<<

Carnets Geol. 20 (5)

E-ISSN 1634-0744 DOI 10.4267/2042/70759

A rhinopristiform ( ) from the middle () of southern and its regional implications

Alberto COLLARETA 1, 2

Luz TEJADA-MEDINA 3, 4

César CHACALTANA-BUDIEL 3, 5

Walter LANDINI 1, 6

Alí ALTAMIRANO-SIERRA 7, 8

Mario URBINA-SCHMITT 7, 9

Giovanni BIANUCCI 1, 10 Abstract: Modern (: Pristidae) are circumglobally distributed in warm wa- ters and are common in proximal marine and even freshwater . The record of modern pristid genera (i.e., Pristis and Anoxypristis) dates back to the early Eocene and is mostly represented by isolated rostral spines and oral teeth, with phosphatised rostra representing exceptional occurren- ces. Here, we report on a partial pristid , exhibiting several articulated rostral spines, from middle Eocene strata of the Paracas Formation (Yumaque Member) exposed in the southern Peruvian East . This finely preserved specimen shows anatomical structures that are unlikely to leave a fossil record, e.g., the paracentral grooves that extend along the ventral surface of the rostrum. Ba- sed on the morphology of the rostral spines, this fossil sawfish is here identified as belonging to Pristis. To our knowledge, this discovery represents the geologically oldest known occurrence of Pristidae from the Pacific Coast of South America. Although the fossil record of pristids from the East Pisco Basin spans from the middle Eocene to the late , sawfishes are no longer present in the modern cool, upwelling-influenced coastal waters of southern Peru. Given the ecological preferences of the extant members of Pristis, the occurrence of this genus in the Paracas deposits suggests that middle Eocene nearshore waters in southern Peru were warmer than today. The eventual disappearance of pristids from the coastal waters off southern Peru might be interpreted as reflecting the late trend of strengthening of the Humboldt Current. Key-words: • East Pisco Basin;DRAFT • ; • exceptional preservation; • Humboldt Current System; • palaeobiogeography; • palaeoclimatology; • palaeoenvironments; • Paracas Formation (Yumaque Member)

Citation: COLLARETA A., TEJADA-MEDINA L., CHACALTANA-BUDIEL C., LANDINI W., ALTAMIRANO-SIERRA A., UR- BINA-SCHMITT M. & BIANUCCI G. (2020).- A rhinopristiform sawfish (genus Pristis) from the middle Eoce- ne (Lutetian) of southern Peru and its regional implications.- Carnets Geol., Madrid, vol. 20, no. 5, p. 91-105.

1 Dipartimento di Scienze della Terra, Università di Pisa, via Santa Maria 53, 56126 Pisa (Italy) 2 [email protected] 3 Instituto Geológico Minero y Metalúrgico (INGEMMET), Avenida Canadá 1470, San Borja, Lima 41 (Peru) 4 [email protected] 5 [email protected] 6 [email protected] 7 Departamento de Paleontología de Vertebrados, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Jesús María, Lima 14 (Peru) 8 [email protected] 9 [email protected] 10 [email protected]

Published online in final form (pdf) on March 17, 2020 [Editors: Brian R. PRATT and Robert W. SCOTT; French language editor: Bruno FERRÉ; technical editor: Bruno GRANIER]

91

Carnets Geol. 20 (5)

Résumé : Un poisson-scie rhinopristiforme (genre Pristis) de l'Éocène moyen (Lutétien) du Pérou méridional et ses implications régionales.- Les poissons-scies modernes (Rhinopristifor- mes : Pristidae) présentent une distribution globale dans les eaux chaudes ; ils sont fréquents dans les habitats marins proximaux et même en eaux douces. Le registre fossile des genres modernes des Pristidés (i.e., Pristis et Anoxypristis) remonte à l'Éocène inférieur et est principalement représenté par des épines rostrales isolées et dents orales, ainsi que des rostres phosphatés représentant des événe- ments exceptionnels. Nous rapportons ici un rostre partiel de Pristidae, présentant plusieurs épines rostrales articulées, provenant des couches de l'Éocène moyen de la Formation Paracas (Membre Yu- maque) exposées dans la partie orientale du Bassin de Pisco au sud du Pérou. Ce spécimen très bien conservé permet l'observation de structures anatomiques qui sont difficilement fossilisables, par exem- ple les sillons paracentraux qui s'étirent le long de la face ventrale du rostrum. En se basant sur la morphologie des épines rostrales, ce poisson-scie fossile est identifié ici comme appartenant à Pristis. À notre connaissance, cette découverte représente la plus ancienne occurrence géologique connue de Pristidae le long des côtes pacifiques de l'Amérique du Sud. Bien que le registre fossile des Pristidés dans la partie orientale du Bassin de Pisco s'étende de l'Éocène moyen au Miocène supérieur, les pois- sons-scie ne sont plus actuellement présents dans les eaux côtières du sud du Pérou, eaux fraîches en raison de remontées d'eaux profondes. À la lumière des préférences écologiques des membres actuels du genre Pristis, la présence de ce genre dans la Formation Paracas suggère des températures de l'eau de mer plus élevées qu'actuellement dans les environnements littoraux du sud du Pérou au cours de l'Éocène moyen. La disparition finale des Pristidés des eaux côtières du sud du Pérou pourrait être in- terprétée comme reflétant la tendance au renforcement du courant de Humboldt au Cénozoïque supé- rieur. Mots-clefs : • partie orientale du Bassin Pisco ; • Elasmobranchii ; • conservation exceptionnelle ; • Système du Courant de Humboldt ; • paléobiogéographie ; • paléoclimatologie ; • paléoenvironnements ; • Formation Paracas (Membre de Yumaque) 1. Introduction cord of Pristis from possibly upper Palaeocene strata of the Tuscahoma Formation of Mississippi, Among extant cartilaginous , members USA); in addition, exceptional occurrences of of the Pristidae are large-sized, -sha- phosphatised rostra have also been reported from ped rays characterised by an elongated, dorso- a few localities worldwide (e.g., VIGLIAROLO, 1891; ventrally flattened rostrum whose lateral margins LERICHE, 1905; ZBYSZEWSKI, 1947; CASIER, 1949; bear lancet-like, continuously growing, highly FARRÉS, 2003; CICIMURRI, 2007; CARRILLO-BRICEÑO modified placoid scalesDRAFT (e.g., CAPPETTA, 2012; et al., 2015). WELTEN et al., 2015). These dermal elements we- Decades of research on the celebrated fossil re described under several different terms, inclu- content of the East Pisco Basin of southern Peru ding "rostral teeth" and "rostral spines". Fol- has produced numerous noteworthy palaeontolo- lowing CARRILLO-BRICEÑO et al. (2015) and COLLA- gical papers dealing with various groups of aqua- RETA et al. (2017a), the latter term is here prefer- tic , including marine mammals (e.g., red. Pristids are active predators that use their MUIZON, 1988; BRAND et al., 2004; ESPERANTE et saw-like rostrum to uncover infaunal food items, al., 2008; LAMBERT et al., 2010, 2017, 2019; BIA- immobilise potential prey, and stun or slash small NUCCI et al., 2010, 2016a, 2016b) and seabirds and invertebrates (WUERINGER et al., 2009, (e.g., CLARKE et al., 2007, 2010). In turn, the cur- and references therein); as such, they are popu- rent knowledge of the fossil history of cartilagi- larly known as "sawfishes". Extant pristids are nous and bony fishes from this region is still classified into two genera: Pristis LINCK, 1790, scanty. In particular, for a long time, contribu- which includes four living , and Anoxy- tions dealing with the record of the cartilaginous pristis WHITE & MOY-THOMAS, 1941, for which a fishes have been mostly limited to plain faunal single living species is known (LAST et al., 2016; lists (e.g., MUIZON & DEVRIES, 1985; BIANUCCI et WEIGMANN, 2016). These aquatic representatives al., 2010). However, recent investigations have of the charismatic (here intended as focused on exceptionally preserved specimens large-sized species whose widespread ap- (COLLARETA et al., 2017c), rare and elusive taxa peal or symbolic value is seen as pivotal for at- (SHIMADA et al., 2017), and outstandingly produc- tracting popular attention on conservation goals tive tooth-bearing horizons from a handful of Mio- and policies; see e.g. DUCARME et al., 2013) are cene localities (e.g., BIANUCCI et al., 2018; LANDINI circumglobally distributed in warm waters and et al., 2017a, 2017b, 2019). These studies provi- are common in proximal marine and even de a more comprehensive picture of the Neogene brackish and freshwater habitats (e.g., WUERINGER shark and ray assemblages from the basin infill. et al., 2009; DULVY et al., 2014). The fossil record In the present paper, we report on a partial of modern pristid genera dates back to the early pristid rostrum that exhibits several articulated Eocene and is mostly represented by isolated rostral spines, from middle Eocene strata of the rostral spines and subordinate oral teeth (CAPPET- Paracas Formation exposed in the vicinity of the TA, 2006, 2012; but see also CASE, 1994, for a re- Zamaca locality, in the eastern sector of the East 92

Carnets Geol. 20 (5)

