Organic Chemistry Acronyms

Total Page:16

File Type:pdf, Size:1020Kb

Organic Chemistry Acronyms Copyright H. J. Reich 2018 ORGANIC CHEMISTRY ACRONYMS Not included: peptide protecting groups, biochemical abbreviations. Ac Acetyl (CH3C=O) acac Acetylacetonate (ligand) N N AIBN Azobis(isobutyronitrile)--radical initiator NC CN 9-BBN-H 9-Borabicyclo[3.3.1]nonane AIBN H bda Benzylidene Acetone B O O BHT Butylated hydroxy toluene (2,6-di-t-butyl-4-methylphenol) BINALH Lithium 2,2'-dihydroxy-1,1'-binaphthylethoxyaluminum hydride O O BINAP 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl 9-BBN bipy (bpy) 2,2'-bipyridyl Crown-4 BMS Borane Dimethyl Sulfide O Cl-S-NCO Boc t-Butyloxycarbonyl (COtC4H9) O O BOM Benzyloxymethyl (PhCH OCH -alcohol protection) SO H 2 2 3 CSI CSA Bs Brosylate (p-BrC6H4SO2) BSA O, N-Bistrimethylsilyl Acetamide Bz Benzoyl (caution: sometimes used for benzyl) O N(CH3)2 Bn Benzyl NC Cl BTAF Benzyltrimethylammonium Fluoride CAN Ceric Ammonium Nitrate NC Cl N O Cbz Carbobenzyloxy (BnOC=O) DMAP DDQ cod Cyclooctadiene A OAc cO COT Cyclooctatetraene I Cp Cyclopentadienyl O OAc Cp* Pentamethylcyclopentadienyl O DHP O 12-Crown-4 1,4,7,10-Tetraoxacycododecane DMP CSA Camphorsulfonic Acid CSI Chlorosulfonyl Isocyanate CTAB Cetyltrimethylammonium bromide N DA Diels-Alder Reaction N N=C=N DABCO DABCO 1,4-Diazabicyclo[2.2.2]octane DCC DAST (Diethylamino)sulfur trifluoride Et2NSF3 dba Dibenzylideneacetone N N DBN 1,5-Diazabicyclo[4.3.0]non-5-ene N N DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene DBN DBU DCA 1,9-Dicyanoanthracene H O DCC Dicyclohexyl Carbodiimide PPh2 DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone PPh O 2 O DDT 1,1-Bis(p-chlorophenyl)-2,2,2-trichloroethane H DHP de Diastereomeric excess DIOP OH DEAD(CAT) Diethyl Azodicarboxylate O OiPr O O DET Diethyl Tartrate iPrO DHP Dihydropyran (alcohol protection) OH O DIPT DMDO DIBAL (DIBAH) Diisobutylaluminum Hydride 1 Diglyme Diethylene glycol dimethyl ether - Dimsyl Methylsulfinylmethide (MeS(O)CH2 DIOP DIPT Diisopropyl tartrate diphos (dppe) 1,2-Bis(diphenylphosphino)ethane DHP Dihydropyran (O-protection) N Me N DMAc N,N-Dimethylacetamide (solvent) N N 2 C DMAD Dimethyl Acetylenedicarboxylate O N DMPU EDCI DMAP 4-Dimethylaminopyridine (base catalyst) CO CO DMDO Dimethyldioxirane Fe DME 1,2-Dimethoxyethane (glyme, solvent) Fp DMF Dimethylformamide (solvent) DMP Dess-Martin Periodinane .O CH O DMPU N,N'-Dimethyl-N,N'-propylene urea DMSO Dimethyl Sulfoxide (solvent) Galvinoxyl N DMSO2 Dimethyl Sulfone NMe2 N O=P + NMe DMTSF Dimethyl(methylthio)sulfonium tetrafluoroborate X N N 2 NMe2 O DNP Dinitrophenylhydrazine HMPA N HATU (X = N) DNPBA 2,4-Dinitroperbenzoic acid HBTU (X = CH) dppb 1,4-Bis(diphenylphosphino)butane