The Fading of Basic Dyes in Polymer Substrates

Total Page:16

File Type:pdf, Size:1020Kb

The Fading of Basic Dyes in Polymer Substrates THE FADING OF BASIC DYES IN POLYMER SUBSTRATES A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY AT THE UNIVERSITY OF NEW SOUTH WALES BY SUSAN ELIZABETH MATTHEWS ·ft. SCHOOL OF TEXTILE TECHNOLOGY · ···JONE .. 1980 i I hereby certify that the work described in this thesis was performed by me in the School of Textile Technology, The University of New South Wales, and has not been submitted previously for any other degree or award. ii ACKNOWLEDGEMENTS I wish to express my sincere thanks to my supervisors, Associate Professor C.H. Nicholls and Dr. M.T. Pailthorpe, for their guidance and support throughout the course of this work. I thank my colleagues and friends for their continued encouragement and interest. I also thank my friend Anne for the typing and presentation of this thesis. Finally, I particularly thank my fiance, Paul, for his invaluable support during this time. iii ABSTRACT The reasons for the higher lightfastness of basic dyes on acrylic substrates compared to other substrates were investigated. Acrylic, nylon and poly(vinyl alcohol) substrates in film and fibre form were dyed and irradiated in order to study this phenomenon directly in the solid state. It was found that there is a difference in the initial quantum yields of dye fading of at least two orders of magnitude between the acrylic and the non-acrylic fibres. Temperature studies indicated that the high rigidity of acrylic polymers, by virtue of their inherently compact structures and their high glass transition temperatures, contributes significantly to the high lightfastness of basic dyes present in them. This is postulated to be due to the relative inhibition of movement in the polymer, which affects both diffusional and conformational processes that are involved in the fading reactions. Oxygen and moisture were found to have little effect on basic dye fading. Very little difference could be found between the rate of fading of dyes bound to sulphonate and carboxylate dye sites of the same pKa. However, the presence of acid caused a significant reduction in the rate of dye fading which appears to indicate that the pK of the dye site affects a basic dye fading. This pH effect on dye fading rates suggests that electron transfer from substrate to dye could contribute iv to the dye degradation. Thus the reduced fading in acrylics might be attributed in part to their being poor electron donors compared with other substrates studied. The presence of -1% cyano groups in an inert substrate was found to significantly reduce basic dye fading, with the effect increasing with an increased cyano concen­ tration of -8%. Since cyano groups comprise approximately 50% by weight of an acrylic polymer this effect would appear to be the single most important factor contributing to the high lightfastness of basic dyes present in them. It was postulated that the formation of an excited complex between the excited dye molecule and one or more cyano groups would either inhibit the usual fading reactions or facilitate deactivation of the excited dye molecule. V CONTENTS DECLARATION i ACKNOWLEDGEMENTS ii ABSTRACT iii CONTENTS V CHAPTER 1 INTRODUCTION 1.1 Preamble 1 1.2 Photochemical Principles 2 1.2.1 Excited States 4 1.2.2 Photophysical Decay Pathways 5 1.2.3 Photochemical Decay Pathways 6 1.3 The Photochemistry of Dyes 9 1.3.1 Typical Photochemical Reactions of Dyes 10 1.3.1.1 Azo Dyes 11 1.3.1.2 Anthraquinone Dyes 15 1.3.1.3 Triphenylmethane Dyes 18 1. 4 Factors Influencing Dye Fading 22 1.4.1 Intensity and Spectral Distribution of Radiation 22 1. 4 .2 The Physical State of the Dye 24 1.4.3 The Nature of the Substrate 26 1.4.4 The Dye-Fibre Bond 29 1.4.5 Oxygen 30 1.4.6 Moisture 31 1.4.7 Temperature 33 1.5 Scope of Present Work 35 vi CHAPTER 2 QUANTUM YIELDS OF BASIC DYE FADING 2.1 Introduction 41 2.2 Fabrics 42 2.2.1 Acrilan 16 42 2.2.2 Nylon 6.6 43 2.2.3 Basic-Dyeable Nylon 43 2.2.4 Chemical Compositions 43 2.3 Dyes 44 2.4 Dyeing Methods 45 2.4.1 Acrilan 16 46 2.4.2 Nylon 6.6 47 2.4.3 Basic-Dyeable Nylon 47 2.5 Determination of Dye Concentration 48 2.6 Irradiation Technique 51 2.6.1 Calibration of Incident Light Intensity 52 2.7 Determination of Initial Quantum Yields of Basic Dye Fading 57 2.7.1 Measurement of Fading Rates 57 2.7.2 Determination of Quanta Absorbed by Dye 59 2.7.3 Calculation of Initial Quantum Yields of Basic Dye Fading 60 CHAPTER 3 THE EFFECT OF THE PHYSICAL STATE OF THE SUBSTRATE ON BASIC DYE FADING 3.1 Introduction 64 3.2 Polymer