Pisco Basin. This finely preserved specimen is he- (geographic coordinates of the collection site: 14° re figured, described, and referred to the extant 38'27.1" S, 75°35'46.4" W) Fig. 1.C). In the sa- genus Pristis. The palaeobiogeographic, palaeo- me area, ca. 6 km WSW of the collection site, the environmental, and palaeoclimatic implications of depositional age of the lower Yumaque beds has this remarkable fossil are then briefly discussed. been recently reconstructed as close to 42.37 Ma 2. Geological framework (i.e., Lutetian Stage) by means of calcareous nannoplankton biostratigraphy (COLETTI et al., The East Pisco Basin is a northwest-southeast 2019; Fig. 1.C). This age estimate is here pro- elongated Andean forearc basin that extends jected to the fossiliferous horizon where our saw- along a desertic coastal plain between the towns fish specimen was found. Previous investigations of Pisco and Nazca (Ica Region, southern Peru). on the sedimentological characteristics of nearby It is located just landward of where the aseismic outcrops concur in indicating an inshore, inner Nazca Ridge impinges on the Peru– trench shelf depositional palaeoenvironment situated be- (PILGER, 1981; HSU, 1992; MACHARÉ & ORTLIEB, low wave base (e.g., DUNBAR et al., 1990; UHEN et 1992; HAMPEL, 2004) (Fig. 1.A). This basin is filled al., 2011). with a Cenozoic sedimentary succession that Marine vertebrates from the Paracas Forma- comprises, in ascending stratigraphic , the tion include the holotype of the early branching Eocene Caballas and Paracas formations, the Oli- devriesi CLARKE et al., 2007, go–Miocene Chilcatay Formation, and the Mio– and the holotypes of four archaic cetaceans, i.e., (DUNBAR et al., 1990; the basilosaurids Supayacetus muizoni UHEN et DEVRIES, 1998, 2017; DI CELMA et al., 2016) (Fig. al., 2011, and Ocucajea picklingi UHEN et al., 1.B). These sedimentary units are lithologically 2011, the early diverging mysticete Mystacodon complex and are bounded by regionally extensive selenensis LAMBERT et al., 2017, and the recently unconformities marked by pavements of pebble- described protocetid Peregocetus pacificus LAM- to boulder-sized igneous clasts. The unconformi- BERT et al., 2019. ties reflect periods of subaerial exposure and do- 3. Systematic cument major breaks of the sedimentary history of the East Pisco basin; moreover, intraformatio- Class HUXLEY, 1880 nal unconformities are also present (DEVRIES, 1998; DI CELMA et al., 2017, 2018a). Therefore, Subclass ELASMOBRANCHII following to the nomenclatural approach propo- BONAPARTE, 1838 sed by the NACSN (2005), the aforementioned Infraclass NEOSELACHII unconformity-bounded formations might rather COMPAGNO, 1977 be regarded as alloformations (DI CELMA et al., 2017). Superorder BATOMORPHII The sawfish fossil reported here was found in CAPPETTA, 1980 deposits belonging to DRAFTthe middle to upper Eocene Paracas Formation (following the nomenclatural Order RHINOPRISTIFORMES revision of DEVRIES, 2017) (Fig. 1.B). Similar to NAYLOR et al., 2012 the transgressive sequences that comprise the Family PRISTIDAE BONAPARTE, 1838 geologically younger Chilcatay and Pisco forma- INCK tions (e.g., DI CELMA et al., 2017, 2018a; COLETTI Genus Pristis L , 1790 et al., 2018; DEVRIES & JUD, 2018), the Paracas Pristis sp. Formation is comprised of a coarse-grained lower Figs. 2.A-B, 3.A-B, 4.A-E portion (i.e., the Los Choros Member, consisting of conglomerates and mixed siliciclastic-bioclastic Material and repository. CPI-7937, an in- characterised by abundant tests of complete rostrum, partially entombed in the sur- large benthic foraminifera) that is overlain by a rounding siltstone and featuring at least 50 asso- package of finer sediments (i.e., the Yumaque ciated rostral spines (no oral teeth appear to co- Member, consisting of silty sandstones and silt- occur with the specimen). 'CPI' is the acronym for stones that feature a rich planktic assemblage) 'Collección Paleontológica del INGEMMET' (=IN- (RIVERA, 1957; TSUCHI et al., 1988; DUNBAR et al., GEMMET palaeontological collection), housed in 1990; DEVRIES, 1998, 2017; DEVRIES et al., 2006; Lima, Peru, where CPI-7937 is permanently kept. LEÓN et al., 2008; UHEN et al., 2011; COLETTI et Occurrence. Middle Eocene siltstones expo- al., 2019) (Fig. 1.B). Note that a different strati- sed in the Zamaca area, Ica Province, southern graphic scheme considers the Paracas Group as coast of Peru; GPS geographic coordinates: comprised of the Los Choros and Yumaque for- 14°38'27.1" S, 75°35'46.4" W (Fig. 1C). The se- mations (e.g., DÁVILA, 1989; DUNBAR et al., 1990; diment embedding the sawfish specimen belongs DEVRIES, 1998; LEÓN et al., 2008), which is the to the basal strata of the Yumaque Member of the official position of the Peruvian Geological Survey Paracas Formation, whose deposition in the vici- (Instituto Geológico Minero y Metalúrgico, herein- nity of the study site has been referred to the la- after referred to as the INGEMMET). The chon- te Lutetian (see the geological framework for mo- drichthyan specimen described herein comes re details). from the basal strata of the Yumaque Member Rostral . CPI-7937 is preserved in exposed in the vicinity of the Zamaca locality, two distinct blocks of siltstones. The main block along the eastern side of the lower Ica valley (Fig. 2) enables the observation of the 425-mm-

93

Carnets Geol. 20 (5)

long anterior-most portion of the rostrum, expo- 3.A). All the preserved alveoli still host the cor- sed in ventral view, based on the bending direc- responding rostral spines, so that each side of the tion of the rostral spines (see description below) rostrum exhibits 17 rostral spines (see descrip- and still partly embedded in a silty matrix. The tion below). The alveoli of the right and left sides main block also preserves 34 rostral spines, 31 of are slightly staggered, rather than directly oppo- which are still articulated with the rostral cartila- sing each other, the extent of unalignment chan- ge. The second block consists of tens of morpho- ging significantly along the length of the preser- logically uninformative fragments of rostral carti- ved portion of the rostrum. The spacing between lage with associated shreds of entombing sedi- adjacent alveoli, measured at the base of the free ment that are distributed on a 485-mm-long, portions of the rostral spines (i.e., along the late- 175-mm-wide area; moreover, at least 16 disar- ral margin of the rostrum), varies between 12-13 ticulated, partly fragmentary rostral spines are mm (close to the tip of the snout) and 18-19 mm also present. By comparing the reconstructed (at the posterior end of the preserved portion of length of the rostrum (totalling ca. 90 mm) with the rostrum). The second block of cartilage is not the corresponding dimension in extant pristids informative in terms of rostral cartilage morpho- (e.g., SEITZ & HOOVER, 2017, tab. 1), an adult or logy. late juvenile ontogenetic stage is suggested for Similar to some of the fossilised sawfish rostra CPI-7937. described by LERICHE (1905), CASIER (1949), CICI- The portion of rostrum preserved in the main MURRI (2007), and CARRILLO-BRICEÑO et al. (2015), block (Fig. 2) is almost complete and dorsoven- the external surface of CPI-7937 locally displays trally flattened, being ca. 12 mm thick along its a fibrous texture. Some fragments of rostral car- entire length. Diagenetic compaction resulted in tilage from the second block (e.g., Fig. 3.B) exaggerating the degree of dorsoventral flatte- display the preservation of the individual tesserae ning of the rostrum; indeed, the transverse that, in chondrichthyan fishes, form the coat of section of the rostrum, which can be observed at prismatic cartilage surrounding the external sur- the posterior end of the main block, shows that face of the rostrum [see e.g. CICIMURRI (2007) the internal rostral ducts (WUERINGER et al., 2009, and CARRILLO-BRICEÑO et al. (2015, 2019) for a re- and references therein) have collapsed, so that ference on the prismatic cartilage of sawfishes]. no obvious cavities appear within the rostral car- These tesserae are rounded-polygonal to almost tilage. The rostrum gradually tapers towards its star-shaped and have a mean diameter of ca. anterior-most tip, which appears to be almost 0.7-0.8 mm. More than one layer of prismatic complete. The transverse width of the rostral car- cartilage seems to be present. As highlighted el- tilage varies between ca. 60 mm (at the anterior sewhere (WUERINGER et al., 2011, and references end of the rostrum) and ca. 100 mm (at the therein), in extant sawfishes, the ampullae of LO- posterior termination of the preserved portion of RENZINI pass the rostral cartilage through hollow the rostrum). The ventral surface of the rostrum tubules that might get preserved in fossilised is gently convex to almostDRAFT flat transversely and rostra. Differing from what was observed by CAR- bears two distinct grooves trending the entire RILLO-BRICEÑO et al. (2015) for some phosphatised length of the preserved portion of the rostrum rostra from the Neogene of Venezuela, however, (Fig. 2). Each groove is just lateral to the midline no trace of the could be de- (i.e., paracentral sensu MILLER, 1974) and they tected along the external surface of CPI-7937. are parallel with the lateral margins of the Rostral spines. All the preserved rostral spi- rostrum. In living sawfishes, the paracentral nes (Figs. 2.A, 3.A, 4) are rather thick dorsoven- grooves [sensu CICIMURRI (2007), not to be confu- trally, moderately elongated mediolaterally, and sed with the 'ducts with ophthalmic & buccal ner- slightly curved ventrally, with convex anterior and ves & rostral artery' of WUERINGER et al. (2009: sub-straight posterior margins. As a result of func- Fig 4), which in turn coincide with the 'paracen- tional wear, the distal parts of the rostral spines tral canals' of CICIMURRI (2007)] that are found on are thinner than the proximal ones. In the best- the dorsal and ventral surfaces of the rostrum preserved rostral spines, the anterior margin is host blood vessels (i.e., veins; MILLER, 1974). The regularly rounded, whereas the posterior margin distance between the paracentral grooves chan- invariantly bears a rather deep mediolateral groo- ges gradually from 5.5 mm, measured at the an- ve, so that its transverse sections would appear terior termination of the rostrum, to 14.5 mm as C-shaped (i.e., concave backwards) (Figs. 3.A, (measured at the posterior end of the preserved 4.B, 4.D). However, this posterior furrow is only portion of the rostrum). Lateral to the paracentral partly developed, carving indeed only the distal grooves, a series of rectangular cartilage pro- halves of the rostral spines of CPI-7937 – a con- jections emanate from the main body of the dition that recalls that observed in the extant rostrum, and the edges of these form the alveoli species Pristis clavata GARMAN, 1906 (FARIA et al., where the rostral spines are located (Figs. 2, 2013; WHITTY et al., 2014). The dorsal and ven-

Figure 1: Geographical and stratigraphic background of the collection site of the fossil sawfish specimen CPI- 7937. A) Location of the southern Peruvian East Pisco Basin along the Pacific Coasts of South America. B) Schematic stratigraphic log of the East Pisco Basin sedimentary succession. C) Close-up of the Zamaca area (Google Earth ima- ge, © 2018 DigitalGlobe). The smaller star indicates the location of the stratigraphic section studied by COLETTI et al. (2019); the larger star indicates the collection site of CPI-7937.

