01080-18 Peer reviewed eScholarship.org Powered by the California Digital Library University of California GENOME SEQUENCES crossm Draft Genome Sequence of the Nitrogen-Fixing Endophyte Azoarcus communis SWub3 Violeta Zorraquino,a David Toubiana,a Dawei Yan,a Eduardo Blumwalda aDepartment of Plant Sciences, University of California, Davis, California, USA ABSTRACT Here we report a draft genome sequence of Azoarcus communis SWub3, a nitrogen-fixing bacterium isolated from root tissues of Kallar grass in Pakistan. iological nitrogen fixation is a process in which a living organism reduces atmo- Bspheric dinitrogen into two NH3 molecules. This reaction is catalyzed by the nitrogenase complex present exclusively in Bacteria and Archaea species. Plants can benefit from biological nitrogen fixation when they are in association with these nitrogen-fixing prokaryotes, either free living or as symbionts associated with their roots. Azoarcus is a bacterial genus that comprises species isolated from different environments, such as plant roots, sediments, aquifers, and contaminated soil (1–4). All Azoarcus species are Gram-negative rods with a strictly aerobic metabolism that can fix nitrogen microaerobically. The interest in this bacterial genus resides in its ability to efficiently infect several crops, including rice, which is a food staple for more than half of the world’s population (5–7).
    [Show full text]
  • Mother Jeanne Nursing Her Baby Mary Cassatt, 1908
    Mother Jeanne Nursing Her Baby Mary Cassatt, 1908 Characterizing immune-modulatory components of human milk: The fate and function of soluble CD14 and the human milk metagenome Tonya L. Ward Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree Doctorate in Philosophy degree in Biochemistry Department of Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa © Tonya L. Ward, Ottawa, Canada, 2014 i Abstract Background During the first stages of development human infants are either fed human milk or human milk substitutes (infant formulas). The composition of infant formulas and human milk differ drastically, including a difference in protein constituents and bacterial load. Due to the high global frequency of infant formula use, the humanization of infant formulas to better reflect the complex nature of human milk is warranted. To better understand the role of human milk components, the fate and function of a key bacterial sensor in human milk, soluble CD14, was determined. Additionally, the microbiome of human milk was analyzed from a metagenomic standpoint in an attempt to determine which types of bacteria are present in human milk and what their potential biological function might be. Results In rodent models, ingested sCD14 persisted in the gastrointestinal tract and was transferred intact into the blood stream. Once transferred to the blood, ingested sCD14 retained its ability to recognize lipopolysaccharide and initiate an immune response in pups. This transfer of sCD14 across the epithelial barrier was also observed in human cells in vitro, where it appears to be dependent on Toll-like receptor 4.
    [Show full text]
  • Identification of N2-Fixing Plant-And Fungus-Associated Azoarcus
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Nov. 1997, p. 4331–4339 Vol. 63, No. 11 0099-2240/97/$04.0010 Copyright © 1997, American Society for Microbiology Identification of N2-Fixing Plant- and Fungus-Associated Azoarcus Species by PCR-Based Genomic Fingerprints THOMAS HUREK, BIANCA WAGNER, AND BARBARA REINHOLD-HUREK* Max-Planck-Institut fu¨r Terrestrische Mikrobiologie, Arbeitsgruppe Symbioseforschung, D-35043 Marburg, Germany Received 14 February 1997/Accepted 30 August 1997 Most species of the diazotrophic Proteobacteria Azoarcus spp. occur in association with grass roots, while A. tolulyticus and A. evansii are soil bacteria not associated with a plant host. To facilitate species identification and strain comparison, we developed a protocol for PCR-generated genomic fingerprints, using an automated sequencer for fragment analysis. Commonly used primers targeted to REP (repetitive extragenic palindromic) and ERIC (enterobacterial repetitive intergenic consensus) sequence elements failed to amplify fragments from the two species tested. In contrast, the BOX-PCR assay (targeted to repetitive intergenic sequence elements of Streptococcus) yielded species-specific genomic fingerprints with some strain-specific differences. PCR profiles of an additional PCR assay using primers targeted to tRNA genes (tDNA-PCR, for tRNAIle) were more discriminative, allowing differentiation at species-specific (for two species) or infraspecies-specific level. Our protocol of several consecutive PCR assays consisted of 16S ribosomal DNA (rDNA)-targeted, genus- specific