dppe (diphos) 1,2-Bis(diphenylphosphino)ethane dppf Bis(diphenylphosphino)ferrocene N OH dppp 1,3-Bis(diphenylphosphino)propane N I E Entgegen (opposite, trans) N O E Methoxycarbonyl CO CH 2 3 HBT OH O EDCI Ethyl Dimethylaminopropyl Carbodiimide O EDTA Ethylenediaminetetraacetic acid IBX ee Enantiomeric Excess EE 1-Ethoxyethoxy (alcohol protection) )2 BH en Ethylene Diamine FC Friedel-Crafts Reaction Ipc2BH Fmoc 9-Fluorenylmethoxycarbonyl Fp Cyclopentadienyldicarbonylferrate Glyme 1,2-Dimethoxyethane Galvinoxyl Radical trap HATU HBT Hydroxybenzotriazole HMDS Hexamethyldisilazide (Me3Si)2NH HMPA,HMPT Hexamethylphosphorictriamide (solvent, cosolvent) HOBT Hydroxybenzotriazole HSAB Hard-Acid-Soft-Base IBX o-Iodoxybenzoic acid Im Imidazolyl S Ipc BH Bisisopinocampheylborane S 2 MeO P P OMe KDA Potassium Diisopropylamide S S Lawesson LAH Lithium Aluminum Hydride (LiAlH4) Lawesson 2 LDA Lithium Diisopropylamide LDMAN Lithium N,N-Dimethylaminonaphthalenide LFER Linear Free Energy Relationship LHMDS Lithium Hexamethyldisilazide (LiN(SiMe3)2) LICA Lithium N-isopropylcyclohexylamide LICKOR Lithium-potassium alkoxide reagents LIDBB Lithium 4,4'-di-t-butylbiphenylide LiTMP Lithium Tetramethylpiperidide LI+ LTA Lead Tetraacetate (Pb(OAc)4) MA Maleic Anhydride Mander Reag LiDBB MCPBA meta-Chloroperoxybenzoic Acid MEM $-Methoxyethoxymethyl (CH OCH CH O-CH -) 3 2 2 2 Li N Mes Mesityl (2,4,6-trimethylphenyl) N Li MOM Methoxymethyl (CH3OCH2-, alcohol protection). LDA LiTMP MoOPH MoO5@Py@HMPA (oxidizing agent) N Li+ O Ms Methanesulfonyl (Mesyl, CH3SO2) MTPA "-Methoxy-"-trifluoromethylphenylacetic acid (Mosher) MeO CN Mander reagent MTM Methylthiomethyl CH3-S-CH2- (alcohol protection) LDMAN MVK Methyl Vinyl Ketone (3-Butene-2-one) NBA N-Bromoacetamide NBS, NCS N-Bromo, N-Chlorosuccinimide Nf Nonaflate (C F SO ) 4 9 2 Cl O O O NIS N-Iodosuccinimide OOH Mo NMO N-Methylmorpholine-N-oxide O O O Py OP(NMe2)3 NMP N-Methylpyrrolidone; solvent MCPBA MoOPH Ns p-Nitrobenzenesulfonyl PBB, PCB Polybrominated, Polychlorinated Biphenyls PCC Pyridinium chlorochromate PDC Pyridinium dichromate O O O PG Prostaglandins N N CH phen 1,10-Phenanthroline Br 3 NMP PhthN Phthalimido NBS PMDTA N,N,N',N'',N''-pentamethyldiethylenetriamine N N N PMB p-Methoxybenzyl N+ - Cl-CrO3 PMDTA H PMP p-Methoxyphenyl PCC PNB para-Nitrobenzoate PPA Polyphosphoric Acid O PPTS Pyridinium p-Toluenesulfonate Ph2P N t PTAD N-Phenyl-1,2,4-triazolinedione PHOX Bu PTC Phase Transfer Catalyst O Cl Me3Si Piv Pivaloyl SEM-Cl Py Pyridine; Solvent, base, catalyst RT Room Temperature SEM 2-Trimethylsilylethoxymethoxy (alcohol protection) SES Trimethylsilylethylsulfonyl (amine prot. SO2CH2CH2SiMe3) Sia2BH Disiamylborane (Me2CHMeCH)2BH 3 TASF Tris(dimethylamino)sulfonium