94

Carnets Geol. 20 (5)

DRAFT

95

Carnets Geol. 20 (5)

Figure 2: CPI-7937, partial rostrum of Pristis sp. from the Paracas Formation of southern Peru. A) The well-preser- ved anterior portion of theDRAFT rostrum, preserving 34 associated rostral spines, in ventral view. B) Corresponding line drawing. Labels L1 to L17 refer to the left row of rostral spines; labels R1 to R17 refer to the right row of rostral spi- nes. The dashed lines indicate the trend of the paracentral grooves (sensu CICIMURRI, 2007) that, in extant pristids, contain veins. tral surfaces of the rostral spines (Fig. 4.A, 4.C) are nes are quite invariant, ranging between 10 mm gently ornamented by weak, sub-straight radial to 12 mm, whereas their values of maximum dor- striae, especially in their basal halves, and show soventral thickness equal about one-seventh of no trace of transversely oriented growth folds. As the corresponding values of mediolateral length. typical of pristid rostral spines, the proximal pa- Whereas the medial halves of the anterior-most rasagittal surface exhibits a porous texture that rostral spines are located medial to the lateral originates by the presence of a plethora of very margins of the rostrum, only about one-third of small-sized nutrient foramina (HERMAN et al., 1997; the total mediolateral length of the rostral spines MARSILI, 2006) (Fig. 4.E). Differing from other fossil R15 to R17 and L15 to L17 is located in the cor- (e.g., COLLARETA et al., 2017b) and extant (e.g., responding alveoli (Fig. 2). Considering that 17 NEVATTE et al., 2017) rostral spines of sawfish, no rostral spines are present on each side of the obliquely-oriented shallow incisions that might portion of rostrum preserved in the main block, evoke the abrasive action of water laden with se- and 16 additional rostral spines are preserved in diment flowing at the sides of the rostrum could the second block, a minimum rostral spine count be detected on the rostra spines of CPI-7937. (i.e., number of spines on each side of the ros- From the tip of the snout backwards, the right trum) of 25 can be reconstructed for CPI-7937. rostral spines preserved in the main block are he- Such an estimate is consistent with the values re indicated as R1 (the anterior-most one) to R17 observed in most extant pristids (Table 1), but th (the 17 one); similarly, the left rostral spines are distinguishes CPI-7937 from Pristis pristis (LIN- indicated as L1 to L17. Considering the complete NAEUS, 1758), here regarded as including also rostral spines only, their mediolateral length va- Pristis 'microdon' LATHAM, 1794, and Pristis 'perot- ries between 46 mm (in L15) and 55.5 mm (in teti' MÜLLER & HENLE, 1841 (FARIA et al., 2013), L9); overall, no clear trends in rostral spine which exhibits smaller rostral spine counts (WHIT- length are observed moving from the tip of the TY et al., 2014: tab. 1; LANGE et al., 2015: tab. 1; snout backwards. Similarly, the values of maxi- SEITZ & HOOVER, 2017: tab. 1). mum anteroposterior width of these rostral spi-

96

Carnets Geol. 20 (5)

⊳ Figure 3: Details of CPI- 7937, partial rostrum of Pristis sp. from the Paracas Formation of southern Peru. A) Left posterolateral view of the ventral part of rostrum that hosts the rostral spines L8 to L11. The arrowhead indicates the distinctly groo- ved posterior margin of L10. B) Fragment of fossilised car- tilage displaying the indivi- dual tesserae that, in chon- drichthyan fishes, form the coat of prismatic cartilage that surrounds the external surface of the rostrum. Note that the tessellated structure of the cartilage is seemingly slightly obliterated by an overlying patina of consoli- dant that could not be remo- ved before taking the photo- graph.

DRAFT

⊳ Figure 4: Close-up of a detached right rostral spine (position unknow but poste- rior to R17) belonging to CPI-7937, partial rostrum of Pristis sp. from the Paracas Formation of southern Peru. A) Dorsal view. B) Anterior view. C) Ventral view. D) Posterior view. E) Mesial view. Note the worn-down aspect of the lateral half of the rostral spine (panels B and D) and the presence of an only partially developed groove running along its posterior margin (panel D). Measurements of the figured rostral spine are the follo- wing: maximum dorsoventral thickness – 6.5 mm; maxi- mum anteroposterior width – 11.5 mm; mediolateral length – 42.5 mm.

97

Carnets Geol. 20 (5)

Table 1: Rostral spine count for CPI-7937, the partial pear to have been modified by early diagenetic rostrum of Pristis sp. described herein, compared with cementation, at least macroscopically. This ob- extant and extinct pristid species. The three Venezuelan servation allows for associating CPI-7937 with a specimens (AMU-CURS-023, AMU-CURS-235, and AMU- small-sized mysticete specimen, exhibiting strong- CURS-237) come from the middle to upper Miocene Urumaco Formation and have been described in detail ly mineralised (i.e., phosphatised) baleen plates, by CARRILLO-BRICEÑO et al. (2015). Data from FARRÉS from silty deposits of the Pisco Formation expo- (2003), CARRILLO-BRICEÑO et al. (2015: tab. 1), and the sed at Cerro Ballena (MARX et al., 2017). In that present work. case, strong mineralisation of the keratinous ba- Anoxypristis cuspidata (living species) 16-33 leen material was likely made possible thanks to Anoxypristis osonensis (Eocene, Spain) 21 the retention of a relatively permeable, unconso- lidated sediment through the first phases of dia- Pristis pristis (living species) 14-24 genesis, which ultimately allowed the phosphati- Pristis clavata (living species) 18-27 sation processes to protract for a long time (MARX Pristis zijsron (living species) 23-37 et al., 2017; GIONCADA et al., 2018b). A similar Pristis pectinata (living species) 20-30 scenario might be evoked for explaining the high Pristis atlanticus (Miocene, Portugal) ~20 degree of preservation shown by CPI-7937. Sup- Pristis sp. (AMU-CURS-023: Miocene, Venezuela) 23/24 port of this interpretation comes from observing Pristis sp. (AMU-CURS-235: Miocene, Venezuela) 23 that the internal rostral ducts have collapsed, Pristis sp. (AMU-CURS-237: Miocene, Venezuela) >20 which implies that the rostral cartilage underwent Pristis sp. (CPI-7937: Eocene, Peru) ≥25 diagenetic compaction before mineralisation could occur. Systematic identification. Based on the pre- 4. Discussion and conclusions sence of grooves along the posterior margins of the best-preserved rostral spines, CPI-7937 is To our knowledge, the partial rostrum of Pristis unambiguously attributed to the genus Pristis sp. described herein from the middle Eocene Pa- (e.g., BOURDON, 1999; COMPAGNO & LAST, 1999; racas Formation represents the geologically WUERINGER et al., 2009; CAPPETTA, 2012; WELTEN et oldest fossil record of Pristidae from the Pacific al., 2015; CAPPETTA & CASE, 2016). An unambi- Coast of South America and, seemingly, from the guous species-level determination of CPI-7937 whole Pacific realm (Fig. 5). Furthermore, it con- would need a detailed revision of several extinct sists of an exceptionally well preserved specimen nominal species currently attributed to the genus that allows for the observation of anatomical Pristis (at least 29, according to CAPPETTA & CASE, structures that are unlikely to leave a fossil re- 2016), which is beyond the scope of the present cord, e.g., the paracentral grooves that extend paper. Interestingly, however, CPI-7937 clearly along the ventral surface of the rostrum and the differs from the widespread Eocene species Pristis individual tesserae that form the coat of prismatic lathami GALEOTTI, 1837 (a possible wastebasket cartilage surrounding the external surface of the taxon; CAPPETTA & CASEDRAFT, 2016) by exhibiting rela- rostrum. Therefore, our finding contributes to fur- tively stout rostral spines, whose posterior mar- ther qualify the sedimentary infill of the East gins bear only partially developed grooves. Pisco Basin as a true Konservat-Lagerstätte, the Remarks on the preservation state. CPI- outstanding fossil content of which is crucial for 7937 displays a high degree of preservation. As reconstructing the Cenozoic history of the cartila- such, it represents a significant addition to the ginous fish faunas of Pacific South America (CAR- long list of remarkably preserved fos- RILLO-BRICEÑO et al., 2018). Not least, the disco- sils from the East Pisco Basin, which include arti- very of CPI-7937 promotes the quest for well-pre- culated skeletons of (COLLARETA et al., served fossil chondrichthyans over the entire stra- 2017c), phosphatised baleen plates and bristles tigraphic succession exposed in the Ica Desert. of mysticete whales (BRAND et al., 2004; ESPERAN- Nowadays, sawfishes are absent from the TE et al., 2008, 2015; GIONCADA et al., 2016; MARX coastal waters of southern Peru. However, in the et al., 2017), stomach contents and regurgita- East Pisco Basin, pristids are known as tions of cetaceans (COLLARETA et al., 2015, LAM- from the Miocene strata of both the Chilcatay and BERT et al., 2015), and even seabird feathers that the Pisco formations (BIANUCCI et al., 2016b, preserve colour-imparting melanosome morpho- 2018; LANDINI et al., 2017a, 2017ba, 2019; DI logies (CLARKE et al., 2010). In the well-studied CELMA et al., 2018b, 2019; BOSIO et al., 2020). Of upper Miocene portion of the Pisco Formation, re- all these Miocene occurrences, which consist of cent research has shown that many finely preser- rostral spines only, those that can be confidently ved fossil vertebrates occur in dolomite concre- identified at the genus level are assigned to tions, which seem to have formed very early du- Anoxypristis (e.g., BIANUCCI et al., 2018; BOSIO et ring diagenesis (e.g., GARIBOLDI et al., 2015; al., 2020). While extant Anoxypristis is confined GIONCADA et al., 2016, 2018a). In rarer cases, fi- to the Indo-western Pacific region, this genus had nely preserved vertebrate specimens appear to once a much wider distribution, largely overlap- be enclosed in an apatite-rich volume of sediment ping that of Pristis, being indeed present in seve- delimited by an evident manganiferous boundary, ral Eocene to Pliocene sites of Africa, Asia, Euro- which might also reflect precipitation of early dia- pe, and North America (e.g., CAPPETTA, 2012, and genetic minerals around the skeleton (GIONCADA references therein). The apparent replacement of et al., 2018b). The silty sediment that entombs Pristis by Anoxypristis recorded in the fossil the Zamaca fossil sawfish, however, does not ap- record of the East Pisco Basin is thus difficult to