    [Show full text]
  • Microbial Community of a Gasworks Aquifer and Identification of Nitrate
    Water Research 132 (2018) 146e157 Contents lists available at ScienceDirect Water Research journal homepage: www.elsevier.com/locate/watres Microbial community of a gasworks aquifer and identification of nitrate-reducing Azoarcus and Georgfuchsia as key players in BTEX degradation * Martin Sperfeld a, Charlotte Rauschenbach b, Gabriele Diekert a, Sandra Studenik a, a Institute of Microbiology, Friedrich Schiller University Jena, Department of Applied and Ecological Microbiology, Philosophenweg 12, 07743 Jena, Germany ® b JENA-GEOS -Ingenieurbüro GmbH, Saalbahnhofstraße 25c, 07743 Jena, Germany article info abstract Article history: We analyzed a coal tar polluted aquifer of a former gasworks site in Thuringia (Germany) for the Received 9 August 2017 presence and function of aromatic compound-degrading bacteria (ACDB) by 16S rRNA Illumina Received in revised form sequencing, bamA clone library sequencing and cultivation attempts. The relative abundance of ACDB 18 December 2017 was highest close to the source of contamination. Up to 44% of total 16S rRNA sequences were affiliated Accepted 18 December 2017 to ACDB including genera such as Azoarcus, Georgfuchsia, Rhodoferax, Sulfuritalea (all Betaproteobacteria) Available online 20 December 2017 and Pelotomaculum (Firmicutes). Sequencing of bamA, a functional gene marker for the anaerobic benzoyl-CoA pathway, allowed further insights into electron-accepting processes in the aquifer: bamA Keywords: Environmental pollutions sequences of mainly nitrate-reducing Betaproteobacteria were abundant in all groundwater samples, Microbial communities whereas an additional sulfate-reducing and/or fermenting microbial community (Deltaproteobacteria, Bioremediation Firmicutes) was restricted to a highly contaminated, sulfate-depleted groundwater sampling well. By Box pathway conducting growth experiments with groundwater as inoculum and nitrate as electron acceptor, or- Functional gene marker ganisms related to Azoarcus spp.
    [Show full text]
  • Root Colonization and Systemic Spreading of Azoarcus Sp. Strain BH72 in Grasses
    JOURNAL OF BACrERIOLOGY, Apr. 1994, p. 1913-1923 Vol. 176, No. 7 0021-9 193/94/$04.00+ 0 Copyright © 1994, American Society for Microbiology Root Colonization and Systemic Spreading of Azoarcus sp. Strain BH72 in Grasses THOMAS HUREK,l 2* BARBARA REINHOLD-HUREK,2t MARC VAN MONTAGU,2 AND EDUARD KELLENBERGER't Abteilung Mikrobiologie, Biozentrum der Universitat Basel, CH-4056 Basel, Switzerland,' and Laboratoty of Genetics, University of Gent, B-9000 Ghent, Belgium2 Received 20 September 1993/Accepted 14 January 1994 The invasive properties of Azoarcus sp. strain BH72, an endorhizospheric isolate of Kallar grass, on gnotobiotically grown seedlings of Oryza sativa IR36 and Leptochloafusca (L.) Kunth were studied. Additionally, Azoarcus spp. were localized in roots of field-grown Kallar grass. To facilitate localization and to assure identity of bacteria, genetically engineered microorganisms expressing 0-glucuronidase were also used as inocula. P-Glucuronidase staining indicated that the apical region of the root behind the meristem was the most intensively colonized. Light and electron microscopy showed that strain BH72 penetrated the rhizoplane preferentially in the zones of elongation and differentiation and colonized the root interior inter- and intracellularly. In addition to the root cortex, stelar tissue was also colonized; bacteria were found in the xylem. No evidence was obtained that Azoarcus spp. could reside in living plant cells; rather, plant cells were apparently destroyed after bacteria had penetrated the cell wall. A common pathogenicity test on tobacco leaves provided no evidence that representative strains of Azoarcus spp. are phytopathogenic. Compared with the control, inoculation with strain BH72 significantly promoted growth of rice seedlings.