difluorotrimethylsilicate TBAF Tetra-n-butylammonium fluoride TBDMS t-Butyldimethylsilyl (alcohol protection) TBDPS t-Butyldiphenylsilyl (alcohol protection) F Me Me2N + NMe2 TBHP t-Butylhydroperoxide Si Me S Me NMe TBS t-Butyldimethylsilyl (also TBDMS) F TASF 2 TCE 2,2,2-Trichloroethyl (alcohol, acid protection) NC CN TCNE Tetracyanoethylene N TCNQ 7,7,8,8-Tetracyanoquinodimethane O TEA Triethylamine TEMPO NC CN Tebbe N N TCNQ TEMPO Tetramethylpiperidinyloxy TMEDA TES Triethylsilyl CH2 CH3 Al Tf Triflate (CF3SO2) Ti Cl CH TFA Trifluoroacetic(yl) 3 Tebbe Thexyl Me2CHMe2C- THF Tetrahydrofuran; solvent N N THP Tetrahydropyran (alcohol protecting group) N TIPS Triisopropylsilyl (alcohol protection) TMTAN TMEDA N,N,N',N'-Tetramethylethylenediamine O O C TMTAN 1,4,7-trimethyl-1,4,7-tetraazanonane S N TMS Tetramethylsilane, also Trimethylsilyl TOSMIC TMSI Trimethylsilyl Iodide Tol p-Tolyl TOSMIC p-Toluenesulfonylmethylisocyanide TPAP Tetra-n-propylammonium Perruthenate TPP meso-Tetraphenylporphyrin TRIS Tris(hydroxymethyl)aminomethane (buffer) Trityl Triphenylmethyl Troc Trichloroethyloxycarbonyl (CCl3CH2OC(O)-) Ts Tosyl (p-CH3C6H4SO2) TTN Thallium Trinitrate WK Wolff-Kishner Reduction Z Zusammen (together, cis) 4.
Recommended publications
  • (12) United States Patent DX
    USOO7300.953B2 (12) United States Patent (10) Patent No.: US 7,300,953 B2 Nishino et al. (45) Date of Patent: Nov. 27, 2007 (54) PROCESS FOR PREPARING NITRILE JP 54-122220 A 9, 1979 COMPOUND, CARBOXYLIC ACID JP 59-51251. A 3, 1984 COMPOUND OR CARBOXYLIC ACID JP 8-5O1299. A 2, 1996 ESTER COMPOUND JP 200O281672 A * 10, 2000 WO WO-94/05639 A1 3, 1994 (75) Inventors: Shigeyoshi Nishino, Ube (JP); Kenji Hirotsu, Ube (JP); Hidetaka Shima, OTHER PUBLICATIONS Ube (JP); Keiji Iwamoto, Ube (JP); Lawerence I. Kruse et al., J. Med. Chem. 1990, vol. 33, No. 2, pp. Takashi Harada, Ube (JP) T81 to 789. Christoph Strassier et al., Helvetica Chimica Acta, vol. 80, pp. 1528 (73) Assignee: Ube Industries, Ltd, Ube-shi (JP) to 1554, 1997. (*) Notice: Subject to any disclaimer, the term of this * cited by examiner patent is extended or adjusted under 35 Primary Examiner Kamal A. Saeed U.S.C. 154(b) by 0 days. Assistant Examiner Shawquia Young (74) Attorney, Agent, or Firm—Birch, Stewart, Kolasch & (21) Appl. No.: 10/572,373 Birch, LLP (22) PCT Filed: Sep. 17, 2004 (57) ABSTRACT PCT/UP2004/O13626 (86). PCT No.: The present invention discloses a process for preparing a S 371 (c)(1), nitrile compound, a carboxylic acid compound or a carboxy (2), (4) Date: Mar. 16, 2006 lic acid ester compound represented by the formula (2): (87) PCT Pub. No.: WO2005/0284.10 (2) PCT Pub. Date: Mar. 31, 2005 R (65) Prior Publication Data R 1. R2 US 2006/0287541 A1 Dec.