98

Carnets Geol. 20 (5)

⊳ Figure 5: Schematic palaeogeographic distribu- tion map of the Eocene fossils of Pristis (circles) based on the occurrences reported by CAPPETTA (2012) and The Paleobio- logy Database (available online at https://www. paleobiodb.org/). The star indicates the southern Pe- ruvian site where CPI- 7937, the partial rostrum of Pristis sp. described he- rein, was found. Global pa- laeogeographic base map for the middle Eocene re- drawn and modified after KOŠŤÁK et al. (2013: Fig. 10). interpret and might be due to collection biases. Clupeoidea (personal observation by A.C.), a Further investigations on the understudied chon- group of teleosts whose first unambiguous occur- drichthyan assemblages of the Palaeogene depo- rence in the fossil record of the East Pisco Basin sits of the East Pisco Basin might contribute to occurs in the upper Miocene strata of the Pisco shed light on this issue. Formation (COLLARETA et al., 2015; LAMBERT et al., The living species of Anoxypristis and Pristis 2015). Furthermore, considerations on the record are shallow-water nectobenthic fish that occupy of large benthic foraminifera from the Los Choros restricted habitats close inshore or even in fresh- member, which includes abundant lepidocyclinids, water, commonly in muddy enclosed bays, in as well as nummulitids and members of the ex- , off mouths, surrounding large tant genus Amphistegina ORBIGNY, 1826, provided continental islands, and upstream in and a different interpretation of the Paracas depositio- lakes (COMPAGNO & LAST, 1999). In particular, ac- nal setting as a tropical palaeoenvironment (MO- cording to ALLEN (1982), Pristis spp. appear to RALES-REYNA et al., 2010, 2013; COLETTI et al., prefer muddy substrates. These actualistic data 2019). As mentioned above, pristids are currently are perfectly consistent with modern reconstruc- known as tropical/subtropical fishes (e.g., COMPA- tions of the bathymetric, physiographic, and sedi- GNO & LAST, 1999; WUERINGER et al., 2009; CAPPET- mentological characteristics of the Yumaque TA, 2012; DULVY et al., 2014); therefore, the pre- depositional setting –DRAFT an inshore, inner shelf pa- sent record of Pristis sp. from Zamaca further in- laeoenvironment, possibly connected with a se- dicates that palaeoenvironmental conditions sui- ries of semi-enclosed embayments, and characte- table for warm-water organisms characterised rised by a silty to silty-sandy seafloor (DUNBAR et the East Pisco Basin during deposition of the Pa- al., 1990; UHEN et al., 2011). racas strata. In recent times, the palaeoclimatic significance Although the large-tooth sawfish (Pristis of the Paracas Formation deposits has been the pristis) might still inhabit tropical waters of nor- subject of some debate. UHEN et al. (2011) ar- thern Peru (DULVY et al., 2014; MENDOZA et al., gued that the Paracas deposits represent a cool 2017), and the fossil record of pristids from the water depositional palaeoenvironment – a view East Pisco Basin spans from the middle Eocene to that was previously proposed by DEVRIES et al. the late Miocene, sawfishes are currently absent (2006). This hypothesis was based on i) the oc- from the cool, upwelling-influenced coastal wa- currence of some taxa of foraminifera (e.g., the ters of present-day southern Peru – an observa- genera Bolivina ORBIGNY, 1839, Nonion MONTFORT, tion that might suggest warmer-than-today sea- 1808, and Uvigerina ORBIGNY, 1826) and nanno- water temperatures for the Lutetian nearshore [e.g., Coccolithus pelagicus (WALLICH, environments of southern Peru. This interpreta- 1877)] that are currently associated with cool tion fits perfectly the global climatic scenario of waters, and ii) the frequent observation of loose the middle Eocene, which was characterized by scales of clupeoid fishes (i.e., and sar- high temperatures worldwide (e.g., ZACHOS et al., dines), which correlates with relatively cool water 2001). Furthermore, it is consistent with previous environments in the Quaternary record of the reconstructions of the palaeoceanographic condi- Humboldt Current System off the Peruvian coast tions of the coastal sea of southern Peru, which in (UHEN et al., 2011, and references therein). Eocene times was likely characterized by a wea- However, a recent re-examination of the actua- ker-than-today upwelling system driven by a sort listic data about the micro- and nannofossil taxa of "proto-Humboldt" current; the latter would from the Yumaque deposits revealed a somewhat have comprised the eastern arm of the relatively weak correlation with cool waters (COLETTI et al., warm Southern Pacific gyre rather than represen- 2019), whereas the small-sized fish scales that ting a cooler byproduct of the circum-Antarctic are omnipresent in the same beds cannot be po- circulation (MARTY et al., 1988). In this respect, it sitively identified as belonging to any member of should be noted that the Lutetian records of

99

Carnets Geol. 20 (5)