Film Preparation 65 3.2.1 Nylon 6 66 3.2.2 Poly(vinyl alcohol) 66 3.2.3 Acrilan 16 67 vii 3.3 Measurement of Glass Transition Temperatures 69 3.3.l Experimental Technique 70 3.3.2 Results 72 3.4 Irradiation Technique 74 3.4.1 Method of Mounting and Heating the Film Sample 74 3.4.2 Method of Irradiation 76 3.5 Determination of the Initial Quantum Yields of Basic Dye Fading 77 3.5.1 Measurement of Fading Rates 77 3.5.2 Measurement of Quanta Absorbed 81 3.5.3 Calculation of the Initial Quantum Yields of Dye Fading 83 3.6 Experimental Results 83 3.6.1 The Effect of Temperature 84 3.6.2 The Effect of Oxygen and Moisture 90 CHAPTER 4 THE INFLUENCE OF THE CHEMICAL NATURE OF THE SUBSTRATE ON THE FADING OF BASIC DYES 4.1 Introduction 96 4.2 Irradiation Technique 97 4.3 The Identification of Reaction Intermediates in Basic Dye Fading 98 4.3.1 The Use of Scavenging and Quenching Agents 98 4.3.1.1 Excited State Quenching 99 4.3.1.2 Electron and Radical Scavenging 99 4.3.1.3 Experimental Technique 100 4.3.1.4 Results 102 4.3.2 Luminescence Studies 104 viii 4.4 The Influence of Dye Sites on Basic Dye Fading 104 4.4.1 Experimental Technique 105 4.4.2 Results 106 4.5 The Influence of the Cyano Group on Basic Dye Fading 109 4.5.1 Experimental Technique 109 4.5.2 Results 111 CHAPTER 5 CONCLUSION 114 REFERENCES 120 1 CHAPTER l INTRODUCTION 1.1 Preamble The fading of dyed materials by light, or photo­ fading, refers to the loss of colour or change of hue of the dye caused by its exposure to light. Being of obvious commercial interest in relation to the durability of dyed fabrics, such phenomena have long been the subject of investigation. References 1 to 8 give reviews of this research. There are, however, still vast areas of the subject about which relatively little is known. This is due to the extremely complex nature of the photochemistry of such dye­ fibre systems and the number of different variables which can influence it. Further, as the concentration of dyes on fabrics is usually very low (no more than -3%) and because fading reactions have low quantum yields and occur only at the surface of the fabric only small yields of decomposition products are obtained. Consequently isolation and identification of these products is so tedious that other less direct methods have to be used to establish the mode of reaction. In addition, the reaction sequence of fading may be so complex that identification of the final products may not shed much light on the preceding reactions. Model systems using organic solutions instead of solid substrates and simple instead of the more complex dyes have been used to simplify the systems and much information has 2 been gained in this way. However, great care must be taken in this respect as it is not always possible to apply such results directly to solid substrates. The fading behaviour may not necessarily be the same in the two environments due to differing physical and/or chemical effects. The aim of the present work was to elucidate some aspects of the fading behaviour of one class of dyes in which large differences in lightfastness properties are found between different fibre substrates. Solid substrates in the form of transparent polymer films and fabrics were used in order to study the problem directly and avoid the interpretation difficulties of solution models. 1.2 Photochemical Principles The first step in a photochemical process is the absorption of light by a molecule. This causes an electron to be promoted from its lowest energy level or ground state to a higher energy level or "excited" state. This can be represented by D + hv ~D.* A molecule in this excited state is much more reactive than in its ground state having more energy, a different electron distribution and different molecular geometry. Consequently photochemical reactions of various types, often unusual in ordinary "thermal" reactions, can occur readily. The lifetime of this reactive excited state is critical in determining whether or not a photochemical reaction, leading to dye fading, will occur. The longer the molecule remains in its excited state the greater the 3 probability of such a reaction occurring. There are numerous alternative deactivation pathways by which the molecule can return to its ground state without any chemical change taking place and therefore the relative rates of these "photophysical" processes compared with the "photo­ chemical" processes will determine the rate at which the dye will fade. The initial processes involving the electronically excited molecule are known as the primary photochemical and photophysical processes.
