The Isolation and Characterisation of Proteus

Total Page:16

File Type:pdf, Size:1020Kb

The Isolation and Characterisation of Proteus THE ISOLATION AND CHARACTERISATION OF PROTEUS MIRABILIS BACTERIOPHAGES AND THEIR EFFECT ON THE COLONISATION AND BLOCKAGE OF URINARY CATHETERS RICHARD W THOMPSON BSc. A thesis submitted in partial fulfilment of the requirements of the University of the West of England, Bristol for the degree of Doctor of Philosophy This research programme was carried out in collaboration with the Bristol Urological Institute, Bristol Department of Applied Sciences, University of the West of England, Bristol June 2018 Authors Declaration This copy has been supplied on the understanding that it is copyright material and no quotation from the thesis may be published without proper acknowledgement. i Abstract Catheter associated urinary tract infection seriously complicates the care of an already vulnerable patient set and has been estimated to cost the UK National Health Service in excess of one billion pounds per annum. Approximately 50 % of patients catheterised for more than 28 days will experience catheter blockage due to the formation of crystalline biofilm on the eye holes, balloon and lumen of the catheter (Getliffe, 1994) as a result of colonisation by Proteus mirabilis. Blockage can lead to significant complications such as pyelonephritis and septicaemia. To date, strategies to reduce or prevent these infections from occurring have met with limited success. One potential approach to prevent catheter colonisation and blockage is the application of bacteriophages as a catheter coating. Natural parasites of bacteria, bacteriophages offer several advantages over conventional antimicrobial treatment including replication at the site of infection, specificity and, in some cases, biofilm degrading ability. Three novel bacteriophages vB_PmiS_NSM6, vB_PmiP_#3 and vB_PmiM_D3 were isolated from environmental sources and characterised phenotypically and genetically utilising electron microscopy, host range analysis and, for phages vB_PmiS_NSM6 and vB_PmiP_#3, genome sequencing via hybrid assembly. The isolated phages belong to the Caudovirales order and sequence data analysis indicated that they are lysogenic. They possess the characteristic modular architecture of their dsDNA genomes that are densely packed with coding sequence. Both phages displayed terminal redundancy which is indicative of a headful packaging strategy and both appear to be circularly permuted. Putative function was obtained for 63 % of the coding sequences for phage vB_PmiS_NSM6 and 52 % of genes identified in phage vB_PmiP_#3. The effect of these phages, either individually or as a cocktail, on P. mirabilis colonisation of urinary catheters in an in vitro bladder model was investigated. Models were run for 24 h and adhered bacteria used as an indicator of phage activity verses untreated control. A reduction of greater than 3 log10 was observed for phage vB_PmiS_NSM6 treated catheters in comparison to untreated controls across all three sections of catheter analysed. Phage vB_PmiP_#3 reduced bacterial adherence by 1 log10 across all sections and a similar reduction was observed with phage vB_PmiM_D3 of greater than 1 log10. These data were confirmed with scanning electron microscopy (SEM) which showed a significant reduction in crystalline deposits on the phage treated catheters. The time taken for the mineralised biofilm to occlude the catheter lumen in the presence of bacteriophages was also investigated. Time to blockage was extended from 36.2 h to 58.47 h (an increase of 61.49 %) for phage vBPmiS_NSM6, from 41.17 h to 51.73 h (an increase of 25.67 %) for phage vB_PmiP_#3 and from 40.97 h to 62.40 h (an increase of 52.31 %) for phage vB_PmiM_D3. Phages vB_PmiS_NSM6 and vB_PmiM_D3 displayed activity against each other’s isolating strain. This enabled the assessment of a two phage cocktail. The cocktail increased time to blockage by approximately 7 % compared to single phage treatment for both bacterial isolates. These data provide some evidence of efficacy of bacteriophage pre-treatment of urinary catheters in an in vitro model of P. mirabilis infection of the catheterised bladder, despite the lysogenic nature of the phages investigated. As such, this suggests phage treatment of catheters warrants further investigation. ii Acknowledgements Firstly, I would like to thank Adele Long, the former director of the Bristol Urological Institute (BUI), for being instrumental in securing the funding for this project and believing in me and my idea. Thanks also to Karen Evely at the BUI for the additional administrative and organisational support required to allow me to undertake this study part-time. Next I would like to thank my original supervisor Professor Viv Salisbury for agreeing to take me on as a student