Pristis spp. even include an occurrence from the possibly, on as well, thus further Seymour Island, (KRIWET, 2005), which compromising the fate of the South American Pa- suggests that the warm climate regime of the cific sawfish communities via mechanisms of ha- middle Eocene might have been reflected in a bitat loss and fragmentation. Therefore, in the phase of remarkable range expansion towards light of the above considerations, the disappea- the high latitudes for pristid sawfishes worldwide. rance of pristids from the coastal waters off sou- That said, what happened to the southeastern thern Peru could be interpreted as mainly reflec- Pacific pristids, leading to their eventual extirpa- ting the late Cenozoic trend of strengthening of tion from the southern Peruvian latitudes? Recent the Humboldt Current, although the interplay of research (CARRILLO-BRICEÑO et al., 2018; PARTAR- other environmental drivers (e.g., tectono- RIEU et al., 2018; VILLAFAÑA & RIVADENEIRA, 2018; eustatic factors leading to the emersion of the VILLAFAÑA et al., 2019) has investigated the role East Pisco Basin and other semi-enclosed shelf of physiological, ecological, and life-history traits, areas) might also have had a significant role in as well as the influence of environmental and causing the regional extirpation of sawfishes. historical factors in controlling the diversity and distribution of Pacific South American chondrich- Acknowledgments thyans in Neogene and Quaternary times, but Our gratitude to William MARTÍNEZ-VALLADARES sawfishes have not been specifically addressed by (Director of the Regional Geology Department, these studies. Nonetheless, some answers could INGEMMET), for making available the facilities for come from observing that another iconic tropical carrying out this study. Thanks are also due to cartilaginous fish, the extinct snaggletooth shark Rafael Martín VARAS-MALCA and Rodolfos SALAS- Hemipristis serra AGASSIZ, 1843, is thought to ha- GISMONDI (both at Museo de Historia Natural de la ve contracted its range northwards as cool condi- Universidad Nacional Mayor de San Marcos) for tions took hold along the coasts of southern Peru, their valuable assistance and fruitful discussion during a middle or late Miocene phase of a stron- on several aspects of the as- ger Humboldt Current (BOSIO et al., 2020). Simi- semblages of the East Pisco Basin. We are also larly, the horn shark Heterodontus BLAINVILLE, grateful to Claudio DI CELMA (Università di Came- 1816, seems to have been extirpated from most rino) for his strong support during fieldwork in of its southeastern Pacific grounds following a se- the East Pisco Basin. Constructive comments by ries of regional changes, including coo- Jürgen KRIWET (Institut für Paläontologie, Univer- ling due to coastal upwelling and advection of Su- sität Wien), Frederik MOLLEN (Elasmobranch Re- bantarctic water masses, during the Plio-Pleisto- search Belgium), and Jorge Domingo CARRILLO- cene (PARTARRIEU et al., 2018). A closer look at BRICEÑO (Paläontologisches Institut und Museum, the preferences of extant Pristis spp. Universität Zürich) greatly contributed to shape could provide some further insights. Nowadays, this work into its present form – we thank them pristids are regarded as highly imperilled fishes for their support. Not least, thanks are due to Ro- that are often associatedDRAFT with threatened sea- bert W. SCOTT (Precision Associates), grass meadows and forests (DULVY et Bruno GRANIER (Université de Bretagne Occidenta- al., 2014), some of which represent crucial nur- le), and Brian R. PRATT (University of Saskatche- sery grounds for these highly idiosyncratic rays wan) for their valuable and thorough editorial (SIMPFENDORFER, 2007). Present-day seagrasses support. are mostly known from tropical and subtropical This research was supported by a grant by environments; modern patches along Università di Pisa to Giovanni BIANUCCI (PRA_ the southeastern Pacific margin are limited to a 2017_0032). The present paper is a contribution few occurrences near Coquimbo, Chile (KUO, of the "Programa de Paleontología" of the Regio- 2005, and references therein), but meadows nal Geology Department, INGEMMET, and a result might have been more widespread along the of the "Convenio Específico" between the western coastline of South America in the past INGEMMET and the Museo de Historia Natural de (PHILLIPS et al., 1983). Mangrove forests are al- la Universidad Nacional Mayor de San Marcos. most exclusively tropical habitats, their geogra- phical spread being broadly delineated by the Bibliographic references 20°C winter sea-temperature isotherm; in parti- cular, South American Pacific are cur- AGASSIZ L. (1843).- Recherches sur les poissons rently restricted to north of 5°32' S by the effect fossiles. Tome III (livr. 15-16).- Imprimerie de of the cold Humboldt Current (HOGARTH, 2015). Petitpierre, Neuchâtel. However, the presence of mangrove fringes in ALLEN G.R. (1982).- Inland fishes of Western the East Pisco Basin during the lower Palaeogene .- Western Australian Museum, . has been hypothesised on the basis of the mol- BIANUCCI G., COLLARETA A., BOSIO G., LANDINI W., luscan assemblage of the Cuenca Member of the GARIBOLDI K., GIONCADA A., LAMBERT O., MALIN- Caballas Formation (DEVRIES, 2017, 2018), which VERNO E., MUIZON C. de, VARAS-MALCA R.M., VIL- stratigraphically underlies the Paracas strata LA I.M, COLETTI G., URBINA-SCHMITT M. & DI CEL- (DUNBAR et al., 1990; DEVRIES, 1998). Besides MA C. (2018).- Taphonomy and palaeoecology lowering coastal seawater temperatures to the of the lower Miocene marine vertebrate as- discomfort of pristids, a Neogene phase of a semblage of Ullujaya (Chilcatay Formation, stronger Humboldt Current would definitively East Pisco Basin, southern Peru).- Palæogeo- have had a deleterious effect on mangroves and, graphy, Palæoclimatology, Palæoecology, vol.

100

Carnets Geol. 20 (5)

511, p. 256-279. Alabama, USA.- Palaeontographica Abteilung BIANUCCI G., DI CELMA C., COLLARETA A., LANDINI W., A, Paläozoologie, Stratigraphie, Stuttgart, vol. POST K., TINELLI C., MUIZON C. de, BOSIO G., GA- 307, no. 1-6, p. 43-103. RIBOLDI K., GIONCADA A., MALINVERNO E., CANTA- CARRILLO-BRICEÑO J.D., CARRILLO J.D., AGUILERA O.A. LAMESSA G., ALTAMIRANO-SIERRA A, SALAS-GIS- & SANCHEZ-VILLAGRA M.R. (2018).- Shark and MONDI R., URBINA-SCHMITT M. & LAMBERT O. ray diversity in the Tropical America (Neotro- (2016a).- Fossil marine vertebrates of Cerro pics)—an examination of environmental and Los Quesos: Distribution of cetaceans, seals, historical factors affecting diversity.- PeerJ, crocodiles, seabirds, sharks, and bony fish in a vol. 6, article #e5313. late Miocene locality of the Pisco Basin, Peru.- CARRILLO-BRICEÑO J.D., LUZ Z., HENDY A., KOCSIS L., Journal of Maps, vol. 12, no. 5, p. 1037-1046. AGUILERA O. & VENNEMANN T. (2019).- Neogene BIANUCCI G., DI CELMA C., LANDINI W., POST K., TI- Caribbean elasmobranchs: diversity, paleoeco- NELLI C., MUIZON C. de, GARIBOLDI K., MALINVER- logy and paleoenvironmental significance of NO E., CANTALAMESSA G., GIONCADA A., COLLARETA the assemblage (Guajira Pe- A., SALAS-GISMONDI R., VARAS-MALCA R.M., URBI- ninsula, ).- Biogeosciences, vol. 16, NA-SCHMITT M. & LAMBERT O. (2016b).- Distribu- no. 1, p. 33-56. tion of fossil marine vertebrates in Cerro Colo- CARRILLO-BRICEÑO J.D., MAXWELL E., AGUILERA O.A., rado, the locality of the giant raptorial SÁNCHEZ R. & SÁNCHEZ-VILLAGRA M.R. (2015).- sperm whale melvillei (Miocene, Pisco Sawfishes and other elasmobranch assembla- Formation, Peru).- Journal of Maps, vol. 12, ges from the Mio-Pliocene of the South Carib- no. 3, p. 543-557. bean (Urumaco sequence, northwestern Vene- BIANUCCI G., LAMBERT O. & POST K. (2010).- High zuela).- PLOS ONE, vol. 10, article #e0139230. concentration of long-snouted beaked whales CASE G.R. (1994).- Fossil fish remains from the (genus Messapicetus) from the Miocene of Pe- Late Tuscahoma and Early Eocene ru.- Palaeontology, London, vol. 53, no. 5, p. Bashi formations of Meridian, Lauderdale 1077-1098. County, Mississippi. Part I. Selachians.- Pa- BLAINVILLE H.M.D. de (1816).- Prodrome d'une laeontographica Abteilung A, Paläozoologie- nouvelle distribution systématique du règne Stratigraphie, Stuttgart, vol. 230, p. 97-138 animal.- Bulletin de la Société Philomathique CASIER E. (1949).- Contributions à l'étude des de Paris, Paris, vol. 8, p. 105-112. poissons fossiles de la Belgique. VIII. Les BONAPARTE C.L.J.L. (1838).- Selachorum tabula Pristidés éocènes.- Bulletin de l'Institut royal analytica.- Nuovi Annali delle Scienze Naturali, des Sciences Naturelles de Belgique, Bruxel- Bologna, vol. 1, no. 2, p. 195-214. les, vol. 25, no. 10, p. 1-52. BOSIO G., MALINVERNO E., COLLARETA A., DI CELMA CICIMURRI D.J. (2007).- A partial rostrum of the C., GIONCADA A., PARENTE M., BERRA F., MARX sawfish Pristis lathami GALEOTTI, 1837, from F.G., VERTINO A., URBINA-SCHMITT M. & BIANUCCI the Eocene of South Carolina.- Journal of Pa- G. (2020).- StrontiumDRAFT Isotope Stratigraphy leontology, Lawrence, vol. 81, no. 3, p. 597- and the thermophilic fossil fauna from the 601. middle Miocene of the East Pisco Basin CLARKE J.A., KSEPKA D.T., SALAS-GISMONDI R., ALTA- (Peru).- Journal of South American Earth MIRANO-SIERRA A.J., SHAWKEY M.D., D'ALBA L., Sciences, Oxford, vol. 97, article #102399. VINTHER J., DEVRIES T.J. & BABY P. (2010).- BOURDON J. (1999).- The life and times of long Fossil evidence for evolution of the shape and dead sharks. Available from URL: http://www. color of penguin feathers.- Science, Washing- elasmo.com/, accessed on August 16, 2019. ton D.C., vol. 330, no. 6006, p. 954-957. BRAND L.R, ESPERANTE R., CHADWICK A.V., POMA- CLARKE J.A., KSEPKA D.T., STUCCHI M., URBINA- PORRAS O., ALOMIA M. (2004).- Fossil whale SCHMITT M., GIANNINI N., BERTELLI S., NARVÁEZ Y. preservation implies high accumulation & BOYD C.A. (2007).- Paleogene equatorial rate in the Miocene-Pliocene Pisco Formation challenge the proposed relationship of Peru.- Geology, Boulder, vol. 32, no. 2, p. between biogeography, diversity, and Ceno- 165-168. zoic climate change.- Proceedings of the Na- CAPPETTA H. (1980).- Les sélaciens du Crétacé su- tional Academy of Sciences, Washington D.C., périeur du Liban. II. Batoïdes.- Palaeontogra- vol. 104, no. 28, p. 11545-11550. phica Abteilung A, Paläozoologie-Stratigraphie, COLETTI G., BOSIO G., COLLARETA A., BUCKERIDGE J., Stuttgart, vol. 168, no. 5-6, p. 149-229. CONSANI S. & EL KATEB A. (2018).- Palaeoenvi- CAPPETTA H. (2006).- Elasmobranchii Post-Triadici ronmental analysis of the Miocene barnacle fa- (Index generum et specierum). In: REIGRAF W. cies: case studies from Europe and South (ed.), Fossilium Catalogus I: Animalia, Pars America.- Geologica Carpathica, Bratislava, 142.- Backhuys Publishers, Leiden, p. 1-472. vol. 69, no. 6, p. 573-592. CAPPETTA H. (2012).- Chondrichthyes. Mesozoic COLETTI G., BOSIO G., COLLARETA A., MALINVERNO E., and Cenozoic Elasmobranchii. Teeth. In: BRACCHI V., DI CELMA C., BASSO D., STAINBANK SCHULTZE H.P. (ed.), Handbook of Paleoich- S., SPEZZAFERRI S., CANNINGS T. & BIANUCCI G. thyology, vol. 3E.- Dr. Pfeil Verlag, Munich, p. (2019).- Biostratigraphic, evolutionary, and 1-512. paleoenvironmental significance of the sou- CAPPETTA H. & CASE G.R. (2016).- A selachian fau- thernmost lepidocyclinids of the Pacific coast na from the middle Eocene (Lutetian, Lisbon of South America (East Pisco Basin, southern Formation) of Andalusia, Covington County, Peru).- Journal of South American Earth