Recommended publications
  • Ozone and the Deterioration of Works of Art
    .. ENVI RONHENTAL SCIENCE AND TECHNOLOGY A-129 OZONE AND THE DETERIORATION OF WORKS OF ART Cynthia L. Shaver and Glen R. Cass * Environmental Engineering Science Department and Environmental Quality Laboratory California Institute of Technology Pasadena, California 91125 James R. Druzik Conservation Center Los Angeles County Museum of Art Los Angeles, California 90036 ABSTRACT Seventeen artists' watercolor pigment samples and two Japanese woodblock prints were exposed to 0.40 ppm ozone in a controlled test chamber for three months. It was found that several artists' pigments when applied on paper will fade in the absence of light if exposed to an atmosphere containing ozone at the concentrations found in photochemical smog. Alizarin-based watercolors containing 1,2 dihydroxyanthraquinone lake pigments were shown to be particularly sensitive to ozone damage, as were the yellow pigments used in the Japanese woodblock prints tested. Indoor-outdoor ozone monitoring in a Pasadena, CA art gallery confirmed that ozone concentrations half as high as those outdoors can be found in art galleries that lack a chemically protected air conditioning system. Care should be taken to protect works of art from damage due to photochemical smog. Introduction The fading of pigments 1s a major hazard to works of art. Poor lightfastness usually is blamed, a process in which photochemical oxidation of the pigments occurs involving both light and oxygen (1-4). Short of encasing art objects in hermetically sealed inert atmospheres, the customary response has been to reduce lighting levels in museums and to restrict the display of light-sensitive artwork. Ozone, an oxidant much stronger than oxygen, is formed by reactions between hydrocarbons and oxides of nitrogen in photochemical smog (5).
    [Show full text]
  • Lightfastness Guide
    LIGHTFASTNESS GUIDE www.danfloor.co.uk WHAT IS FADING? Fading is a change in colour over time. It is measured by evaluating the colour of a material at two or more points in a given period of time. Often the loss of colour, or a reduction in colour saturation, is due to bleaching and this is a dilemma common to all industries and locations with the plain truth being that all colour fades. While ultraviolet (UV) radiation often causes discolouration and degradation of materials, it is by no means the only cause. Visible light also plays a part, and can be more damaging than UV light. Causes of Fading in Carpets Darker shades of colour, such as blues and reds, will usually be more susceptible to fading than lighter colours. These will Heat absorb more solar energy and reflect less. 25% Primarily, it is the breakdown of the dyes due to their inability to dissipate absorbed UV Light energy that ultimately causes fading. Misc 40% 10% Visible Light Ultraviolet (UV) light from the sun accounts for approximately 40% of the fading process. 25% Visible light and solar heat each contribute approximately 25% and 10% can be attributed to miscellaneous effects such as indoor artificial lighting, humidity, gassing, heat and poor dye affinity. Innovatve Carpet Solutions LIGHTFASTNESS EXPLAINED Lightfastness is the term used to describe how resistant to fading an item is when exposed to light. Light striking a surface can alter or break the chemical bonds of the pigment, causing the colours to bleach or change, in a process known as photo degradation.