and undertaking a project in an area of research that she had little prior experience of. Without her the project would never have gotten off the ground. Special thanks also to my current supervisor Dr Shona Nelson, for agreeing to take me on as a student upon Viv’s retirement and for all the help and support she has given me over the duration of the project. The last couple of years have been a particularly challenging time for me personally, Shona has not only supported me as my PhD supervisor but also as a friend and confidant. I am forever grateful for all the guidance she has given me, and also for all the parenting wisdom and clothes she provided for my daughter since her birth! Thanks also to my other supervisors, Dr Roy Pemberton who covered Shona’s maternity leave and Dr Nicola Morris for allowing me to undertake these studies, being flexible with working arrangements and providing much advice and support over the years. Thanks also to Dr Dann Turner for all the help and support he has given me from his time as a fellow PhD student throughout his post-Doctoral study and now as a lecturer. Dann was instrumental in the planning and execution of the sequencing work conducted, his expertise in this field has been invaluable. I feel very lucky to have been surrounded by such interesting and accomplished individuals throughout the project, without their endless help and encouragement it simply wouldn’t have been possible. Thanks also to the laboratory technical team at the University of the West of England for their support and advice, especially Dr Gill Smith, Dr Lee Graham, Dave Corry, and Dr Dave Patton for his assistance with electron microscopy. I would like to extend my thanks to the microbiology department at Southmead hospital for supplying me with Proteus mirabilis isolates, and to Wessex Water for providing me with activated sludge and raw sewage, specifically Alex Jones for his willingness to facilitate my research, and Reuben Hardy for collecting and delivering the samples. Thanks also to Professor Eshwar Mahenthiralingam for his support and assistance with the analysis of PFGE gels at the University of Cardiff. Finally, I would like to thank my wife for her love and encouragement, and for being my best friend. Without her none of this would have been possible. iii Table of Contents Authors Declaration ...................................................................................................... i Abstract ........................................................................................................................ ii Acknowledgements ..................................................................................................... iii List of Figures ...............................................................................................................ix List of Tables .................................................................................................................xi Abbreviations .............................................................................................................. xii Chapter 1 Introduction ................................................................................................. 1 1.1 Overview ........................................................................................................ 1 1.2 Urinary incontinence ..................................................................................... 1 1.3 Urinary catheters ........................................................................................... 3 1.4 Catheter associated urinary tract infection (CAUTI) ..................................... 5 1.4.1 Biofilms ........................................................................................................ 7 1.4.2 Catheter associated mineralised biofilms ................................................. 10 1.5 Proteus mirabilis .......................................................................................... 11 1.6 Attempts at preventing catheter-associated urinary tract infection .......... 17 1.6.1 Antimicrobial coatings ............................................................................... 18 1.6.2 Modification of surface properties ............................................................ 19 1.6.3 Dietary modification .................................................................................. 21 1.6.4 Plant-based antimicrobials ........................................................................ 21 1.6.5 Iontophoresis ............................................................................................. 22 1.6.6 Enzyme inhibitors ...................................................................................... 22 1.6.7 Quorum sensing inhibitors .......................................................................
