A Geologic Look at the Aristarchus Plateau As a Potential Landing Site for Human Lunar Return
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon
minerals Article Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon Claire L. McLeod 1,* and Barry J. Shaulis 2 1 Department of Geology and Environmental Earth Sciences, 203 Shideler Hall, Miami University, Oxford, OH 45056, USA 2 Department of Geosciences, Trace Element and Radiogenic Isotope Lab (TRaIL), University of Arkansas, Fayetteville, AR 72701, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-513-529-9662 Received: 5 July 2018; Accepted: 8 October 2018; Published: 16 October 2018 Abstract: The abundance of the rare earth elements (REEs) in Earth’s crust has become the intense focus of study in recent years due to the increasing societal demand for REEs, their increasing utilization in modern-day technology, and the geopolitics associated with their global distribution. Within the context of chemically evolved igneous suites, 122 REE deposits have been identified as being associated with intrusive dike, granitic pegmatites, carbonatites, and alkaline igneous rocks, including A-type granites and undersaturated rocks. These REE resource minerals are not unlimited and with a 5–10% growth in global demand for REEs per annum, consideration of other potential REE sources and their geological and chemical associations is warranted. The Earth’s moon is a planetary object that underwent silicate-metal differentiation early during its history. Following ~99% solidification of a primordial lunar magma ocean, residual liquids were enriched in potassium, REE, and phosphorus (KREEP). While this reservoir has not been directly sampled, its chemical signature has been identified in several lunar lithologies and the Procellarum KREEP Terrane (PKT) on the lunar nearside has an estimated volume of KREEP-rich lithologies at depth of 2.2 × 108 km3. -
A Zircon U-Pb Study of the Evolution of Lunar KREEP
A zircon U-Pb study of the evolution of lunar KREEP By A.A. Nemchin, R.T. Pidgeon, M.J. Whitehouse, J.P. Vaughan and C. Meyer Abstract SIMS U-Pb analyses show that zircons from breccias from Apollo 14 and Apollo 17 have essentially identical age distributions in the range 4350 to 4200 Ma but, whereas Apollo 14 zircons additionally show ages from 4200 to 3900 Ma, the Apollo 17 samples have no zircons with ages <4200 Ma. The zircon results also show an uneven distribution with distinct peaks of magmatic activity. In explaining these observations we propose that periodic episodes of KREEP magmatism were generated from a primary reservoir of KREEP magma, which contracted over time towards the centre of Procellarum KREEP terrane. Introduction One of the most enigmatic features of the geology of the Moon is the presence of high concentrations of large ion lithophile elements in clasts from breccias from non mare regions. This material, referred to as KREEP (1) from its high levels of K, REE and P, also contains relatively high concentrations of other incompatible elements including Th, U and Zr. Fragments of rocks with KREEP trace element signatures have been identified in samples from all Apollo landing sites (2). The presence of phosphate minerals, such as apatite and merrillite (3); zirconium minerals, such as zircon (4), zirconolite (5) and badelleyite (6), and rare earth minerals such as yttrobetafite (7), are direct expressions of the presence of KREEP. Dickinson and Hess (8) concluded that about 9000 ppm of Zr in basaltic melt is required to saturate it with zircon at about 1100oC (the saturation concentration increases exponentially with increasing temperature). -
Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process -
Complex Explosive Volcanic Activity on the Moon Within Oppenheimer Crater
Icarus 273 (2016) 296–314 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Complex explosive volcanic activity on the Moon within Oppenheimer crater ∗ Kristen A. Bennett a, ,BrionyH.N. Horgan b, Lisa R. Gaddis c, Benjamin T. Greenhagen d, Carlton C. Allen e,PaulO. Hayne f, James F. Bell III a, David A. Paige g a School of Earth and Space Exploration, Arizona State University. ISTB4 Room 795, 781 Terrace Mall, Tempe AZ 85287, United States b Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, United States c Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, AZ 86001, United States d Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723, United States e NASA Johnson Space Center, Emeritus, 2101 NASA Road 1, Houston, TX 77058, United