    [Show full text]
  • 03.4-Bleaching-Presentation.Pdf
    Bleaching Contemporary wool dyeing and finishing Dr Rex Brady Deakin University Topics 1. The effect of sunlight on wool 2. Why bleach wool? 3. Why wool becomes yellow in sunlight 4. Oxidiative bleaches 5. Bleaching of pigmented wool 6. Reductive bleaches 7. Combined process ‘full’ bleaching 8. Photobleaching by light 9. Fluorescent brightening agents 10.Pastel shades with reductive bleach and FWA 11.The future for bleached wool 1. The effect of sunlight on wool The effect of sunlight on wool § Sunlight causes wool to change colour and lowers the strength and abrasion resistance of wool. § Initially, wool is bleached by sunlight (photobleaching); subsequently, photoyellowing predominates. § Prolonged exposure to sunlight leads to a loss in strength and abrasion resistance, resulting in photo-tendering. § The shortest wavelengths present in solar radiation (290- 320 nm) are the most damaging to wool, and they cause both photo-yellowing and photo-tendering. § Although window glass cuts out the wavelengths below 320 nm, the transmitted UV light (320-400 nm) still causes photoyellowing and phototendering, at a reduced rate. Poor light stability of wool limits the range of products in some areas of application § The photo degradation of wool limits the use of wool in markets where requirements for light fastness are stringent. § These include car upholstery, curtains, and apparel requiring bleached and lightfast bright pastel shades. § Particularly with car upholstery, dyeing with selected 2:1 premetallised dyes (mostly cobalt complexes) in heavy to medium depths, enhances the light fastness and photo-stability of wool, but only a limited range of shades is available. § Pale shades and particularly bright pale shades are limited to product areas where relatively low lightfastness can be tolerated.
    [Show full text]
  • Pigments Stability in a Lipstick
    Pigments stability in a lipstick 1 November 2016 by Redazione Pigments is a group of compound insoluble in a medium in which it is to be used. Major function of which is to improve the appearance or give color to the other materials. It must be stable in solid form at ambient temperatures The main features that contribute together to define a pigment are of chemical nature (basic composition, additives, impurities), and physical nature (crystalline structure, colour, index of refraction, form, dimension and state of aggregation of the particles, specific weight). All these data, mostly interdependent with each other, have a decisive influence on the pigment performance, that combine to calculate the pigments and application characteristics. Most important are: colour, covering power or matting, coloring power, disperdibility, brilliance, resistance to the light, to the heat, to chemical agents. Pigments are classified as either organic or inorganic: – Organic pigments are based on carbon chains and carbon rings. However, they can also contain metallic (inorganic) elements that help to stabilize the properties of the organic components. – Inorganic pigments, chemical compounds not based on carbon, are usually metallic salts precipitated from solutions. Inorganic pigments can be defined as insoluble compounds with a basis of metallic ions. Metallic ions are generally elements of transition such as iron, titanium or chrome and their structures are often three- dimensional. Typical examples of inorganic pigments used in a lipstick are iron oxides, titanium dioxide, mica covered in titanium dioxide and bismuth oxychloride. The overall stability of inorganic pigments is good, even if in certain conditions they may sustain chemical reactions due to acidity and alkalinity.
    [Show full text]
  • Colour Chart.Indd
    The Paints, Past and Present Details and Descriptions of Colours This section gives assessments for certain determinable characteristics of all the colours presently in my range, as well as a few informal remarks on their qualities and idiosynchrasies when used. Following the pattern already laid out on all my tube and can labels, and on my more recent colour charts, I give: (1) The Colour Index Number: This is an international system for classifying and identifying pigments solely by their (often very complex) chemical formulae( e.g P(igment) R(ed) 106, Mercuric Sulphide known as Genuine Vermilion). The use of vague traditional or invented colour names is thus clarifi ed, and so, in theory at least, is the vexed matter of what pigments manufacturers actually put into their paints. If a colourman is honest, each constituent pigment in a paint can be specifi ed precisely, and the practice of secretly adulterating or even completely substituting cheaper alternatives is made impossible. Assuming, that is, the colourman is honest…I can certainly state that there are no secret additions to any of the paints in my range. What you read as the C.I number on the label is what you get. (2) Estimated Relative Drying Speed: Bearing in mind that all drying speeds will be affected by temperature, humidity and light levels, these give a broad calibration of comparative speeds, from the Very Fast, such as the Umbers, many of which, if used neat, will be touch dry within a hot summer day, to the Very Slow, which in unmixed state, might take up to a week.