Recommended publications
  • Enzybiotics LYSSTAPH-S and LYSDERM-S As Potential Therapeutic Agents for Chronic MRSA Wound Infections
    antibiotics Article Enzybiotics LYSSTAPH-S and LYSDERM-S as Potential Therapeutic Agents for Chronic MRSA Wound Infections Lukáš Vacek 1,2 ,Šárka Kobzová 1, Richard Cmelˇ ík 3, Roman Pant ˚uˇcek 4 and Lubomír Janda 1,* 1 Clinical Immunology and Immunology of Infectious Diseases, Veterinary Research Institute, Brno, Hudcova 70, 62100 Brno, Czech Republic; [email protected] (L.V.); [email protected] (Š.K.) 2 Department of Microbiology, St. Anne’s University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Pekaˇrská 53, 65691 Brno, Czech Republic 3 Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveˇrí 97, 60200 Brno, Czech Republic; [email protected] 4 Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-533-331-344 Received: 30 June 2020; Accepted: 12 August 2020; Published: 15 August 2020 Abstract: Antibacterial antibiotic therapy has played an important role in the treatment of bacterial infections for almost a century. The increasing resistance of pathogenic bacteria to antibiotics leads to an attempt to use previously neglected antibacterial therapies. Here we provide information on the two recombinantly modified antistaphylococcal enzymes derived from lysostaphin (LYSSTAPH-S) and endolysin (LYSDERM-S) derived from kayvirus 812F1 whose target sites reside in the bacterial cell wall. LYSSTAPH-S showed a stable antimicrobial effect over 24-h testing, even in concentrations lower than 1 µg/mL across a wide variety of epidemiologically important sequence types (STs) of methicillin-resistant Staphylococcus aureus (MRSA), especially in the stationary phase of growth (status comparable to chronic infections).
    [Show full text]
  • ENZYBIOTICS Antibiotic Enzymes As Drugs and Therapeutics
    ENZYBIOTICS Antibiotic Enzymes as Drugs and Therapeutics Edited by TOMAS G. VILLA School of Biotechnology University of Santiago de Compostela and PATRICIA VEIGA-CRESPO Department of Microbiology Faculty of Pharmacy University of Santiago de Compostela A JOHN WILEY & SONS, INC., PUBLICATION ENZYBIOTICS ENZYBIOTICS Antibiotic Enzymes as Drugs and Therapeutics Edited by TOMAS G. VILLA School of Biotechnology University of Santiago de Compostela and PATRICIA VEIGA-CRESPO Department of Microbiology Faculty of Pharmacy University of Santiago de Compostela A JOHN WILEY & SONS, INC., PUBLICATION Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifi cally disclaim any implied warranties of merchantability or fi tness for a particular purpose.
    [Show full text]
  • Phibiotics: Catalogue of Therapeutic Enzybiotics, Relevant Research Studies and Practical Applications Katarina Hojckova, Matej Stano and Lubos Klucar*
    Hojckova et al. BMC Microbiology 2013, 13:53 http://www.biomedcentral.com/1471-2180/13/53 DATABASE Open Access phiBIOTICS: catalogue of therapeutic enzybiotics, relevant research studies and practical applications Katarina Hojckova, Matej Stano and Lubos Klucar* Abstract Background: The incidence of bacterial infections in humans along with the growing problem of antibiotic resistance is a major public health concern worldwide. Therefore it is necessary to develop novel therapeutic agents to control microbial pathogens. In this regard, enzybiotics, lytic enzymes endowed with the capacity to degrade bacterial cell wall, are a very promising group of alternative antimicrobials. Description: Numerous experimental studies have confirmed unique therapeutic capabilities of enzybiotics and hence they are worth of wider attention of the medical community. In order to summarize the state of current knowledge of enzybiotics, we have developed phiBIOTICS, an information portal about known and studied therapeutic enzybiotics. phiBIOTICS contains information on chemical and biological properties of enzybiotics together with compendium of facts retrieved from research studies, where enzybiotics were applied. Our auxiliary phiBiScan program utility is dedicated for prediction of novel potential enzybiotics. Conclusions: phiBIOTICS presents a solid body of knowledge about all studied therapeutic enzybiotics to date. The database brings high-value information on outcomes of applied research and pre-clinical trials of these prospective antimicrobial agents. This information which was scattered in research papers with heterogeneous quality and relevance is now available in the form of manually curated database. phiBIOTICS and phiBiScan are freely accessible at http://www.phibiotics.org/. Keywords: Enzybiotics, Database, Antimicrobial therapy, Cell wall lysis Background The concept of enzybiotics is very promising in this re- The discovery and development of antibiotics have gard [4].
