Phenological Response of Cotton Mealybug, Phenacoccus Solenopsis Tinsley (Sternorrhyncha: Pseudococcidae) to Three Prominent Host Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ISSN NO: 2639-3166 Phenacoccus Solenopsis A. Arizonensis P
Freely Available Online JOURNAL OF AGRONOMY RESEARCH ISSN NO: 2639-3166 Research Article DOI: 10.14302/issn.2639-3166.jar-19-2858 Effectiveness of Endoparsitoid Wasp Aenasius Arizonensis (Girault) as a Successful Bio-Control of Cotton Mealy Bug, Phenacoccus Solenopsis Tinsley, in Khartoum State, Sudan. Nawal Ahmed Mohamed1, Awad KhalafAlla Taha2 , Abubaker Haroun Mohamed Adam3,* 1Ministry of Agriculture, Animal Wealth and Irrigation, Khartoum State, Sudan 2Department of Plant Protection, College of Agricultural Studies - Shambat, Sudan University of Science and Technology, Sudan 3Department of Crop Science, College of Agriculture, University of Bahri, AlKadaru, Sudan. Abstract The objective of this study was to evaluate the effectiveness of endophagous Encyrtid parasitic wasp Aenasius arizonensis (Girault) (Hymenoptera, Chalcidoidea), as a natural enemy for controlling the Mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Where a Randomized Complete Block Design (RCBD) was adopted. Both, field survey and Laboratory experiments were conducted to study some biological characteristics of the parasitoid A. arizonensis. The results of field study revealed that, the parasitioid was available most of the year, and was highly effective on adults and last larval instar of the mealy bug, P. Solenopsis, with a total percentage of parasitism of 31.26%. While the laboratory results showed that, the duration from oviposition to adult emergence were similar for both male and female. Longevity of male was 23± 2.33 days and female 23.37±1.89 days. Mean daily fecundity in terms of number of Parasitized hosts / female / day ranged from 20 to 24. The sex ratio was 1:1.6 for the male and female in the progeny. -
Insect Orders
CMG GardenNotes #313 Insect Orders Outline Anoplura: sucking lice, page 1 Blattaria: cockroaches and woodroaches, page 2 Coleoptera: beetles, page 2 Collembola: springtails, page 4 Dermaptera: earwigs, page 4 Diptera: flies, page 5 Ephemeroptera: mayflies, page 6 Hemiptera (suborder Heteroptera): true bugs, page 7 Hemiptera (suborders Auchenorrhyncha and Sternorrhyncha): aphids, cicadas, leafhoppers, mealybugs, scale and whiteflies, page 8 Hymenoptera: ants, bees, horntails, sawflies, and wasp, page 9 Isoptera: termites, page 11 Lepidoptera: butterflies and moths, page 12 Mallophaga: chewing and biting lice, page 13 Mantodea: mantids, page 14 Neuroptera: antlions, lacewings, snakeflies and dobsonflies, page 14 Odonata: dragonflies and damselflies, page 15 Orthoptera: crickets, grasshoppers, and katydids, page 15 Phasmida: Walking sticks, page 16 Plecoptera: stoneflies, page 16 Psocoptera: Psocids or booklice, page 17 Siphonaptera: Fleas, page 17 Thysanoptera: Thrips, page 17 Trichoptera: Caddisflies, page 18 Zygentomaa: Silverfish and Firebrats, page 18 Anoplura Sucking Lice • Feeds by sucking blood from mammals. • Some species (head lice and crabs lice) feed on humans. Metamorphosis: Simple/Gradual Features: [Figure 1] Figure 1. Sucking lice o Wingless o Mouthparts: Piercing/sucking, designed to feed on blood. o Body: Small head with larger, pear-shaped thorax and nine segmented abdomen. 313-1 Blattaria (Subclass of Dictyoptera) Cockroaches and Woodroaches • Most species are found in warmer subtropical to tropical climates. • The German, Oriental and American cockroach are indoor pests. • Woodroaches live outdoors feeding on decaying bark and other debris. Metamorphosis: Simple/Gradual Figure 2. American cockroach Features: [Figure 2] o Body: Flattened o Antennae: Long, thread-like o Mouthparts: Chewing o Wings: If present, are thickened, semi-transparent with distinct veins and lay flat. -
HOST PLANTS of SOME STERNORRHYNCHA (Phytophthires) in NETHERLANDS NEW GUINEA (Homoptera)