    [Show full text]
  • Photochemical Colour Change for Traditional Watercolour Pigments in Low Oxygen Levels
    Original research or treatment paper Photochemical colour change for traditional watercolour pigments in low oxygen levels Andrew Lerwill1,2, Joyce H. Townsend1, Jacob Thomas1,3, Stephen Hackney1, Charlotte Caspers1,4, Haida Liang5 1Conservation Department, Tate, London, UK, 2Image Permanence Institute, Rochester Institute of Technology, Rochester, NY, USA, 3Department of Conservation, University of Gothenburg, Sweden, 4Stichting Restauratie Atelier Limburg, Maastricht, Netherlands, 5School of Science and Technology, Nottingham Trent University, Nottingham, UK An investigation for light exposure on pigments in low-oxygen environments (in the range 0–5% oxygen) was conducted using a purpose-built automated microfadometer for a large sample set including multiple samples of traditional watercolour pigments from nineteenth-century and twentieth-century sources, selected for concerns over their stability in anoxia. The pigments were prepared for usage in watercolour painting: ground and mixed in gum Arabic and applied to historically accurate gelatine glue-sized cotton and linen-based papers. Anoxia benefited many colorants and no colorant fared worse in anoxia than in air, with the exception of Prussian blue and Prussian green (which contains Prussian blue). A Prussian blue sampled from the studio materials of J.M.W. Turner (1775 − 1851) was microfaded in different environments (normal air (20.9% oxygen) 0, 1, 2, 3.5, or 5% oxygen in nitrogen) and the subsequent dark behaviour was measured. The behaviour of the sample (in normal air, anoxia, and 5% oxygen in nitrogen) proved to be consistent with the 55 separately sourced Prussian blue samples. When exposed to light in 5% oxygen in nitrogen, Prussian blue demonstrated the same light stability as in air (at approximately 21°C and 1 atmosphere).
    [Show full text]
  • Lightfastness Studies of Inks
    Lightfastness Studies of Water- based Inkjet Inks on Coated and Uncoated Papers Russell H. Tobias and Eric T. Everett* Scitex Digital Printing, Inc., Dayton, Ohio *Q-Panel Lab Products, Cleveland, Ohio LX-5023 Abstract Instrumental color (i.e. L*A*B*) and optical density measurements were performed on coated and uncoated papers printed with water based inkjet inks using continuous binary array inkjet equipment. Lightfastness tests were performed in a QUV test chamber with Cool White Fluorescent lamps, Q-SUN Xenon Arc Test Chamber with a Window Glass Filter, and under glass at a Florida outdoor benchmark location (Q-Lab Weathering Research Service). These results were compared with two indoor exposure locations. Rank order was used to show good correlation between the various expo- sure methods. The results of this study generated data indicating that the lightfastness of water-based inkjet inks can be complex and dictated by the type of coated or uncoated paper used. This study also shows that inks printed on coated substrates are more susceptible to UV degradation than those printed on a bond or uncoated substrate. The development of a light stability test protocol is intended to simulate the conditions of the actual service environment. Meaningful data can be produced to bet- ter evaluate the “archivability” or predict durability of inkjet inks and substrates. Introduction Printing of documents by inkjet technology has occurred commercially for over 10 years. With the advent of sheet feed desktop printing, papers have been formulated with coatings and additives to enhance and improve the lightfastness of color office documents. Many studies have been completed showing the benefits of additives and pigment inks in protecting image quality at various light expo- sure conditions.