    [Show full text]
  • Isolation and Characterization of Lytic Phages TSE1-3 Against Enterobacter Cloacae
    Open Life Sci. 2016; 11: 287–292 Research Article Open Access Komal Ameer Khawaja, Zaigham Abbas, Shafiq ur Rehman* Isolation and characterization of lytic phages TSE1-3 against Enterobacter cloacae DOI 10.1515/biol-2016-0038 aureus and Pseudomonas aeruginosa [1]. The E. aerogenes Received November 5, 2015; accepted August 25, 2016 and E. cloacae are among the two most common Enterobacter Abstract: The emergence of antibiotic resistant bacterial species, responsible for causing human infections (90–99% pathogens is becoming a major challenge for patient of Enterobacter infections) [2]. The Enterobacter cloacae care. The utilization of alternative therapies for infectious mainly causes urinary and respiratory tract infections. The diseases other than antibiotics is an urgent need of today majority of Enterobacter spp. are resistant to antibiotics of medical practice. The utilization of lytic bacteriophages common use and present a global clinical problem [1]. The and their gene products as therapeutic agents against Enterobacter cloacae is associated with different types of antibiotic resistant bacteria is one of the convincing outbreaks in hospital settings [3-5]. alternative approaches. Here we present the isolation The bacteriophages were first discovered by Félix and characterization of three lytic bacteriophages TSE1-3 d’Herelle in 1917 [6]. The therapeutic potential of against Enterobacter cloacae from sewage effluent. The bacteriophages in controlling the bacterial infections in isolates maintained antibacterial activity for 10 hours humans were first employed in 1919 [6]. Consequently, of incubation followed by the development of phage the anti-plague activity of bacteriophages was reported by resistance. Their stability at different temperatures and d’Herelle in 1925 [7].
    [Show full text]
  • Enzybiotics: Emerging Alternative to Biocontrol
    IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 4 Issue 12, December 2017 ISSN (Online) 2348 – 7968 | Impact Factor (2016) – 5.264 www.ijiset.com Enzybiotics: Emerging Alternative to Biocontrol Uzoechi A.U, Njoku-Obi T.N, Nnagbo P.A, Obasi C.C Dept of Microbiology, IMO State University Owerri.. ABSTRACT The discovery and development of antibiotics was one of the greatest successes of Medicine in the 20th century and allowed the control of many diseases caused by microorganisms. Nevertheless, it is necessary to search constantly for new therapeutic tools in the continuing fight against disease-causing microorganisms and this probably leads us to today’s concept of enzybiotics. Although microorganism-degrading enzymes have been known since the beginning of the last century, their use was soon forgotten because of the widespread use of antibiotics. The term enzybiotic is a hybrid word from ‘‘enzyme’’ and ‘‘antibiotic’’ and refers to phages: that is, viruses that attack and lyse bacteria and that can potentially help us to fight bacterial diseases. If the concept of enzybiotic is extended to antifungal enzymes, an enormous potential in the struggle against microorganism-due diseases may become available in the foreseeable future. Keywords: Enzybiotic; antibiotic; phage; drug therapy; drug resistance; Enzyme; protein; protein binding; biotechnology Thus, there is an urgent need to find an alternative way to address the problem in an efficient course of action. Enzybiotics Overuse and abuse of antibiotics are largely responsible for the increasing prevalence of multi-drug resistant bacteria. Hence, the reseachers have come up with new class of antibiotics-enzybiotics, with novel mechanism of action against drug-resistant pathogens.