Pacific Insects 4 (1) : 119-120 January 31, 1962 HOST PLANTS OF SOME STERNORRHYNCHA (Phytophthires) IN NETHERLANDS NEW GUINEA (Homoptera) By R. T. Simon Thomas DEPARTMENT OF ECONOMIC AFFAIRS, HOLLANDIA In this paper, I list 15 hostplants of some Phytophthires of Netherlands New Guinea. Families, genera within the families and species within the genera are mentioned in alpha betical order. The genera and the specific names of the insects are printed in bold-face type, those of the plants are in italics. The locality, where the insects were found, is printed after the host plants. Then follows the date of collection and finally the name of the collector1 in parentheses. I want to acknowledge my great appreciation for the identification of the Aphididae to Mr. D. Hille Ris Lambers and of the Coccoidea to Dr. A. Reyne. Aphididae Cerataphis variabilis Hrl. Cocos nucifera Linn.: Koor, near Sorong, 26-VII-1961 (S. Th.). Longiunguis sacchari Zehntner. Andropogon sorghum Brot.: Kota Nica2 13-V-1959 (S. Th.). Toxoptera aurantii Fonsc. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Theobroma cacao Linn.: Kota Nica, 19-VIII-1959 (S. Th.), Amban-South, near Manokwari, 1-XII- 1960 (J. Schreurs). Toxoptera citricida Kirkaldy. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Schizaphis cyperi v. d. Goot, subsp, hollandiae Hille Ris Lambers (in litt.). Polytrias amaura O. K.: Hollandia, 22-V-1958 (van Leeuwen). COCCOIDEA Aleurodidae Aleurocanthus sp. Citrus sp.: Kota Nica, 16-VI-1961 (S. Th.). Asterolecaniidae Asterolecanium pustulans (Cockerell). Leucaena glauca Bth.: Kota Nica, 8-X-1960 (S. Th.). 1. My name, as collector, is mentioned thus: "S. -
The Cotton Mealybug Phenacoccus Solenopsis Tinsley (Hemiptera: Pseudococcidae) As a New Insect Pest on Tomato Plants in Egypt
JOURNAL OF PLANT PROTECTION RESEARCH Vol. 55, No. 1 (2015) DOI: 10.1515/jppr-2015-0007 The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) as a new insect pest on tomato plants in Egypt Samah Sayed Ibrahim1, Fatma Abdelhalim Moharum1, Nesreen Mohamed Abd El-Ghany2* 1 Plant Protection Research Institute, Agricultural Research Center, 7 Nadi El-Seid St., Dokki, Giza, Egypt 2 Pests and Plant Protection Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt Received: September 10, 2014 Accepted: February 4, 2015 Abstract: Recently, the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) was recorded as a new pest on tomato plants (Lycopersicon esculentum Mill) growing in Egypt. The mealybugs specimens were collected from tomato plants in the Qalyoubia governorate during summer season of 2014. The mealybug was identified as P. solenopsis based on the morphological characters and taxonomic key of this species. This study represents the first record of P. solenopsis as a new insect pest attacking tomato plants in Egypt. Key words: Lycopersicon esculentum, mealybug, Phenacoccus solenopsis Introduction was originally described from the USA in 1898. Until In less than a century, tomato (Lycopersicon esculentum 1992, this insect was known only in the USA, where it Mill) (Family: Solanaceae) has become a major world was widespread (Ben-Dov 2004). Phenacoccus solenopsis food crop. Today, tomatoes are grown commercially in was reported in Central America, the Caribbean, and Ec- 159 countries. The major producers of tomatoes, in 2009 uador (Fuchs et al. 1991; Williams and Granara de Willink were China, the United States, India, Turkey, Egypt, Italy, 1992). -
Coccidology. the Study of Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ciencia y Tecnología Agropecuaria (E-Journal) Revista Corpoica – Ciencia y Tecnología Agropecuaria (2008) 9(2), 55-61 RevIEW ARTICLE Coccidology. The study of scale insects (Hemiptera: Takumasa Kondo1, Penny J. Gullan2, Douglas J. Williams3 Sternorrhyncha: Coccoidea) Coccidología. El estudio de insectos ABSTRACT escama (Hemiptera: Sternorrhyncha: A brief introduction to the science of coccidology, and a synopsis of the history, Coccoidea) advances and challenges in this field of study are discussed. The changes in coccidology since the publication of the Systema Naturae by Carolus Linnaeus 250 years ago are RESUMEN Se presenta una breve introducción a la briefly reviewed. The economic importance, the phylogenetic relationships and the ciencia de la coccidología y se discute una application of DNA barcoding to scale insect identification are also considered in the sinopsis de la historia, avances y desafíos de discussion section. este campo de estudio. Se hace una breve revisión de los cambios de la coccidología Keywords: Scale, insects, coccidae, DNA, history. desde la publicación de Systema Naturae por Carolus Linnaeus hace 250 años. También se discuten la importancia económica, las INTRODUCTION Sternorrhyncha (Gullan & Martin, 2003). relaciones filogenéticas y la aplicación de These insects are usually less than 5 mm códigos de barras del ADN en la identificación occidology is the branch of in length. Their taxonomy is based mainly de insectos escama. C entomology that deals with the study of on the microscopic cuticular features of hemipterous insects of the superfamily Palabras clave: insectos, escama, coccidae, the adult female. -