    [Show full text]
  • Cationic Oligomerization of Ethylene Oxide
    Polymer Journal, Vol. 15, No. 12, pp 883-889 (1983) Cationic Oligomerization of Ethylene Oxide Shiro KOBAYASHI, Takatoshi KOBAYASHI, and Takeo SAEGUSA Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan (Received July 29, 1983) ABSTRACT: The oligomerization of ethylene oxide (EO) was investigated with several cationic catalysts to find a method for producing cyclic oligomers (crown ethers). The reactions were monitored by NMR spectroscopy (1 H and 19F) and gas chromatography. The composition of oligomers was found to change during the reactions, and the production of 1,4-dioxane increased at the later stage of the reactions. This indicates that the composition of oligomers is kinetically controlled. The formation of higher cyclic oligomers was favored by the addition of tetrahydro­ pyran or 1,4-dioxane to the system catalyzed by an oxonium salt; the maximum yield of cyclic tetramer was 16.8%. The effect of alkali metal salts was also examined. A template effect was observed to increase the amount of cyclic oligomer production. KEY WORDS Cationic Oligomerization I Ethylene Oxide I Cyclic Oligomers I Crown Ether I Kinetically Controlled Reaction I Additive Effects of Metal Salts I Template Effect I An extensive study was recently carried out on EXPERIMENTAL the cationic. polymerization of heterocyclic mono­ mers which, it was found, may lead to polymers Materials containing significant amounts of linear and cyclic All reagents were distilled under nitrogen. A oligomers.1 The most thoroughly studied monomer commercial sample of EO was distilled twice. was ethylene oxide (EO). Eastham et a!. observed Tetrahydropyran (THP) and DON were dried with that the cationic polymerization of EO resulted in sodium metal and distilled.
    [Show full text]
  • Dulaneyspr15.Pdf (409.1Kb)
    Adventures in Organophosphorus Chemistry James W. Dulaney, III (Faculty Mentor: David E. Lewis) Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, WI 54702-4004 Background Challenges with the Mitsunobu reaction What is required in a replacement to make the reaction Azodicarboxylates, an important component of the re- “green”? Organophosphorus compounds have been an increasingly important part of organic synthesis since the discovery action, are very hazardous: of the Arbuzov rearrangement in 1905. In the century that followed this discovery, the applications of phosphorus- O Green? based reagents in synthesis has grown to incorporate the Wittig and Horner-Wadsworth-Emmons reactions for OEt • They are highly explosive (especially diethyl azodi- N alkene formation, as well as the Mitsunobu inversion reaction, which is used to convert alcohols to a wide range carboxylate). N Green reactions are run under more environmentally sustainable conditions with a view to of products with inversion of configuration. O minimizing environmental impact: • They are highly toxic (especially diethyl azodicar- OEt boxylate). diethyl azodicarboxylate • They are highly regulated. (DEAD) • Wherever possible, renewable sources are used • Wherever possible, hazardous materials are eliminated completely or replaced by The Wittig reaction Ph Ph Ph BuLi Ph less hazardous materials P R P R Regulations have been put into place by the DOT that O Ph Ph O-i-Pr • Wherever possibler, catalytic reactions are used Reaction between an ylide and an aldehyde or ketone to give an alkene. make azodicarboxylic esters even more difficult to ob- N • Hazardous waste is minimized wherever possible (e.g. organic solvents can be re- Reaction gives mainly the Z isomer with aldehydes O tain and use.
    [Show full text]
  • United States Patent (19) 11) 4,448,977 Warner Et Al