States f NASA Jet Propulsion Laboratory, 4800 Oak Grove Dr, Pasadena, CA 91109, United States g Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles E Young Dr E, Los Angeles, CA 90095, United States a r t i c l e i n f o a b s t r a c t Article history: Oppenheimer crater is a floor-fractured crater located within the South Pole–Aitken basin on the Moon, Received 27 July 2015 and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized Revised 10 December 2015 pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian Accepted 3 February 2016 eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining Available online 10 February 2016 inferred to form larger regional deposits. -
GRAIL-Identified Gravity Anomalies In
Solar System Exploration Division, GSFC Code 690 GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and volcanic/magmatic structures on the Moon Ariel N. Deutsch1, Gregory A. Neumann2, James W. Head1 1Department of Earth, Environmental and Planetary Sciences, Brown University, 2NASA Goddard Space Flight Center Introduction: Lunar gravity anomalies. Positive Bouguer gravity anomalies. • Four distinctive positive Bouguer gravity anomalies are • Previous work has suggested that these four positive gravity anomalies may be due to: -Subsurface volcanic sills [2]. • New, higher-resolution GRAIL data [3] allow for the re- analysis of these anomalies. • Understanding the subsurface density structures that contribute to these anomalies is important in order to discuss regional impact and volcanic histories, and the evolution of the lunar crust in Oceanus Procellarum. Objectives. 1. Constrain subsurface structures that contribute to the . four positive Bouguer gravity anomalies. 2. Discuss the hidden impact and volcanic histories of . the Moon. Methods. Results: Filled and buried impact craters. RESULTS: MANTLE UPWELLING • Six geologic end-member scenarios are explored to 20 200 1. Filled and Buried Impact 2. Southern Aristarchus Plateau analyze the four observed gravitational anomalies. 15 Model 3 10 GRAIL 100 • Impact crater parameters [e.g., 4] are estimated to C Gravity 5 B from uplift Gravity from A 0 0 km -3 km km ρ = 3150 kg m -5 mGal mGal • Analyses of the generation, ascent, and eruption of -3 mGal ρ = 2800 kg m crater -10 Surface topography -100 -3 of subsurface magmatic structures and also the . -15 ∆ρ = 600 kg m Highland crust -20 -200 Mantle interpretation of surface volcanic features. -
Water on the Moon, III. Volatiles & Activity
Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere). -
Lunar and Planetary Science XXXII (2001) 1815.Pdf
Lunar and Planetary Science XXXII (2001) 1815.pdf NEW AGE DETERMINATIONS OF LUNAR MARE BASALTS IN MARE COGNITUM, MARE NUBIUM, OCEANUS PROCELLARUM, AND OTHER NEARSIDE MARE H. Hiesinger1, J. W. Head III1, U. Wolf2, G. Neukum2 1 Department of Geological Sciences, Brown University, Providence, RI 02912, [email protected] 2 DLR-Inst. of Planetary Exploration, Rutherfordstr. 2, 12489 Berlin/Germany Introduction see a second small peak in volcanic activity at ~2-2.2 Lunar mare basalts cover about 17% of the lunar b.y. surface [1]. A significant portion of lunar mare basalts are exposed within Oceanus Procellarum for which Oceanus Procellarum, Mare Cognitum, Mare Nubium absolute radiometric age data are still lacking. Here we (Binned Ages of Mare Basalts) present age data that are based on remote sensing 20 techniques, that is, crater counts. We performed new crater size-frequency distribution measurements for spectrally homogeneous basalt units in Mare Cogni- 15 tum, Mare Nubium, and Oceanus Procellarum. The investigated area was previously mapped by Whitford- Stark and Head [2] who, based on morphology and 10 spectral characteristics, defined 21 distinctive basalt Frequency types in this part of the lunar nearside. Based on a high-resolution Clementine color ratio composite (e.g., 5 750-400/750+400 ratio as red, 750/990 ratio as green, and 400/750 ratio as blue), we remapped the distribu- 0 tion of distinctive basalts and found that their map well 1.1 1.5 2 2.5 3 3.5 4 discriminates the major basalt types. However, based Age [b.y.; bins of 100 m.y.] on the new high-resolution color data several of their units can be further subdivided into spectrally different Fig. -
The Stratigraphy of Mare Basalts in Oceanus Procellarum: Initial Results from New Crater Size-Frequency Distribution Measurements