    [Show full text]
  • FADING of ARTISTS' PIG~Ffints DUE to ATMOSPHERIC OZONE
    FADING OF ARTISTS' PIG~ffiNTS DUE TO ATMOSPHERIC OZONE Kaitlin Drisko, Glen R. Cass. and Paul M. Whitmore Environmental Engineering Science Department and Environmental Quality Laboratory California Institute of Technology Pasadena. California 91125 James R. Druzik Conservation Center Los Angeles County Museum of Art Los Angeles. California 90036 Submitted September 1985. Accepted for publication in Winer Berichte Uber Naturwissenschaft in Der Kunst. volo~ '?.. ed. A.: .Vend!, B. "...?ichler, J.• ··weber. and G .. 1anik EQL document no. A-189 Computer address: eqlS:[chris.38090.glen.fading.whitmore] FADING OF ARTISTS' PIGMENTS DUE TO ATMOSPHERIC OZONE Kaitlin Drisko, Glen R. Cass, and Paul M. Whitmore Environmental Engineering Science Department and Environmental Quality Laboratory California Institute of Technology Pasadena, California 91125 James R. Druzik Conservation Center Los Angeles County Museum of Art Los Angeles, California 90036 Abstract Recently, it has been shown that several artists' pigments will fade in the absence of light if exposed to atmospheric ozone at the levels found in Los Angeles photochemical smog. In the present study, a large number of organic artists' watercolors have been examined to further assess the scope of this fading hazard to works of art. Twenty-seven organic artists' watercolors were exposed to 0.31 ± 0.12 ppm 0 at 3 46 ± 6% RH for 90 days. It was found that all of the watercolors containing alizarin-derived pigments (1,2 dihydroxyanthraquinone lakes) are susceptible to fading in the presence of ozone. A number of pigment blends containing at least one ozone-fugitive chemical component were found to change their apparent color after exposure to ozone.
    [Show full text]
  • Effects of Light on Materials in Collections
    Effects of Light Effects on Materials in Collections Data on Photoflash and Related Sources Schaeffer T. Terry The Getty Conservation Institute research in conservation GCI Effects of Light on Materials in Collections Schaeffer research in conservation The Getty Conservation Institute Effects of Light on Materials in Collections Data on Photoflash and Related Sources Terry T. Schaeffer 2001 Dinah Berland: Editorial Project Manager Elizabeth Maggio: Manuscript Editor Anita Keys: Production Coordinator Hespenheide Design: Designer Printed in the United States of America 10 9 8 7 6 5 4 3 2 © 2001 The J. Paul Getty Trust Second printing 2002 Getty Publications 1200 Getty Center Drive, Suite 500 Los Angeles, California 90049–1682 www.getty.edu The Getty Conservation Institute The Getty Conservation Institute works internationally to advance conservation in the visual arts. The Institute serves the conservation community through scientific research, education and training, model field projects, and the dissemination of information. The Institute is a program of the J. Paul Getty Trust, an international cultural and philanthropic institution devoted to the visual arts and the humanities. Research in Conservation The Research in Conservation reference series presents the findings of research conducted by the Getty Conservation Institute and its individual and institutional research partners, as well as state-of-the-art reviews of conservation literature. Each volume covers a topic of current interest to conservators and conservation scientists. Other volumes in the Research in Conservation series include Biodeterioration of Stone in Tropical Environments: An Overview (Kumar and Kumar 1999); Inert Gases in the Control of Museum Insect Pests (Selwitz and Maekawa 1998); Oxygen-Free Museum Cases (Maekawa 1998); Accelerated Aging: Photochemical and Thermal Aspects (Feller 1994); Airborne Particles in Museums (Nazaroff, Ligoki, et al.