    United States Patent (19) 11) 4,448,977 Warner et al. 45 May 15, 1984 54 STABLIZED ACETALACD (56) References Cited COMPOSITIONS U.S. PATENT DOCUMENTS 75 Inventors: Glenn H. Warner, St. Albans; Louis 2,546,018 3/1951 Smith et al. ......................... 549/417 F. Theiling, Jr., Charleston, both of 2,801,216 7/1957 Yoder et al. ........................ 549/47 W. Va.; Marvin G. Freid, Putnam 3,023,243 2/1962 Stansbury et al. .................. 549/416 Valley, N.Y. OTHER PUBLICATIONS Assignee: (73) Union Carbide Corporation, Harries, C. and Tank, L., Chem. Ber. 41, 1701 (1908). Danbury, Conn. Mutterer, F., Morgen, J., Biedermann, J., Fleury, J. and 21) Appl. No.: 411,620 Weiss, R., Bull. Soc. Chim. France, No. 12, 4478-4486 (1969). 22 Filed: Aug. 26, 1982 Kankaanpera, K., Acta. Chem. Scan. 23, 1465-1470 (1969). Related U.S. Application Data Primary Examiner-Nicky Chan 63 Continuation-in-part of Ser. No. 178,133, Aug. 14, 1980, abandoned, which is a continuation of Ser. No. Attorney, Agent, or Firm-Gerald L. Coon; Henry H. 961,714, Nov. 17, 1978, Pat. No. 4,244,876. Gibson 51 Int. Cl. .................... CO7D 309/06; CO7C 41/46; 57 ABSTRACT CO7C47/198 A storage stable composition of glutaraldehyde acetals (52) U.S. C. .................................... 549/201; 568/421; and an organic acidic catalyst, which can be converted 568/581; 568/465; 568/483; 568/486; 252/855 to glutaraldehyde at the site and upon demand, by the addition of water. (58 Field of Search ................ 549/201, 417; 568/421, 568/581, 582, 496, 497,600, 603 9 Claims, No Drawings 4,448,977 2 wherein R has a value of from 1 to 6, preferably from 1 STABLIZED ACETALACID COMPOSITIONS to 3, will produce a mixture of the corresponding 2,6- dialkoxy-tetrahydropyran, dialkoxypentanal and This application is a continuation-in-part of applica 1,1,5,5-tetraalkoxy-pentane; which mixture can be sub tion Ser.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Biodegradation of 1,4
    UNIVERSITY OF CALIFORNIA Los Angeles Biodegradation of 1,4-Dioxane in Co-Contaminant Mixtures A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Civil Engineering by Shu Zhang 2017 © Copyright by Shu Zhang 2017 ABSTRACT OF THE DISSERTATION Biodegradation of 1,4-Dioxane in Co-Contaminant Mixtures by Shu Zhang Doctor of Philosophy in Civil Engineering University of California, Los Angeles, 2017 Professor Shaily Mahendra, Chair Bioremediation is a promising technology to degrade or detoxify various organic and inorganic compounds in polluted environments by using microbiological activity, but it is sensitive to biogeochemical conditions as well as co-occuring compounds at impacted sites. This study focused on biodegradation of 1,4-dioxane, which is a carcinogen and an emerging water contaminant. 1,4-Dioxane was utilized as a stabilizer of chlorinated solvents, such as 1,1,1- trichloroethane (TCA); and it has been found widespread in groundwater. Many US states are implementing lower regulatory advisory levels based on the toxicity profile of 1,4-dioxane and the potential public health risks. However, the unique chemical properties of 1,4-dioxane, such as high water solubility, low Henry’s law constant, and importantly, the co-occurrence with chlorinated solvents and other contaminants, increase the challenges to efficiently cleanup 1,4- ii dioxane contaminations. The objectives of this research were to measure and model the effects of chlorinated solvents on 1,4-dioxane metabolic biodegradation by laboratory pure cultures, elucidate the mechanisms of the inhibition, and test the effects of mixtures of co-contaminants in samples collected from actual 1,4-dioxane contaminated sites.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • Boronic Acids
    Boronic Acids Boronic Acids www.alfa.com INCLUDING: • Boronic Esters • Oxazaborolidine Reagents • Coupling and Hydroboration Catalysts • Phosphine Ligands • Borylation Reagents www.alfa.com Where Science Meets Service Quality Boronic Acids from Alfa Aesar Alfa Aesar is known worldwide for a variety of chemical compounds used in research and development. Recognized for purity and quality, our products and brands are backed by technical and sales teams dedicated to providing you the best service possible. In this catalog, you will find details on our line of boronic acids, esters and related compounds, which are manufactured to the same exacting standards as our full offering of over 33,000 products. Also included in this catalog is a 28-page introduction to boronic acids, their properties and applications. This catalog contains only a selection