    [Show full text]
  • PROFILE the Main Line of the Research Group at CIB Margarita
    PROFILE The main line of the Research Group at CIB Margarita Salas has focused on the pneumococcal “Choline Binding Proteins”, or CBPs. Some of these proteins are peptidoglycan hydrolases and play relevant roles in bacterial physiology. In recent years he has studied phage lytic enzymes as novel antimicrobials, also called endolysins or enzybiotics. In particular, those targeted against several bacterial respiratory pathogens, including Gram-positive pneumococcus and Gram-negative Pseudomonas aeruginosa SPEAKER Dr Pedro García González is a Research Scientist at Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC). He is head of the group “Host-parasite interplay in pneumococcal infection” at CIB. [email protected] PRODUCT Polypeptides with antibacterial activity MECHANISM OF ACTION Phage lysins, or enzybiotics, are enzymes that degrade specific bonds of the bacterial peptidoglycan, which leads to the lysis and death of the targeted bacteria. Normally, enzybiotics against Gram-positive bacteria are modular proteins that contain an enzymatically active domain, which determines the bond to be excised, and a cell wall binding domain, which recognizes the cell wall structure to be anchored. Enzybiotics against Gram-negative bacteria are usually monomodular with an enzymatic domain. Enzybiotics represent an alternative to standard antibiotics, since the target is the bacterial peptidoglycan, a well conserved polymer that acts as a protective barrier against the inner osmotic pressure. When these enzymes are exogenously added, the rapid binding to the susceptible peptidoglycan and breaking of such polymer, leads to the lysis and death of the targeted bacteria TARGET INDICATIONS The compounds are conceived against respiratory infectious diseases produced by certain Gram-negative bacteria like Pseudomonas aeruginosa, Acinetobacter baumannii and Moraxella catarrhalis, particularly against those multiresistant strains.
    [Show full text]
  • Choline Binding Proteins from Streptococcus Pneumoniae: a Dual Role As Enzybiotics and Targets for the Design of New Antimicrobials
    antibiotics Review Choline Binding Proteins from Streptococcus pneumoniae: A Dual Role as Enzybiotics and Targets for the Design of New Antimicrobials Beatriz Maestro * and Jesús M. Sanz * Instituto de Biología Molecular y Celular, Universidad Miguel Hernández. Av. Universidad s/n, Elche 03202, Spain * Correspondence: [email protected] (B.M.); [email protected] (J.M.S.); Tel.: +34-966-658-474 (B.M. & J.M.S.); Fax: +34-966-658-758 (B.M. & J.M.S.) Academic Editor: Waldemar Vollmer Received: 13 March 2016; Accepted: 16 May 2016; Published: 14 June 2016 Abstract: Streptococcus pneumoniae (pneumococcus) is an important pathogen responsible for acute invasive and non-invasive infections such as meningitis, sepsis and otitis media, being the major cause of community-acquired pneumonia. The fight against pneumococcus is currently hampered both by insufficient vaccine coverage and by rising antimicrobial resistances to traditional antibiotics, making necessary the research on novel targets. Choline binding proteins (CBPs) are a family of polypeptides found in pneumococcus and related species, as well as in some of their associated bacteriophages. They are characterized by a structural organization in two modules: a functional module (FM), and a choline-binding module (CBM) that anchors the protein to the choline residues present in the cell wall through non-covalent interactions. Pneumococcal CBPs include cell wall hydrolases, adhesins and other virulence factors, all playing relevant physiological roles for bacterial viability and virulence. Moreover, many pneumococcal phages also make use of hydrolytic CBPs to fulfill their infectivity cycle. Consequently, CBPs may play a dual role for the development of novel antipneumococcal drugs, both as targets for inhibitors of their binding to the cell wall and as active cell lytic agents (enzybiotics).