101

Carnets Geol. 20 (5)

Sciences, Oxford, vol. 96, article #102372. 124-167. COLLARETA A., CASATI S. & DI CENCIO A. (2017a).- A DEVRIES T.J., NAVAREZ Y., SANFILIPPO A., MALUMIAN pristid sawfish from the lower Pliocene of Luc- N. & TAPIA P. (2006).- New microfossil eviden- ciolabella (Radicofani basin, Tuscany, central ce for a late Eocene age of the Otuma Forma- Italy).- Atti della Società Toscana di Scienze tion (Southern Peru). In: XVIII Congreso Pe- Naturali, Memorie, Serie A, Pisa, vol. 124, no. ruano de Geología, Resúmenes extendidos 3, p. 49-55. (Actas).- Sociedad Geológica del Perú, Lima. COLLARETA A., CASATI S., CATANZARITI R. & DI CENCIO DI CELMA C., MALINVERNO E., BOSIO G., COLLARETA A. (2017b).- First record of the knifetooth A., GARIBOLDI K., GIONCADA A., MOLLI G., BASSO sawfish Anoxypristis (Elasmobranchii: Rhino- D., VARAS-MALCA R.M., PIERANTONI P.P., VILLA pristiformes) from the Pliocene of Tuscany I.M., LAMBERT O., LANDINI W., SARTI G., CANTALA- (central Italy).- Neues Jahrbuch für Geologie MESSA G., URBINA-SCHMITT M. & BIANUCCI G. und Paläontologie-Abhandlungen, Stuttgart, (2017).- Sequence stratigraphy and paleonto- vol. 284, p. 289-297. logy of the upper Miocene Pisco Formation COLLARETA A., LANDINI W., CHACALTANA-BUDIEL C., along the western side of the lower Ica valley VALDIVIA-VERA W., ALTAMIRANO-SIERRA A., URBI- (Ica Desert, Peru).- Rivista Italiana di Paleon- NA-SCHMITT M. & BIANUCCI G. (2017c).- A well tologia e Stratigrafia (Research in Paleontolo- preserved skeleton of the fossil shark Cosmo- gy and Stratigraphy), Milan, vol. 123, no. 2, p. politodus hastalis from the late Miocene of 255-274. Peru, featuring fish remains as fossilized sto- DI CELMA C., MALINVERNO E., BOSIO G., GARIBOLDI mach contents.- Rivista Italiana di Paleontolo- K., COLLARETA A., GIONCADA A., LANDINI W., PIE- gia e Stratigrafia (Research in Paleontology RANTONI P.P., BIANUCCI G. (2018b).- Intrafor- and Stratigraphy), Milan, vol. 123, no. 1, p. mational unconformities as a record of late 11-22. Miocene eustatic falls of sea level in the Pisco COLLARETA A., LANDINI W., LAMBERT O., POST K., Formation (southern Peru). Journal of Maps, TINELLI C., DI CELMA C., PANETTA D., TRIPODI M., vol. 14, no. 2, p. 607-619. SALVADORI P.A., CARAMELLA D., MARCHI D., URBI- DI CELMA C., MALINVERNO E., CANTALAMESSA G., NA-SCHMITT M. & BIANUCCI G. (2015).- Piscivory GIONCADA A., BOSIO G., VILLA I.M., GARIBOLDI K., in a Miocene Cetotheriidae of Peru: first record RUSTICHELLI A., PIERANTONI P.P., LANDINI W., TI- of fossilized stomach content for an extinct NELLI C., COLLARETA A. & BIANUCCI G. (2016).- baleen-bearing whale.- The Science of Nature Stratigraphic framework of the late Miocene (Naturwissenschaften), Berlin-Heidelberg, vol. Pisco Formation at Cerro Los Quesos (Ica De- 102, no. 11-12, article #70. sert, Peru). Journal of Maps, vol. 12, no.5, p. COMPAGNO L.J.V. (1977).- Phyletic relationships of 1020-1028. living sharks and rays.- American Zoologist, DI CELMA C., MALINVERNO E., COLLARETA A., BOSIO Lawrence, vol. 17, p. 303-322. G., GARIBOLDI K., LAMBERT O., LANDINI W., PIE- COMPAGNO L.J.V. & LASTDRAFT P.R. (1999).- Order Pristi- RANTONI P.P., GIONCADA A., VILLA I.M., COLETTI formes. Pristidae. Sawfishes. In: CARPENTER G., MUIZON C. de, URBINA-SCHMITT M. & BIANUCCI K.E. & NIEM V.H. (eds.), FAO Species Identifi- G. (2018a).- Facies analysis, stratigraphy and cation Guide for Fisheries Purposes. The Living marine vertebrate assemblage of the lower Marine Resources of the Western Central Paci- Miocene Chilcatay Formation at Ullujaya (Pisco fic. Volume 3. Batoid fishes, and basin, Peru).- Journal of Maps, vol. 14, no. 2, bony fishes. Part 1 (Elopidae to Linophryni- p. 257-268. dae).- FAO, Rome, p. 1410-1417. DI CELMA C., PIERANTONI P.P., MALINVERNO E., COLLA- DÁVILA D. (1989).- Estratigrafía Cenozoica del val- RETA A., LAMBERT O., LANDINI W., BOSIO G., GA- le del Río Grande, Cuenca de Pisco – Perú.- RIBOLDI K., GIONCADA A., MUIZON C. de, MOLLI Boletín de la Sociedad Geológica del Perú, Li- G., MARX F.G., VARAS-MALCA R.M., URBINA- ma, vol. 80, p. 65-76. SCHMITT M. & BIANUCCI G. (2019).- Allostrati- DEVRIES T.J. (1998).- deposition and graphy and paleontology of the lower Miocene Cenozoic sequence boundaries in the Pisco Ba- Chilcatay Formation in the Zamaca area, East sin (Peru).- Journal of South American Earth Pisco basin, southern Peru.- Journal of Maps, Sciences, Oxford, vol. 11, no. 3, p. 217-231. vol. 15, no. 2, p. 393-405. DEVRIES T.J. (2017).- Eocene stratigraphy and de- DUCARME F., LUQUE G.M. & COURCHAMP F. (2013).- positional history near Puerto Caballas (East What are "charismatic species" for conserva- Pisco Basin, Peru).- Boletín de la Sociedad tion biologists?- BioSciences Master Reviews, Geológica del Perú, Lima, vol. 112, p. 39-52. Lyon, vol. 2013 (July), p. 1-8. DEVRIES T.J. (2018).- Early Paleogene brackish- DULVY N.K., DAVIDSON L.N., KYNE P.M., SIMPFENDOR- water molluscs from the Caballas Formation of FER C.A., HARRISON L.R., CARLSON J.K. & FORD- the East Pisco Basin (Southern Peru).- Journal HAM S.V. (2014).- Ghosts of the coast: global of Natural History, London, vol. 53, no. 25-26, risk and conservation of sawfishes.- p. 1-52. Aquatic Conservation: Marine and Freshwater DEVRIES T.J. & JUD N.A. (2018).- Lithofacies pat- Ecosystems, London, vol. 26, no. 1, p. 134- terns and paleogeography of the Miocene Chil- 153. catay and lower Pisco depositional sequences DUNBAR R.B., MARTY R.C. & BAKER P.A. (1990).- (East Pisco Basin, Peru).- Boletín de la Socie- Cenozoic marine sedimentation in the Sechura dad Geológica del Perú, Lima, vol. jubilar 8, p. and Pisco basins, Peru.- Palæogeography, Pa-