of our wide range of chemicals and materials. Also included is a selection of novel coupling catalysts and ligands. Many more products, including high purity metals, analytical products, and labware are available in our main catalog or online at www.alfa.com. Table of Contents About Us _____________________________________________________________________________ II How to Order/General Information ____________________________________________________ III Introduction __________________________________________________________________________ 1 Alkenylboronic acids and esters _____________________________________________________ 29 Alkylboronic acids and esters ________________________________________________________
    [Show full text]
  • Complexes Ivan Habuš, Zlata Raza, and Vitomir Šunjić*
    CROATICA CHEMICA ACTA CCACAA 61 (4) 857-866 (1988) OriginaL ScientiJic Paper CCA-1833 UDC 54.05 YU ISSN 0011-1643 Preparation of Chiral Diphenylphosphines from D-Glucose and Enantioselective Hydrogenation with Their Rh(l) Complexes Ivan Habuš, ZLata Raza, and Vitomir Šunjić* Rudjer Bošković Institute, Department of Organic Chemistry and Biochemistry, P.O.B. 1016, 41001 Zagreb, YugosLavia Received DecembeR 7, 1987 (2R,3S)-2-MethYlsulfonyloXYmeihyl-3-meThYlSulfonYloXY-teTRa- hydropyran (4), derived from n-glucose, is diphenYlphoSphinated to (2R,3R)-2-diphenYlphosphinomethyl-3-diphenYlphosphino-tetrahy- dropyran (7), which is formed as aminor prodUcT. Compound 8 iS the predominant prodUct, formed on 3,4-elimination. PrepaRation and characteRization of The rhodium(I) complexes 10-12 iS deS- cribed. Complex 10 of bidentate Iigand 7 exhibits in hYdrogenation of Z-a-N-acetylaminocinnamic acid enanTioselecTiviTY comparable To That obtained with Rhodium(I) complex of (-)-DIOP (-70010e. e.). SaTUrated monophosphine, (2S)-2-diphenYlphoSphinomethYl-tetra- hYdropYran (9) affords mixed Rhodium(I) compleX (11, 12), Which exhibits low enantioselectiViTY. INTRODUCTION The aSYmmetric catalYTic hYdRogenation of prochiRal alefinS conSTituteS one of The most impressive achieVements to date in catalYtic SelectiviTY. Many RevieWS on thiS topic are available.v? PreviouSlY, we investigated The homo- geneaUS catalytic hYdrogenation of VariouS pRochiral SUbStrates, caTalyzed bY Same known ar neWlY developed Rhodium(I) complexeS of chiral diphe- nylphosphines ar diphenylphoSphinites.š -! We wiSh to describe here The investigation of preparation and enantioselective hydrogenation with chiral diphenYlphoSphines derived from D-glucose, the most widespread monosaccha- ride in nature. These resUlts are of interest in view of The knoWn difficulTieS encountered by others in preparatian of bis-diphenYlphosphineS derived from cyclic diols bY nucleophilic SUbstitution of TheiR activated esteRS, usuaUY TosylaTes ar mesylaTes.
    [Show full text]
  • A Study of the Solvolysis Reactions of Tetrahydrofurfuryl Tosylate
    Illinois Wesleyan University Digital Commons @ IWU Honors Projects Chemistry 4-25-2000 A Study of the Solvolysis Reactions of Tetrahydrofurfuryl Tosylate Rebecca Centko '00 Illinois Wesleyan University Follow this and additional works at: https://digitalcommons.iwu.edu/chem_honproj Part of the Chemistry Commons Recommended Citation Centko '00, Rebecca, "A Study of the Solvolysis Reactions of Tetrahydrofurfuryl Tosylate" (2000). Honors Projects. 32. https://digitalcommons.iwu.edu/chem_honproj/32 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact [email protected]. ©Copyright is owned by the author of this document. A Study of The Solvolysis Reactions of Tetrahydrofurfuryl Tosylate Rebecca Centko Advisor: Dr. Ram S. Mohan Chemistry Research Honors Thesis Illinois Wesleyan University April 25,2000 Approval Page A Study of The Solvolysis Reactions of Tetrahydrofurfurfyl Tosylate BY Rebecca Centko A PAPER SUBMITTED AS PART OF THE REQUIREMENT FOR RESEARCH HONORS IN CHEMISTRY Approved: Ram S. Mohan, Ph. D., Research Advisor Illinois Wesleyan University, 1999-2000 Acknowledgements I would like to thank Dr. Ram S. Mohan for the opportunity to work with him and for the countless hours that he has spent with me working on this project.