Effects of Nitrogen Fertilization on the Life History of the Madeira Mealybug
Clemson University TigerPrints All Theses Theses 12-2015 Effects of Nitrogen Fertilization on the Life History of the Madeira Mealybug (Phenacoccus madeirensis) and the Molecular Composition of its Host Plant Stephanie Alliene Rhodes Clemson University Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Rhodes, Stephanie Alliene, "Effects of Nitrogen Fertilization on the Life History of the Madeira Mealybug (Phenacoccus madeirensis) and the Molecular Composition of its Host Plant" (2015). All Theses. 2584. https://tigerprints.clemson.edu/all_theses/2584 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. EFFECTS OF NITROGEN FERTILIZATION ON THE LIFE HISTORY OF THE MADEIRA MEALYBUG (PHENACOCCUS MADEIRENSIS) AND THE MOLECULAR COMPOSITION OF ITS HOST PLANT A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Stephanie Alliene Rhodes December 2015 Accepted by: Dr. Juang-Horng Chong, Committee Co-Chair Dr .Matthew Turnbull, Committee Co-Chair Dr. Peter Adler Dr. Dara Park ABSTRACT The aim of this study was to investigate how different nitrogen fertilization rates of host-plants influence the development, fecundity, and nutritional status of a pest insect, the Madeira mealybug (Phenococcus madeirensis Green, Hemiptera: Psuedococcidae). This study evaluated the effects of nitrogen fertilization (0, 75, 150 and 300 ppm N) on the growth, % nitrogen, % carbon, lipid, and protein contents of basil plants (Ocimum basilicum L., Lamiaceae), and the subsequent impacts of host-plant nutritional status on the life history and total lipid and protein contents of the Madeira mealybug. -
Biology, Predatory Activity and Peoples'perceptions Towards Apefly
The Nelson Mandela AFrican Institution of Science and Technology NM-AIST Repository https://dspace.mm-aist.ac.tz Life sciences and Bio-engineering PhD Theses and Dissertations [LiSBE] 2020-05 Biology, predatory activity and peoples’perceptions towards apefly (spalgis spp.) in Tanzania Nasari, Sayuni P. https://dspace.nm-aist.ac.tz/handle/20.500.12479/927 Provided with love from The Nelson Mandela African Institution of Science and Technology BIOLOGY, PREDATORY ACTIVITY AND PEOPLES’ PERCEPTIONS TOWARDS APEFLY (Spalgis spp.) IN TANZANIA Sayuni P. Nasari A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Life Sciences of the Nelson Mandela African Institution of Science and Technology Arusha, Tanzania May, 2020 ABSTRACT In June 2017, farmers in central and northern Tanzania reported the occurrence of what they called an unusual insect with a human-like facial appearance that they referred to as “Kidudu-mtu.” The reports prompted the need to assess the identity and occurrence of the insect in Tanzania. This research was conducted between March and August 2018 in Iringa, Morogoro, Shinyanga, Geita and Arusha regions. A total of 89 people in the study regions were purposely interviewed to determine their knowledge, perceptions and reactions towards the insect. Insect samples were collected and submitted to the Tropical Pesticide Research Institute (TPRI) for preliminary identification and toxicity test. Molecular identification was done at the Nelson Mandela African Institution of Science and Technology (NM-AIST) laboratory. The insect’s predatory activity against the papaya mealybug (Paracoccus marginatus Williams and Granara de Willink) was assessed at Tanzania Agricultural Research Institute (TARI) Tengeru. -
Trophobiosis Between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an Overview