    [Show full text]
  • Comparative Genomics Provides Insights Into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera
    G C A T T A C G G C A T genes Article Comparative Genomics Provides Insights into the Taxonomy of Azoarcus and Reveals Separate Origins of Nif Genes in the Proposed Azoarcus and Aromatoleum Genera Roberto Tadeu Raittz 1,*,† , Camilla Reginatto De Pierri 2,† , Marta Maluk 3 , Marcelo Bueno Batista 4, Manuel Carmona 5 , Madan Junghare 6, Helisson Faoro 7, Leonardo M. Cruz 2 , Federico Battistoni 8, Emanuel de Souza 2,Fábio de Oliveira Pedrosa 2, Wen-Ming Chen 9, Philip S. Poole 10, Ray A. Dixon 4,* and Euan K. James 3,* 1 Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technical Education Sector—SEPT, UFPR, Curitiba, PR 81520-260, Brazil 2 Department of Biochemistry and Molecular Biology, UFPR, Curitiba, PR 81531-980, Brazil; [email protected] (C.R.D.P.); [email protected] (L.M.C.); [email protected] (E.d.S.); [email protected] (F.d.O.P.) 3 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; [email protected] 4 John Innes Centre, Department of Molecular Microbiology, Norwich NR4 7UH, UK; [email protected] 5 Centro de Investigaciones Biológicas Margarita Salas-CSIC, Department of Biotechnology of Microbes and Plants, Ramiro de Maeztu 9, 28040 Madrid, Spain; [email protected] 6 Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, 1430 Ås, Norway; [email protected] 7 Laboratory for Science and Technology Applied in Health, Carlos Chagas Institute, Fiocruz, Curitiba, PR 81310-020, Brazil; helisson.faoro@fiocruz.br 8 Department of Microbial Biochemistry and Genomics, IIBCE, Montevideo 11600, Uruguay; [email protected] Citation: Raittz, R.T.; Reginatto De 9 Laboratory of Microbiology, Department of Seafood Science, NKMU, Kaohsiung City 811, Taiwan; Pierri, C.; Maluk, M.; Bueno Batista, [email protected] M.; Carmona, M.; Junghare, M.; Faoro, 10 Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; H.; Cruz, L.M.; Battistoni, F.; Souza, [email protected] E.d.; et al.