    [Show full text]
  • Effects of Adding Antioxidants on the Lightfastness Improvement of Refined Oriental Lacquer
    polymers Article Effects of Adding Antioxidants on the Lightfastness Improvement of Refined Oriental Lacquer Kun-Tsung Lu * and Jia-Jhen Lee Department of Forestry, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung 402, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-4-2284-0345 (ext. 122); Fax: +886-4-2287-3628 Abstract: Refined oriental lacquer (ROL) is a natural polymeric material with a satiny texture, el- egant beauty, and high durability for wood furniture and handicraft finishing. However, its poor lightfastness, which results from the photo-degradation or photo-oxidation of its main component, catechol derivatives, must be improved for its widespread utilization. In this study, two experiments were performed. First, five types of antioxidants, including three primary antioxidants, such as 2,20-methylenebis(6-nonyl-p-cresol) (coded as AO-1), 2,20-methylenebis(6-tert-butyl-4-methylphenol) (AO-2), and bis [4-(2-phenyl-2-propyl) phenyl] amine (AO-N), and two secondary antioxidants, such as tris (2,4-ditert-butylphenyl) phosphite (AO-P) and dilauryl thiodipropionate (AO-S), were investi- gated to determine which is the most effective for improving the lightfastness of ROL. Secondly, the appropriate quantity of the best antioxidant, including 0, 1, 2, 3, 5, and 10 phr, was also determined. The lightfastness parameters, such as brightness difference (DL*), yellowness difference (DYI), and color difference (DE*), as well as other coating and film properties, were assessed. The results showed that the primary antioxidants had higher efficiency than secondary antioxidants for improving the lightfastness of ROL. Among the primary antioxidants, the 5 phr AO-N was the most effective at im- Citation: Lu, K.-T.; Lee, J.-J.
    [Show full text]
  • A Treatment to Reduce Fading and Degradation of Textiles
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications - Textiles, Merchandising Textiles, Merchandising and Fashion Design, and Fashion Design Department of April 1987 Ultraviolet Absorbers: A Treatment to Reduce Fading and Degradation of Textiles Patricia Cox Crews University of Nebraska-Lincoln, [email protected] Barbara M. Reagan Kansas State University Follow this and additional works at: https://digitalcommons.unl.edu/textiles_facpub Part of the Art and Design Commons Crews, Patricia Cox and Reagan, Barbara M., "Ultraviolet Absorbers: A Treatment to Reduce Fading and Degradation of Textiles" (1987). Faculty Publications - Textiles, Merchandising and Fashion Design. 16. https://digitalcommons.unl.edu/textiles_facpub/16 This Article is brought to you for free and open access by the Textiles, Merchandising and Fashion Design, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications - Textiles, Merchandising and Fashion Design by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Ultraviolet Absorbers: A Treatment to Reduce Fading and Degradation of Textiles1∗ Patricia Cox Crews and Barbara M. Reagan Abstract. Fiber artists, as well as museum personnel, have attempted to reduce fading and/or deterioration in textiles by 1) using lower levels of lighting, 2) using incandescent lights instead of fl uorescent lights, and 3) using ultraviolet fi lters on fl uorescent lights. However, in many pub- lic buildings and in some daylighted museum galleries, textiles may be displayed without protection from light by any of the above measures. Therefore, many contemporary textiles are subjected to unusually high levels of lighting because most North American buildings are well light- ed by fl uorescent lamps and/or daylight through large expanses of win- dow glass that emit or transmit sizable amounts of ultraviolet radiation.
    [Show full text]
  • Product Information Lightfastness
    Product information Lightfastness Lightfastness – A Measure of the Durability of Artists’ Colours Any artist who is concerned about the longevity of her At Schmincke, we place the utmost importance on speci- works will put a premium on the lightfastness of her paints. fically optimizing formulas to maximise lightfastness and Light has a dramatic impact on works of art: both in a positi- on maintaining our current quality standards. That requires ve sense, in terms of the effect of colour, and in a negative using an objective testing procedure. One such procedure, sense, in terms of their dura- bility – unless highly lightfast a “lightfastness test”, is as follows: artists’ colours are used. The lightfastness tests are always run on the finished Schmincke colours, not on individual components of the for- Everyone has seen the negative effects of light on low-light- mula. This is important for the simple fact that even those fast colours, especially in bright fabric or printed material. paints with extremely lightfast pigments may change colour As these products are not designed to last for a long time, if the wrong binders or additives were used. Thus, we don’t the intensity of their colours degrades significantly in a short merely check how the pig- ment changes (colour fading), but time. Direct sunlight is the biggest culprit in causing colours can instead see the entire gamut of changes to the colour to fade. Light also degrades materials – wood and plastics (darkening, changes in lustre, etc.). become brittle, while newspaper turns yellow. Here’s an example: In and of itself, the pigment titanium Works of art, on the other hand, are supposed to be long- white is extremely lightfast.
    [Show full text]