December, 2001 Neotropical Entomology 30(4) 501 FORUM Trophobiosis Between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an Overview JACQUES H.C. DELABIE 1Lab. Mirmecologia, UPA Convênio CEPLAC/UESC, Centro de Pesquisas do Cacau, CEPLAC, C. postal 7, 45600-000, Itabuna, BA and Depto. Ciências Agrárias e Ambientais, Univ. Estadual de Santa Cruz, 45660-000, Ilhéus, BA, [email protected] Neotropical Entomology 30(4): 501-516 (2001) Trofobiose Entre Formicidae e Hemiptera (Sternorrhyncha e Auchenorrhyncha): Uma Visão Geral RESUMO – Fêz-se uma revisão sobre a relação conhecida como trofobiose e que ocorre de forma convergente entre formigas e diferentes grupos de Hemiptera Sternorrhyncha e Auchenorrhyncha (até então conhecidos como ‘Homoptera’). As principais características dos ‘Homoptera’ e dos Formicidae que favorecem as interações trofobióticas, tais como a excreção de honeydew por insetos sugadores, atendimento por formigas e necessidades fisiológicas dos dois grupos de insetos, são discutidas. Aspectos da sua evolução convergente são apresenta- dos. O sistema mais arcaico não é exatamente trofobiótico, as forrageadoras coletam o honeydew despejado ao acaso na folhagem por indivíduos ou grupos de ‘Homoptera’ não associados. As relações trofobióticas mais comuns são facultativas, no entanto, esta forma de mutualismo é extremamente diversificada e é responsável por numerosas adaptações fisiológicas, morfológicas ou comportamentais entre os ‘Homoptera’, em particular Sternorrhyncha. As trofobioses mais diferenciadas são verdadeiras simbioses onde as adaptações mais extremas são observadas do lado dos ‘Homoptera’. Ao mesmo tempo, as formigas mostram adaptações comportamentais que resultam de um longo período de coevolução. Considerando-se os inse- tos sugadores como principais pragas dos cultivos em nível mundial, as implicações das rela- ções trofobióticas são discutidas no contexto das comunidades de insetos em geral, focalizan- do os problemas que geram em Manejo Integrado de Pragas (MIP), em particular. -
Evaluation of RNA Interference for Control of the Grape Mealybug Pseudococcus Maritimus (Hemiptera: Pseudococcidae)
insects Article Evaluation of RNA Interference for Control of the Grape Mealybug Pseudococcus maritimus (Hemiptera: Pseudococcidae) Arinder K. Arora 1, Noah Clark 1, Karen S. Wentworth 2, Stephen Hesler 2, Marc Fuchs 3 , Greg Loeb 2 and Angela E. Douglas 1,4,* 1 Department of Entomology, Cornell University, Ithaca, NY 14850, USA; [email protected] (A.K.A.); [email protected] (N.C.) 2 Department of Entomology, Cornell University, Geneva, NY 14456, USA; [email protected] (K.S.W.); [email protected] (S.H.); [email protected] (G.L.) 3 School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA; [email protected] 4 Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA * Correspondence: [email protected] Received: 19 September 2020; Accepted: 26 October 2020; Published: 28 October 2020 Simple Summary: RNA interference (RNAi) is a defense mechanism that protects insects from viruses by targeting and degrading RNA. This feature has been exploited to reduce the expression of endogenous RNA for determining functions of various genes and for killing insect pests by targeting genes that are vital for insect survival. When dsRNA matching perfectly to the target RNA is administered, the RNAi machinery dices the dsRNA into ~21 bp fragments (known as siRNAs) and one strand of siRNA is employed by the RNAi machinery to target and degrade the target RNA. In this study we used a cocktail of dsRNAs targeting grape mealybug’s aquaporin and sucrase genes to kill the insect. Aquaporins and sucrases are important genes enabling these insects to maintain water relations indispensable for survival and digest complex sugars in the diet of plant sap-feeding insects, including mealybugs. -
4-H Insect ID Contest Key for Answer Sheet
4-H INSECT IDENTIFICATION CONTEST -- Nebraska State Fair, 2018 Key for Answer Sheet Letter Order Name No. Common Name No. Common Name A Blattodea 1 Ant Black Carpenter 51 Dragonfly Twelvespotted Skimmer B Coleoptera 2 Ant Velvet 52 Earwig European C Collembola 3 Antlion 53 Firebrat D Dermaptera 4 Aphid Giant Bark 54 Flea Cat E Diptera 5 Bee Bumble 55 Fly Black Horse F Ephemeroptera 6 Bee Honey 56 Fly Crane G Hemiptera-Auchenorrhyncha 7 Bee Leafcutter 57 Fly Flesh H Hemiptera-Heteroptera 8 Beetle Colorado Potato 58 Fly Green Bottle I Hemiptera-Sternorrhyncha 9 Beetle Cottonwood Borer 59 Fly Longlegged J Hymenoptera 10 Beetle Dogbane Leaf 60 Fly Mydas K Isoptera 11 Beetle Eastern Firefly 61 Fly Picturewinged L Lepidoptera 12 Beetle Emerald Ash