    [Show full text]
  • Organic Synthesis Using Carbon Dioxide As Phosgene-Free Carbonyl Reagent*
    Pure Appl. Chem., Vol. 84, No. 3, pp. 581–602, 2012. http://dx.doi.org/10.1351/PAC-CON-11-05-04 © 2011 IUPAC, Publication date (Web): 1 September 2011 Organic synthesis using carbon dioxide as phosgene-free carbonyl reagent* An-Hua Liu, Yu-Nong Li, and Liang-Nian He‡ State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China Abstract:CO2 is very attractive as a typical renewable feedstock for manufacturing com- modity chemicals, fuel, and materials since it is an abundant, nontoxic, nonflammable, and easily available C1 resource. The development of greener chemical methodologies for replac- ing the utility of hazardous and environmentally undesirable phosgene largely relies on ingenious activation and incorporation of CO2 into valuable compounds, which is of para- mount importance from a standpoint of green chemistry and sustainable development. Great efforts have been devoted to constructing C–C, C–O, and C–N bond on the basis of CO2 acti- vation through molecular catalysis owing to its kinetic and thermodynamic stability. The aim of this article is to demonstrate the versatile use of CO2 in organic synthesis as the alterna- tive carbonyl source of phosgene, with the main focus on utilization of CO2 as phosgene replacement for the synthesis of value-added compounds such as cyclic carbonates, oxa - zolidinones, ureas, isocyanates, and polymers, affording greener pathways for future chemi- cal processes. Keywords: atom economy; aziridines; carbon dioxide; carbonylation; catalysis; green chemistry; ionic liquids; organic carbonate; phosgene-free process; urea. INTRODUCTION CO2 as an abundant, nontoxic, easily available, and typical renewable C1 source as well as an impor- tant “greenhouse” gas has been drawing more and more attention in line with the need for development of green chemistry and a sustainable society.
    [Show full text]
  • Diethyl Azodicarboxylate, Conventionally Abbreviated As DEAD and Sometimes As DEADCAT, Is an Organic Compound with the Structural Formula
    DBU • 1,5-Diazabicyclo[5.4.0]undec-7-ene, or more commonly DBU, is a chemical compound and belongs to the class of amidine compounds. • It is used in organic synthesis as a catalyst, a complexing ligand, and a non-nucleophilic base. • . It is also used as a curing agent for epoxy. • It is used in fullerene purification with trimethylbenzene (it reacts with C 70 and higher fullerenes, but not to C 60 fullerenes) • It is also used as a catalyst in polyurethane production. • It has a strong catalyst effect for the reactions of alicyclic and aliphatic isocyanates. • It also exhibited its dual character (base and nucleophile) in the synthesis of aryl- and styryl-terminal acetylenes. DEAD • Diethyl azodicarboxylate, conventionally abbreviated as DEAD and sometimes as DEADCAT, is an organic compound with the structural formula CH3CH2O2CN=NCO2CH2CH3. Its molecular structure consists of a central azo functional group, RN=NR, flanked by two ethyl ester groups. • It is an oxidising agent • This orange-red liquid is a valuable reagent but also quite dangerous and explodes upon heating. • Therefore, commercial shipment of pure diethyl azodicarboxylate is prohibited in the United States and is carried out either in solution or on polystyrene particles. • DEAD is an aza-dienophile and an efficient dehydrogenating agent, converting alcohols to aldehydes, thiols to disulfides and hydrazo groups to azo groups; it is also a good electron acceptor. • DEAD dissolves in most common organic solvents, such as toluene, chloroform, ethanol, tetrahydrofuran and dichloromethane but has low solubility in water or carbon tetrachloride; the solubility in water is higher for the related azo compound dimethyl azodicarboxylate.
    [Show full text]
  • Dimethyldioxirane in TCF Bleaching Sequences
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 4-1999 Dimethyldioxirane in TCF Bleaching Sequences Nayereh Mahdavi Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Wood Science and Pulp, Paper Technology Commons Recommended Citation Mahdavi, Nayereh, "Dimethyldioxirane in TCF Bleaching Sequences" (1999). Master's Theses. 4934. https://scholarworks.wmich.edu/masters_theses/4934 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. DIMETHYLDIOXIRANE IN TCF BLEACHING SEQUENCES by Nayereh Mahdavi A Thesis Submitted to the Faculty of The Graduate College in partial fulfilmentof the requirements forthe Degree of Master of Science Department of Paper and Printing Science and Engineering Western Michigan University Kalamazoo, Michigan April 1999 Copyright by Nayereh Mahdavi 1999 ACKNOWLEDGEMENTS I thank gratefullyDr. Raja Aravamuthan, my advisor and committee chairperson, forhis valuable guidance, and his continuous support, encouragement, and advice. I also wish to thank my committee member Dr. Peterson. I thank the NCASI and pilot plant fortheir assistance and forthe privilege of using their resources. I also wish to thank the Consolidated Paper Company forproviding the pulp formy research. My familyand friends have been my best support. I am deeply gratefulto each of them, especially to Mehdi, Lori, and Barbara. I would like to dedicate my thesis to my late mother for her loving, sensitive support, and continuing involvement in my lifeand education.
    [Show full text]