    [Show full text]
  • Novel Clades of Soil Biphenyl Degraders Revealed by Integrating Isotope Probing, Multi-Omics, and Single-Cell Analyses
    The ISME Journal https://doi.org/10.1038/s41396-021-01022-9 ARTICLE Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses 1 1 2,3 1 1 Song-Can Chen ● Rohit Budhraja ● Lorenz Adrian ● Federica Calabrese ● Hryhoriy Stryhanyuk ● 1 1 4 4,5 1 Niculina Musat ● Hans-Hermann Richnow ● Gui-Lan Duan ● Yong-Guan Zhu ● Florin Musat Received: 20 February 2021 / Revised: 12 May 2021 / Accepted: 21 May 2021 © The Author(s) 2021. This article is published with open access Abstract Most microorganisms in the biosphere remain uncultured and poorly characterized. Although the surge in genome sequences has enabled insights into the genetic and metabolic properties of uncultured microorganisms, their physiology and ecological roles cannot be determined without direct probing of their activities in natural habitats. Here we employed an experimental framework coupling genome reconstruction and activity assays to characterize the largely uncultured microorganisms responsible for aerobic biodegradation of biphenyl as a proxy for a large class of environmental pollutants, polychlorinated biphenyls. We used 13C-labeled biphenyl in contaminated soils and traced the flow of pollutant-derived carbon into active – 13 1234567890();,: 1234567890();,: cells using single-cell analyses and protein stable isotope probing. The detection of C-enriched proteins linked biphenyl biodegradation to the uncultured Alphaproteobacteria clade UBA11222, which we found to host a distinctive biphenyl dioxygenase gene widely retrieved from contaminated environments. The same approach indicated the capacity of Azoarcus species to oxidize biphenyl and suggested similar metabolic abilities for species of Rugosibacter. Biphenyl oxidation would thus represent formerly unrecognized ecological functions of both genera.
    [Show full text]
  • Diversity and Function of the Microbial Community on Anodes of Sediment Microbial Fuel Cells Fueled by Root Exudates
    Diversity and Function of the Microbial Community on Anodes of Sediment Microbial Fuel Cells fueled by Root Exudates Doctoral thesis Submitted in partial fulfillment of the requirement for a doctoral degree “Doktorgrad der Naturwissenschaften (Dr. rer. nat.)” to the faculty of biology – Philipps-Universität Marburg by Angela Cabezas da Rosa from Montevideo, Uruguay Marburg / Lahn | 2010 The research for the completion of this work was carried out from April 2007 to September 2010 at the Max-Planck Institute for Terrestrial Microbiology under the supervision of Prof. Michael W. Friedrich Thesis was submitted to the Faculty of Biology, Philipps-Universität, Marburg Doctoral thesis accepted on: 24.11.2010 Date of oral examination: 26.11.2010 First reviewer: Prof. Dr. Michael W. Friedrich Second reviewer: Prof. Dr. Wolfgang Buckel The following manuscripts originated from this work and were published or are in preparation: De Schamphelaire L, Cabezas A, Marzorati M, Friedrich MW, Boon N & Verstraete W (2010) Microbial Community Analysis of Anodes from Sediment Microbial Fuel Cells Powered by Rhizodeposits of Living Rice Plants. Applied and Environmental Microbiology 76: 2002-2008. Cabezas A, de Schamphelaire L, Boon N, Verstraete W, Friedrich MW. Rice root exudates select for novel electrogenic Geobacter and Anaeromyxobacter populations on sediment microbial fuel cell anodes. In preparation. Cabezas A, Köhler T, Brune A, Friedrich MW. Identification of β-Proteobacteria and Anaerolineae as active populations degrading rice root exudates on
    [Show full text]
  • Phylogenetic Analyses of a New Group of Denitrifiers Capable of Anaerobic Growth on Toluene and Description of Azoarcus Tolulyticus Sp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1995, p. 500-506 Vol. 45, No. 3 0020-7713/95/$04.00 + 0 Copyright 0 1995, International Union of Microbiological Societies Phylogenetic Analyses of a New Group of Denitrifiers Capable of Anaerobic Growth on Toluene and Description of Azoarcus tolulyticus sp. nov. JIZHONG ZHOU,1,2 MARCOS R. FRIES,1.2 JOANNE C. CHEE-SANFORD,3 AND JAMES M. TIEDJE17273* Center For Microbial Ecology, Department of Crop and Soil Sciences, and Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1325 To understand the phylogeny and taxonomy of eight new toluene-degrading denitrifying isolates, we per- formed a 16s rRNA sequence analysis and a gas chromatographic analysis of their cellular fatty acids and examined some of their biochemical and physiological features. These isolates had 165 rRNA sequence signatures identical to those of members of the beta subclass of the Proteobacteria.The levels of similarity were as follows: 97.9 to 99.9% among the new isolates; 91.2 to 92.4%between the new isolates and Azoarcus sp. strain S5b2; 95.3 to 96.2% between the new isolates and Azoarcus sp. strain BH72; and 94.8 to 95.3% between the new isolates and Azoarcus indigens VB32T (T = type strain). Phylogenetic trees constructed by using the distance matrix, maximum-parsimony, and maximum-likelihood methods showed that our eight denitrifying isolates form a phylogenetically coherent cluster which represents a sister lineage of the previously described Azoarcus species. Furthermore, the fatty acid profiles, the cell morphology, and several physiological and nutritional characteristics of the eight isolates and the previously described members of the genus Azoarcus were also similar.