    [Show full text]
  • Enzybiotics, a New Class of Enzyme Antimicrobials Targeted Against Multidrug-Resistant Superbugs
    Mini Review Nov Appro Drug Des Dev Volume 2 Issue 4 - August 2017 Copyright © All rights are reserved by Asit Kumar Chakraborty DOI: 10.19080/NAPDD.2017.02.555592 Enzybiotics, A New Class of Enzyme Antimicrobials Targeted against Multidrug-Resistant Superbugs Asit Kumar Chakraborty* Department of Biochemistry and Biotechnology, Vidyasagar University, India Submission: August 07, 2017; Published: August 30, 2017 *Corresponding author: Asit Kumar Chakraborty, Department of Biochemistry and Biotechnology, OIST, Vidyasagar University, West Bengal, Midnapore 721102, India, Tel: ; Email: Abstract Gut microbiota with 2X1012 bacterial populations is essential for synthesis of vitamins, coenzymes and many other biomolecules in human and animal. But high dose of antibiotics destructed (since 1928) such bacteria in the alimentary tract posing a threat to extinct of human life. As a result signalling from human and bacteria orchestrated to build a defence to protect symbiotic relations saving both life forms. Bacteria synthesized hundreds of new genes (MDR Genes) to destroy antibiotics in different modes of actions. G-20 leaders and scientists have vowed a strong action plans (as assembled recently in Germany) to abolish the horror of superbugs which are claiming millions of death worldwide. Enzymes as therapeutic antibiotics has taken as emerging new antimicrobials derived from bacteriophages as well as bacteria like Staphylococcus sp., Streptococcus sp. and Histeria monocytogenes. Simply, autolysins, lysozymes, lysins and bacteriocins and genetic
    [Show full text]
  • Synthetic Biology of Modular Enzymes: from Enzymes to Enzybiotics
    SYNTHETIC BIOLOGY OF MODULAR ENZYMES: FROM ENZYMES TO ENZYBIOTICS Hans Gerstmans, Department of Applied Biosciences, Ghent University [email protected] Rob Lavigne, Department of Biosystems, Ghent University Yves Briers, Department of Applied Biosciences, Ghent University Key Words: Endolysin, enzybiotic, modular protein, domain swapping, shuffling Over the past few years antimicrobial resistance has evolved from a rare event to an everyday occurring problem in health care. The future looks even more grim due to the increase of antimicrobial resistance against antibiotics and the unprecedented discovery void of new antibiotic classes. Enzyme-based antimicrobials or enzybiotics represent a novel class of antibacterials. Specifically, endolysins encoded by bacterial viruses (bacteriophages) that degrade the peptidoglycan layer, have gained tremendous interest with many proof-of- concept studies up to clinical phase studies. Initially, native endolysins were only considered for Gram-positive bacteria as the peptidoglycan layer of Gram- negative bacteria is protected by the outer membrane. However, Gram-negative pathogens constitute the largest threat for health care given the higher extent of multi- and pan-drug resistance and lower number of recently developed antibiotics or antibiotics in the pipeline. Using enzyme engineering, we have expanded the spectrum to Gram-negative bacteria. This is achieved by fusing outer membrane permeabilizing peptides via a linker to endolysins. The peptide locally destabilizes the outer membrane and transfers the endolysin moiety across the outer membrane, followed by active peptidoglycan degradation. Exposure of Gram-negative bacteria to these engineered enzybiotics (Artilysin®s) results in a prompt, highly bactericidal effect, which has been confirmed in in vitro keratinocyte cultures and nematodes.
    [Show full text]
  • Phages for Biofilm Removal
    antibiotics Review Phages for Biofilm Removal Celia Ferriol-González 1 and Pilar Domingo-Calap 1,2,* 1 Department of Genetics, Universitat de València, 46100 Valencia, Spain; [email protected] 2 Institute for Integrative Systems Biology, I2SysBio, Universitat de València-CSIC, 46910 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-543-261 Received: 29 March 2020; Accepted: 19 May 2020; Published: 21 May 2020 Abstract: Biofilms are clusters of bacteria that live in association with surfaces. Their main characteristic is that the bacteria inside the biofilms are attached to other bacterial cells and to the surface by an extracellular polymeric matrix. Biofilms are capable of adhering to a wide variety of surfaces, both biotic and abiotic, including human tissues, medical devices, and other materials. On these surfaces, biofilms represent a major threat causing infectious diseases and economic losses. In addition, current antibiotics and common disinfectants have shown limited ability to remove biofilms adequately, and phage-based treatments are proposed as promising alternatives for biofilm eradication. This review analyzes the main advantages and challenges that phages can offer for the elimination of biofilms, as well as the most important factors to be taken into account in order to design effective phage-based treatments. Keywords: biofilm; bacteriophage; phage therapy; antibiotic resistance 1. Introduction Although bacteria are commonly found in nature as individual cells, they can also form multicellular structures called biofilms [1]. Biofilms are complex clusters of bacteria, containing one or more species. They are bound by extracellular polymeric substances (EPS) and attached to surfaces such as living tissue, medical devices, food, industrial equipment, or pipes, among others [2–5].