102

Carnets Geol. 20 (5)

læoclimatology, Palæoecology, vol. 77, no. 3- 81, p. 141-152. 4, p. 235-261. HAMPEL A., KUKOWSKI N., BIALAS J., HEUBSCHER C. & ESPERANTE R., BRAND L.R., CHADWICK A.V. & POMA- HEINBOCKEL R. (2004).- Ridge subduction at an PORRAS O. (2015).- Taphonomy and paleoenvi- erosive margin: the collision zone of the Nazca ronmental conditions of deposition of fossil Ridge in southern Peru.- Journal of Geophysi- whales in the diatomaceous sediments of the cal Research, Lawrence, vol. 109, no.B2, arti- Miocene/Pliocene Pisco Formation, southern cle #B02101. Peru - a new Fossil-Lagerstätte.- Palæogeo- HERMAN J., HOVESTADT-EULER M., HOVESTADT D.C. & graphy, Palæoclimatology, Palæoecology, vol. STEHMANN M. (1997).- Part B: Batomorphii No. 417, p. 337-370. 2: Order Raijformes - Suborder: Pristoidei - ESPERANTE R., BRAND L.R., NICK K.E., POMA-PORRAS Family: Pristidae - Genera: Anoxypristis and O. & URBINA-SCHMITT M. (2008).- Exceptional Pristis No. 3: Suborder Rajoidei - Superfamily occurrence of fossil baleen in shallow marine Rhinobatoidea -Families: Rhinidae - Genera: sediments of the Neogene Pisco Formation, Rhina and and Rhinobatidae - Southern Peru.- Palæogeography, Palæoclima- Genera: , Platyrhina, Platyrhi- tology, Palæoecology, vol. 257, no. 3, p. 344- noidis, , Trygonorrhina, Zanobatus 360. and Zapteryx. In: STEHMANN M. (ed.), Contri- FARIA V.V., MCDAVITT M.T., CHARVET P., WILEY T.R., butions to the study of the comparative mor- SIMPFENDORFER C.A. & NAYLOR G.J.P. (2013).- phology of teeth and other relevant ichthyodo- Species delineation and global population rulites in living supra-specific taxa of Chon- structure of sawfishes drichthyan fishes. - Bulletin de l'Institut Royal (Pristidae).- Zoological Journal of the Linnean des Sciences Naturelles de Belgique – Biolo- Society, London, vol. 167, no. 1, p. 136-164. gie, Bruxelles, vol. 67, p. 107-162. FARRÉS F. (2003).- Mesopristis nov. gen. osonen- HOGARTH P.J. (2015).- The biology of mangroves sis nov. sp., nuevo género y especie de piez- and seagrasses. 3rd Edition.- Oxford University sierra del Eoceno de Vic, (Catalunya, NE. de Press, Oxford. España). - Batalleria, Barcelona, vol. 11, p. HSU J.T. (1992).- Quaternary uplift of the Peru- 93-113. vian coast related to the subduction of the GALEOTTI H. (1837).- Mémoire sur la constitution Nazca Ridge: 13.5 to 15.6 degrees South lati- géognostique de la Brabant. Mémoires de tude.- Quaternary International, London, vol. l'Académie des Sciences de la Belgique, 4, 15-16, p. 87-97. Bruxelles, vol. 12, no. 3, p. 1-193. HUXLEY T.H. (1880).- On the application of the GARIBOLDI K., GIONCADA A., BOSIO G., MALINVERNO laws of evolution to the arrangement of the E., DI CELMA C., TINELLI C., CANTALAMESSA G., Vertebrata, and more particularly of the Mam- LANDINI W., URBINA-SCHMITT M. & BIANUCCI G. malia.- Proceedings of the Zoological Society (2015).- The dolomite nodules enclosing fossil of London, London, vol. 1880, p. 649-662. marine vertebratesDRAFT in the East Pisco Basin, Pe- KOŠŤÁK M., JAGT J.W., SPEIJER R.P., STASSEN P. & ru: field and petrographic insights into the La- STEURBAUT E. (2013).- New Paleocene sepiid gerstätte formation.- Palæogeography, Palæo- coleoids (Cephalopoda) from Egypt: evolutio- climatology, Palæoecology, vol. 438, p. 81-95. nary significance and origin of the sepiid GARMAN S. (1906).- New Plagiostoma.- Bulletin of 'rostrum'.- PLOS ONE, vol. 8, article #e81180. the Museum of Comparative at Har- KRIWET J. (2005).- Additions to the Eocene vard College, Cambridge (Mass.), vol. 46, no. selachian fauna of Antarctica with comments 11, p. 203-208 on Antarctic selachian diversity.- Journal of GIONCADA A., COLLARETA A., GARIBOLDI K., LAMBERT Vertebrate Paleontology, Lawrence, vol. 25, O., DI CELMA C., BONACCORSI E., URBINA-SCHMITT no. 1, p. 1-7. M. & BIANUCCI G. (2016).- Inside baleen: ex- KUO J. (2005).- A revision of the genus ceptional microstructure preservation in a late Heterozostera (Zosteraceae).- Aquatic Botany, Miocene whale skeleton from Peru.- Geology, Cambridge, vol. 81, no. 2, p. 97-140. Boulder, vol. 44, no. 10, p. 839-842. LAMBERT O., BIANUCCI G., POST K., MUIZON C. de, GIONCADA A., GARIBOLDI K., COLLARETA A., DI CELMA SALAS-GISMONDI R., URBINA-SCHMITT M. & REUMER C., BOSIO G., MALINVERNO E., LAMBERT O., PIKE J. (2010).- The giant bite of a new raptorial J., URBINA-SCHMITT M. & BIANUCCI G. (2018a).- sperm whale from the Miocene epoch of Peru.- Looking for the key to preservation of fossil Nature, London, vol. 466, p. 105-108. marine vertebrates in the Pisco Formation of LAMBERT O., BIANUCCI G., SALAS-GISMONDI R., DI Peru: new insights from a small skele- CELMA C., STEURBAUT E., URBINA-SCHMITT M. & ton.- Andean Geology, Santiago, vol. 45, no. MUIZON C. de (2019).- An amphibious whale 3, p. 379-398. from the middle Eocene of Peru reveals early GIONCADA A., PETRINI R., BOSIO G., GARIBOLDI K., South Pacific dispersal of quadrupedal ceta- COLLARETA A., MALINVERNO E., BONACCORSI E., DI ceans.- Current Biology, London, vol. 29, no. CELMA C., PASERO M., URBINA-SCHMITT M. & BIA- 8, p. 1352-1359. NUCCI G. (2018b).- Insights into the diagenetic LAMBERT O., COLLARETA A., LANDINI W., POST K., RA- environment of fossil marine vertebrates of MASSAMY B., DI CELMA C., URBINA-SCHMITT M. & the Pisco Formation (late Miocene, Peru) from BIANUCCI G. (2015).- No deep diving: evidence mineralogical and Sr-isotope data.- Journal of of on epipelagic fish for a stem bea- South American Earth Sciences, Oxford, vol. ked whale from the Late Miocene of Peru.-

103

Carnets Geol. 20 (5)

Proceedings of the Royal Society B: Biological the terminal Eocene event.- Geology, Boulder, Sciences, London, vol. 282, no. 1815, article# vol. 16, no. 9, p. 818-822. 20151530. MARX F.G., COLLARETA A., GIONCADA A., POST K., LAMBERT O., MARTÍNEZ-CÁCERES M., BIANUCCI G., DI LAMBERT O., BONACCORSI E., URBINA-SCHMITT M. & CELMA C., SALAS-GISMONDI R., STEURBAUT E., UR- BIANUCCI G. (2017).- How whales used to fil- BINA-SCHMITT M. & MUIZON C. de (2017).- Ear- ter: exceptionally preserved baleen in a Mioce- liest mysticete from the Late Eocene of Peru ne cetotheriid.- Journal of Anatomy, London, sheds new light on the origin of baleen wha- vol. 231, no. 2, p. 212-220. les.- Current Biology, London, vol. 27, no. 10, MENDOZA A., KELEZ S., CHERRES W.G. & MAGUIÑO R. p. 1535-1541. (2017).- The , Pristis pristis LANDINI W., ALTAMIRANO-SIERRA A., COLLARETA A., DI (LINNAEUS, 1758), is not extirpated from Peru: CELMA C., URBINA-SCHMITT M. & BIANUCCI G. new records from Tumbes.- Check List, vol. (2017a).- The late Miocene elasmobranch as- 13, p. 261-265. semblage from Cerro Colorado (Pisco Forma- MILLER W.A. (1974).- Observations on the develo- tion, Peru). Journal of South American Earth ping rostrum and rostral teeth of sawfish: Sciences, Oxford, vol. 73, p. 168-190. Pristis perotteti and P. cuspidatus.- Copeia, LANDINI W., COLLARETA A., PESCI F., DI CELMA C., Lawrence, 1974, no. 2, p. 311-318. URBINA-SCHMITT M., BIANUCCI G. (2017b).- A se- MONTFORT P.D. de (1808).- Conchyliologie condary nursery area for the systématique et classification méthodique des brachyurus from the late Mioce- coquilles. Vol. 1.- Schoell, Paris. ne of Peru.- Journal of South American Earth MORALES-REYNA M.C., CHACALTANA-BUDIEL C. & VAL- Sciences, Oxford, vol. 78, p. 164-174. DIVIA-VERA W. (2010).- Lepidocyclina (Lepido- LANDINI W., COLLARETA A., DI CELMA C., MALINVERNO cyclina) peruviana (CUSHMAN) en la Cuenca E., URBINA-SCHMITT M. & BIANUCCI G. (2019).- Pisco: geocronologia y paleoambiente.- Socie- The early Miocene elasmobranch assemblage dad Geológica del Perú, Special Publication, Li- from Zamaca (Chilcatay Formation, Peru).- ma, vol. 9, p. 237-240. Journal of South American Earth Sciences, Ox- MORALES-REYNA M.C., TEJADA-MEDINA L., CHACALTA- ford, vol. 91, p. 352-371. NA-BUDIEL C. (2013).- Significado de la presen- LANGE T, BREHM J. & MORITZ T. (2015).- A practical cia del foraminifero Amphistegina sp. del Pa- key for the identification of large fish rostra.- leógeno en la cuenca Pisco. In: I Simposio In- Spixiana, München, vol. 38, no. 1, 145-160. ternacional de Paleontologia del Perú, Libro de LAST P.R., WHITE W.T., CARVALHO M.R. de, SÉRET Resúmenes.- INGEMMET, Lima, p. 29-31. B., STEHMANN M.F.W. & NAYLOR G.J.P. (2016).- MUIZON C. de (1988).- Les vertébrés de la Forma- Rays of the World.- CSIRO Publishing, Mel- tion Pisco (Pérou). Troisième partie: Les odon- bourne. tocètes (Cetacea, Mammalia) du Miocène.- LATHAM J. (1794).- An essay on the various spe- Travaux de l'Institut Français d'Études Andi- cies of Sawfish.- TransactionsDRAFT of the Linnean nes, Lima, vol. 42, no. 3, p. 1-244. Society of London, London, vol. 2, p. 273-282. MUIZON C. de & DEVRIES T.J. (1985).- Geology and LEÓN W., ALEMAN A., TORRES V., ROSELL W. & CRUZ paleontology of late Cenozoic marine deposits O. de la (2008).- Estratigrafía, sedimentología in the Sacaco area (Peru).- Geologische Rund- y evolución tectónica de la cuenca Pisco schau, vol. 74, p. 547-563. Oriental.- Boletín INGEMMET, Lima, ser. D., MÜLLER J. & HENLE J. (1841).- Systematische vol. 27, p. 144. Beschreibung der Plagiostomen.- Von Veit, LERICHE M. (1905).- Les poissons Éocènes de la Berlin. Belgique.- Mémoires du Musée Royal d'Histoire NACSN [North American Commission on Strati- Naturelle de Belgique, Bruxelles, vol. 3, no. 3, graphic Nomenclature] (2005).- North Ameri- p. 49-228. can stratigraphic code.- American Association LINCK H.F. (1790).- Versuch einer Eintheilung der of Petroleum Geologists Bulletin, Tulsa, vol. Fische nach den Zähnen.- Magazin für das 89, p. 1547-1591. Neueste aus der Physik und Naturgeschichte, NAYLOR G.J.P., CAIRA J.N., JENSEN K., ROSANA Gotha, vol. 6, no. 3, p. 28-38. K.A.M., STRAUBE N. & LAKNER C. (2012).- Elas- LINNAEUS C. (1758).- Systema Naturae. Editio de- mobranch phylogeny: A mitochondrial estima- cima, reformata. Tomus I.- L. Salvius, Stock- te based on 595 species. In: CARRIER J.C., MU- holm. SICK J.A. & HEITHAUS M.R. (eds.), Biology of MACHARÉ J. & ORTLIEB L. (1992).- Plio-Quaternary sharks and rays and their relatives.- CRC vertical motions and the subduction of the Press, Boca Raton, p. 31-57. Nazca Ridge, central coast of Peru.- Tectono- NEVATTE R.J., WUERINGER B.E., JACOB D.E., PARK physics, vol. 205, no. 1-3, p. 97-108. J.M. & WILLIAMSON J.E. (2017).- First insights MARSILI S. (2006).- Analisi sistematica, paleoeco- into the function of the rostrum logica e paleobiogeografica della selaciofauna through examination of rostral tooth micro- Plio-Pleistocenica del Mediterraneo.- Ph.D. wear.- Journal of Fish Biology, London, vol. Thesis, Università di Pisa, Pisa. 91, no. 6, p. 1582-1602. MARTY R., DUNBAR R., MARTIN J.B. & BAKER P. ORBIGNY, A.D. d' (1826).- Tableau méthodique de (1988).- Late Eocene diatomite from the Peru- la classe des Céphalopodes.- Annales des vian coastal desert, coastal upwelling in the Sciences Naturelles, Paris, vol. 7, no. 7, p. 96- eastern Pacific, and Pacific circulation before 169, 245-314.

