viruses Review Viral Related Tools against SARS-CoV-2 1,2, 1,2, 1,2 Laura Fernandez-Garcia y , Olga Pacios y ,Mónica González-Bardanca , Lucia Blasco 1,2 , Inés Bleriot 1,2 , Antón Ambroa 1,2, María López 1,2, German Bou 1,2,3 and Maria Tomás 1,2,3,* 1 Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain;
[email protected] (L.F.-G.);
[email protected] (O.P.);
[email protected] (M.G.-B.);
[email protected] (L.B.);
[email protected] (I.B.);
[email protected] (A.A.);
[email protected] (M.L.);
[email protected] (G.B.) 2 Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain 3 Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain * Correspondence:
[email protected]; Tel.: +34-981-176-399; Fax: +34-981-178-273 These authors contributed equally to this work. y Received: 18 September 2020; Accepted: 15 October 2020; Published: 16 October 2020 Abstract: At the end of 2019, a new disease appeared and spread all over the world, the COVID-19, produced by the coronavirus SARS-CoV-2. As a consequence of this worldwide health crisis, the scientific community began to redirect their knowledge and resources to fight against it. Here we summarize the recent research on viruses employed as therapy and diagnostic of COVID-19: (i) viral-vector vaccines both in clinical trials and pre-clinical phases; (ii) the use of bacteriophages to find antibodies specific to this virus and some studies of how to use the bacteriophages themselves as a treatment against viral diseases; and finally, (iii) the use of CRISPR-Cas technology both to obtain a fast precise diagnose of the patient and also the possible use of this technology as a cure.