Borer 62 Fly Robber M Mantodea 13 Beetle Fiery Hunter Ground 63 Fly Syrphid (Hover) N Megaloptera 14 Beetle Green June 64 Grasshopper Differential O Neuroptera 15 Beetle Japanese 65 Grasshopper Haldemann's P Odonata 16 Beetle Masked Chafer 66 Grasshopper Obscure Bird Q Orthoptera 17 Beetle Multicolored Asian Lady 67 Grasshopper Twostriped R Phasmida / Phasmatodea 18 Beetle Rhubarb Curculio 68 Katydid Broadwinged S Phthiraptera 19 Beetle Soldier 69 Lacewing Green T Plecoptera 20 Beetle Water Scavenger 70 Leafhopper Redlined U Psocoptera 21 Booklouse 71 Louse Head V Siphonaptera 22 Bug Bed 72 Mantid Carolina W Thysanoptera 23 Bug Boxelder 73 Mantid Chinese X Thysanura 24 Bug Brown Marmorated Stink 74 Mayfly Giant Y Trichoptera 25 Bug Giant Water 75 Mosquito 26 Bug Lace 76 Moth Bagworm 27 Bug Squash -
Dugravot. 2008. Correlations of Cibarial Muscle.Pdf
Journal of Insect Physiology 54 (2008) 1467–1478 Contents lists available at ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Correlations of cibarial muscle activities of Homalodisca spp. sharpshooters (Hemiptera: Cicadellidae) with EPG ingestion waveform and excretion Sebastien Dugravot a,1, Elaine A. Backus b,3,*, Brendon J. Reardon a,2,3, Thomas A. Miller a a Department of Entomology, University of California, Riverside, CA 92521, USA b USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 So. Riverbend Avenue, Parlier, CA 93648, USA ARTICLE INFO ABSTRACT Article history: Fluid flow into and out of the stylets of xylem-ingesting sharpshooters (Hemiptera: Cicadellidae: Received 31 December 2006 Cicadellinae) is powered by muscles of the cibarial pump. Such fluid flow is crucial for transmission of Received in revised form 2 May 2008 Xylella fastidiosa, the Pierce’s Disease bacterium, yet has not been rigorously studied via electrical Accepted 7 May 2008 penetration graph (EPG) technology. We correlated EPG waveforms with electromyographically (EMG) recorded muscle potentials from the cibarial dilator muscles, which power the piston-like cibarial Keywords: diaphragm. There was a 1:1 correspondence of each cycle of cibarial muscle contraction/relaxation with Electrical penetration graph each plateau of EPG waveform C. Results definitively showed that the C waveform represents active Electronic monitoring Xylella fastidiosa ingestion, i.e. fluid flow is propelled by cibarial muscle contraction. Moreover, each C waveform episode Pierce’s Disease represents muscular diaphragm uplift, probably combined with a ‘‘bounce’’ from cuticular elasticity, to Feeding provide the suction that pulls fluid into the stylets. -
Impact of Ecological Conditions on Biology of Cotton Mealy Bug, Phenacoccus Solenopsis (Hemiptera: Pseudococcidae) in Laboratory
Pakistan J. Zool., vol. 44 (3), pp. 685-690, 2012. Impact of Ecological Conditions on Biology of Cotton Mealy Bug, Phenacoccus solenopsis (Hemiptera: Pseudococcidae) in Laboratory Asifa Hameed,1 Muhammad Asif Aziz2 * and Ghulam Mustafa Aheer3 1Cotton Research Station, Multan. 2Department of Entomology, PMAS-Arid Agriculture University, Murree Road, Rawalpindi 3 Entomological Research Institute, Faisalabad Abstract.- Effect of temperature and relative humidity on the life history of the cotton mealy bug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) was investigated in the laboratory. P. solenopsis was able to complete its life cycle at 20, 25, 30 and 35±1°C and 70, 65, 60 and 40±5% RH, respectively. Egg hatching period decreased from 32±0.22 to 0.57±0.15 hours from 20 to 40°C. But at 40°C, the male specimens were unable to pupate and the female specimens despite comparatively very short life span were unable to produce eggs. The highest fecundity was observed at 20°C with each female producing an average of 232.65±2.19 eggs. Development time from egg to adult was the longest for male at 20°C. Increasing temperature and decreasing relative humidity had profound effect on the longevity of the females whereas longevity of males was less affected. Ability of the P. solenopsis to develop and reproduce successfully at 20 to 35±1°C and 70 to 40±5% RH suggests that the pest can develop and build up its populations in different ecological zones within this temperature range. Key words: Development, relative humidity, Phenacoccus solenopsis, cotton mealy bug. INTRODUCTION encourages its development.