    [Show full text]
  • Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico 2 “Dead Zone” 3 4 J
    bioRxiv preprint doi: https://doi.org/10.1101/095471; this version posted June 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Metabolic roles of uncultivated bacterioplankton lineages in the northern Gulf of Mexico 2 “Dead Zone” 3 4 J. Cameron Thrash1*, Kiley W. Seitz2, Brett J. Baker2*, Ben Temperton3, Lauren E. Gillies4, 5 Nancy N. Rabalais5,6, Bernard Henrissat7,8,9, and Olivia U. Mason4 6 7 8 1. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA 9 2. Department of Marine Science, Marine Science Institute, University of Texas at Austin, Port 10 Aransas, TX, USA 11 3. School of Biosciences, University of Exeter, Exeter, UK 12 4. Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, 13 FL, USA 14 5. Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, 15 LA, USA 16 6. Louisiana Universities Marine Consortium, Chauvin, LA USA 17 7. Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 18 13288 Marseille, France 19 8. INRA, USC 1408 AFMB, F-13288 Marseille, France 20 9. Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia 21 22 *Correspondence: 23 JCT [email protected] 24 BJB [email protected] 25 26 27 28 Running title: Decoding microbes of the Dead Zone 29 30 31 Abstract word count: 250 32 Text word count: XXXX 33 34 Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/095471; this version posted June 12, 2017.
    [Show full text]
  • Meta-Proteomic Analysis of Protein Expression Distinctive to Electricity
    Chignell et al. Biotechnol Biofuels (2018) 11:121 https://doi.org/10.1186/s13068-018-1111-2 Biotechnology for Biofuels RESEARCH Open Access Meta‑proteomic analysis of protein expression distinctive to electricity‑generating bioflm communities in air‑cathode microbial fuel cells Jeremy F. Chignell1, Susan K. De Long2 and Kenneth F. Reardon1,3* Abstract Background: Bioelectrochemical systems (BESs) harness electrons from microbial respiration to generate power or chemical products from a variety of organic feedstocks, including lignocellulosic biomass, fermentation byproducts, and wastewater sludge. In some BESs, such as microbial fuel cells (MFCs), bacteria living in a bioflm use the anode as an electron acceptor for electrons harvested from organic materials such as lignocellulosic biomass or waste byprod- ucts, generating energy that may be used by humans. Many BES applications use bacterial bioflm communities, but no studies have investigated protein expression by the anode bioflm community as a whole. Results: To discover functional protein expression during current generation that may be useful for MFC optimiza- tion, a label-free meta-proteomics approach was used to compare protein expression in acetate-fed anode bioflms before and after the onset of robust electricity generation. Meta-proteomic comparisons were integrated with 16S rRNA gene-based community analysis at four developmental stages. The community composition shifted from dominance by aerobic Gammaproteobacteria (90.9 3.3%) during initial bioflm formation to dominance by Deltapro- teobacteria, particularly Geobacter (68.7 3.6%) in mature,± electricity-generating anodes. Community diversity in the intermediate stage, just after robust current± generation began, was double that at the early stage and nearly double that of mature anode communities.
    [Show full text]