    [Show full text]
  • Endolysins of Bacteriophages As an Anti-Methicillin Resistant
    J Pediatr Rev. 2018 January; 6(1):e11562. doi: 10.5812/jpr.11562. Published online 2017 October 10. Review Article Endolysins of Bacteriophages as an Anti-Methicillin Resistant Staphylococcus aureus Infection in Children: A Narrative Review Golnar Rahimzadeh,1,2 Pooria Gill,3 and Mohammad Sadegh Rezai1,* 1Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, IR Iran 2Student Research Committee, Mazandaran University of Medical Sciences, Sari, IR Iran 3Nanomedicine Group, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, IR Iran *Corresponding author: Mohammad Sadegh Rezai, MD, Subspecialist of Pediatric Infectious Diseases, Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, IR Iran. Tel: +98-1133367345, Fax: +98-1133368915, E-mail: [email protected] Received 2017 March 30; Revised 2017 July 10; Accepted 2017 July 17. Abstract Context: Spread of Methicillin-resistant Staphylococcus aureus (MRSA) can cause serious and sometimes fatal diseases especially in children. Outbreaks and increasing the prevalence of antibiotic-resistant MRSA at pediatric hospital calls for the development of novel preservation techniques. Endolysins and bacteriophages have been used successfully to control bacterial infections in chil- dren. Endolysins were considered as a useful treatment especially for the pathogens without disturbing the normal flora, the low chance of bacterial resistance, and their ability to kill colonizing pathogens on mucosal surfaces. Herein, we aimed to review the effectiveness of endolysins of bacteriophage for controlling methicillin-resistant Staphylococcus aureus infections in children. Evidence Acquisition: This review was performed by searching studies indexed in international databases including PubMed, Sco- pus, Web of Science, Science Direct, as well as Google Scholar published from 2000 until 2016.
    [Show full text]
  • Viral Related Tools Against SARS-Cov-2
    viruses Review Viral Related Tools against SARS-CoV-2 1,2, 1,2, 1,2 Laura Fernandez-Garcia y , Olga Pacios y ,Mónica González-Bardanca , Lucia Blasco 1,2 , Inés Bleriot 1,2 , Antón Ambroa 1,2, María López 1,2, German Bou 1,2,3 and Maria Tomás 1,2,3,* 1 Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), 15006 A Coruña, Spain; [email protected] (L.F.-G.); [email protected] (O.P.); [email protected] (M.G.-B.); [email protected] (L.B.); [email protected] (I.B.); [email protected] (A.A.); [email protected] (M.L.); [email protected] (G.B.) 2 Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), 28003 Madrid, Spain 3 Spanish Network for the Research in Infectious Diseases (REIPI), 41071 Sevilla, Spain * Correspondence: [email protected]; Tel.: +34-981-176-399; Fax: +34-981-178-273 These authors contributed equally to this work. y Received: 18 September 2020; Accepted: 15 October 2020; Published: 16 October 2020 Abstract: At the end of 2019, a new disease appeared and spread all over the world, the COVID-19, produced by the coronavirus SARS-CoV-2. As a consequence of this worldwide health crisis, the scientific community began to redirect their knowledge and resources to fight against it. Here we summarize the recent research on viruses employed as therapy and diagnostic of COVID-19: (i) viral-vector vaccines both in clinical trials and pre-clinical phases; (ii) the use of bacteriophages to find antibodies specific to this virus and some studies of how to use the bacteriophages themselves as a treatment against viral diseases; and finally, (iii) the use of CRISPR-Cas technology both to obtain a fast precise diagnose of the patient and also the possible use of this technology as a cure.
    [Show full text]