104

Carnets Geol. 20 (5)

ORBIGNY, A.D. d' (1839).- Foraminifères. In: SA- 1-28. GRA R. de la, Histoire Physique, Politique et VILLAFAÑA J.A. & RIVADENEIRA M.M. (2018).- The Naturelle de l'île de .- A. Bertrand, Paris, modulating role of traits on the biogeographic p. 1-224. dynamics of chondrichthyans from the Neoge- PARTARRIEU D., VILLAFAÑA J.A., PINTO L., MOURGUES ne to the present.- Paleobiology, Lawrence, F.A., OYANADEL-URBINA P.A., RIVADENEIRA M.M. & vol. 44, no. 2, p. 251-262. CARRILLO-BRICEÑO J.D. (2018).- Neogene 'horn VILLAFAÑA J.A., NIELSEN S.N., KLUG S. & KRIWET J. sharks' Heterodontus (Chondrichthyes: Elas- (2019).- Early Miocene cartilaginous fishes mobranchii) from the Southeastern Pacific and (Chondrichthyes: , Elasmobranchii) their paleoenvironmental significance.- Ame- from Chile: diversity and palaeobiogeographic ghiniana, , vol. 55, no. 6, p. 651- implications.- Journal of South American Earth 667. Sciences, Oxford, vol. 96, article #102317. PHILLIPS R.C., SANTELICES B., BRAVO R. & MCROY WALLICH G.C. (1877).- Observations on the cocco- C.P. (1983).- Heterozostera tasmanica (MAR- sphere.- Annals and Magazine of Natural TENS ex ASCHERS.) den HARTOG in Chile.- Aqua- History, London, ser. 4, vol. 19, no. 34, p. tic Botany, Cambridge, vol. 15, no. 2, 195- 342-350. 200. WEIGMANN S. (2016).- Annotated checklist of the PILGER R.H. (1981).- Plate reconstructions, aseis- living sharks, batoids and chimaeras (Chon- mic ridges, and low-angle subduction beneath drichthyes) of the world, with a focus on bio- the Andes.- Geological Society of America Bul- geographical diversity.- Journal of Fish Biolo- letin, Boulder, vol. 92, p. 448-456. gy, London, vol. 88, no. 3, p. 837-1037. RIVERA R. (1957).- Moluscos fosiles de la Forma- WELTEN M., SMITH M.M., UNDERWOOD C. & JOHANSON cion Paracas, dpto. de Ica.- Boletín de la So- Z. (2015).- Evolutionary origins and develop- ciedad Geológica del Perú, Lima, vol. 32, p. ment of saw-teeth on the sawfish and saw- 165-219. shark rostrum (Elasmobranchii; Chondrich- SEITZ J.C. & HOOVER J.J. (2017).- Taxonomic reso- thyes).- Royal Society Open Science, vol. 2, lution of sawfish rostra from two private col- article #150189. lections.- Research, 32, WHITE E.I., MOY-THOMAS J.A. (1941).- Notes on the 525-532. nomenclature of fossil fishes. Part III. Homo- SHIMADA K., CHANDLER R.E., LAM O.L.T., TANAKA T. & nyms M-Z. Annals and Magazine of Natural WARD D.J. (2017).- A new elusive otodontid History, Series 11, London, ser. 11, no. 25, shark (: ) from the vol. 7, p. 395-400. lower Miocene, and comments on the taxono- WHITTY J.M., PHILLIPS N.M., THORBURN D.C., SIMP- my of otodontid genera, including the 'mega- FENDORFER C.A., FIELD I., PEVERELL S.C. & MOR- toothed' .- Historical Biology, London, GAN D.L. (2014).- Utility of rostra in the identi- vol. 29, no. 5, p. 704-714. fication of Australian sawfishes (Chondrich- SIMPFENDORFER C.A. (2007).-DRAFT The importance of thyes: Pristidae).- Aquatic Conservation: Mari- mangroves as nursery habitat for smalltooth ne and Freshwater Ecosystems, London, vol. sawfish (Pristis pectinata) in South .- 24, no. 6, p. 791-804. Bulletin of Marine Science, Miami, vol. 80, no. WUERINGER B.E., PEVERELL S.C., SEYMOUR J., SQUIRE 3, p. 933-934. Jr L., KAJIURA S.M. & COLLIN S.P. (2011).- Sen- TSUCHI R., SHUTO T., TAKAYAMA T., FUJIYOSHI A., sory systems in sawfishes. 1. The ampullae of KOIZUMI I., IBARAKI M., RANGEL Z.C. & ALDANA LORENZINI.- Brain, Behavior and Evolution, Ba- A.M. (1988).- Fundamental data on Cenozoic sel, vol. 78, no. 2, p. 139-149. biostratigraphy of the Pacific coast of Peru. In: WUERINGER B.E., SQUIRE Jr L. & COLLIN S.P. TSUCHI R. (ed.), Reports of Andean Studies, (2009).- The biology of extinct and extant Special Volume 2. Shizuoka University, Shi- sawfish (: and zuoka, p. 45-70. Pristidae).- Reviews in Fish Biology and Fishe- UHEN M.D., PYENSON N.D., DEVRIES T.J., URBINA- ries, London, vol. 19, p. 445-464. SCHMITT M., RENNE P.R. (2011).- New middle ZACHOS J., PAGANI M., SLOAN L., THOMAS E. & BIL- Eocene whales from the Pisco Basin of Peru.- LUPS K. (2001).- Trends, Rhythms, and Aberra- Journal of Paleontology, Lawrence, vol. 85, p. tions in Global Climate 65 Ma to Present.- 955-969. Science, Washington D.C., vol. 292, no. 5517, VIGLIAROLO G. (1891).- Monografia dei Pristis fos- p. 686-693. sili con la descrizione di una nuova specie nel ZBYSZEWSKI G. (1947).- Découverte d'un rostre de calcare miocenico di Lecce.- Atti della Reale grand Pristis dans l'Helvétien de Lisbonne.- Accademia delle Scienze Fisiche e Matemati- Boletim da Sociedade Geológica de Portugal, che di Napoli, Napoli, ser. 2, vol. 4, app. 3, p. Lisbon, vol. 6, p. 236-242.

105