ICEUM4, 10-15 July 2000, ESTEC, Noordwijk, The Netherlands The Stratigraphy of Mare Basalts in Oceanus Procellarum: Initial Results from New Crater Size-Frequency Distribution Measurements H. Hiesinger, J.W. Head III (Dept. of Geological Sciences, Brown University, USA); Wolf, U., Neukum, G. (DLR- Institute of Space Sensor Technology and Planetary Exploration, Germany) The stratigraphy of basalts in Oceanus Procellarum was previously investigated by Whitford-Stark and Head [1]. Based on morphologic studies, spectral reflectance and other remote sensing information they defined 21 distinctive basalt units, grouped into four formations, the Repsold-, Telemann-, Hermann-, and the Sharp-Formation. We produced a high-resolution Clementine color ratio image, superposed their map, and found that it generally discriminates well between the major spectral basalt types. However, we found that several units can be further subdivided into spectrally different basalt sub-types. The spatial distribution of previously published age data [2, 3] does not correlate with the outline of these spectrally defined units. Therefore we performed new crater size-frequency distribution measurements for spectrally and morphologically defined basalts in order to investigate the stratigraphy of basalts in Oceanus Procellarum. Our crater counts show that active mare volcanism in Oceanus Procellarum occured over a long period of time from about 1.3 b.y. to about 3.6-3.7 b.y. Lichtenberg, a bright ray crater, is partly embayed by basalt flows which cover the bright rays. Consequently, this basalt was thought to be the very youngest basalt, i.e. Copernican in age, and to mark the end of lunar volcanism [4]. However, our data show that the Lichtenberg Basalt is about 2 b.y. -
Volcanic Plume, Not an Asteroid, Likely Created the Moon's Largest Basin 1 October 2014, by Jennifer Chu
Solving the mystery of the 'man in the moon': Volcanic plume, not an asteroid, likely created the moon's largest basin 1 October 2014, by Jennifer Chu by a massive asteroid. Instead, researchers believe that the angular outline was produced by giant tension cracks in the moon's crust as it cooled around an upwelling plume of hot material from the deep interior. Maria Zuber, the E.A. Griswold Professor of Geophysics and also MIT's vice president for research, says that as cracks occurred, they formed a "plumbing system" in the moon's crust The Moon as observed in visible light (left), topography through which magma could meander to the (center, where red is high and blue is low), and the surface. Magma eventually filled the region's GRAIL gravity gradients (right). The Procellarum region smaller basins, creating what we see today as dark is a broad region of low topography covered in dark spots on the near side of the moon—features that mare basalt. The gravity gradients reveal a giant rectangular pattern of structures surrounding the region. have inspired the popular notion of a "man in the Credit: NASA/Colorado School of moon." Mines/MIT/JPL/Goddard Space Flight Center "A lot of things in science are really complicated, but I've always loved to answer simple questions," says Zuber, who is principal investigator for the New data obtained by NASA's GRAIL mission GRAIL (Gravity Recovery and Interior Laboratory) reveals that the Procellarum region on the near mission. "How many people have looked up at the side of the moon—a giant basin often referred to as moon and wondered what produced the pattern we the "man in the moon"—likely arose not from a see—let me tell you, I've wanted to solve that one!" massive asteroid strike, but from a large plume of magma deep within the moon's interior. -
GRAIL-Identified Gravity Anomalies in Oceanus Procellarum: Insight Into 2 Subsurface Impact and Magmatic Structures on the Moon 3 4 Ariel N
1 GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into 2 subsurface impact and magmatic structures on the Moon 3 4 Ariel N. Deutscha, Gregory A. Neumannb, James W. Heada, Lionel Wilsona,c 5 6 aDepartment of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 7 02912, USA 8 bNASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 9 cLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK 10 11 Corresponding author: Ariel N. Deutsch 12 Corresponding email: [email protected] 13 14 Date of re-submission: 5 April 2019 15 16 Re-submitted to: Icarus 17 Manuscript number: ICARUS_2018_549 18 19 Highlights: 20 • Four positive Bouguer gravity anomalies are analyzed on the Moon’s nearside. 21 • The amplitudes of the anomalies require a deep density contrast. 22 • One 190-km anomaly with crater-related topography is suggestive of mantle uplift. 23 • Marius Hills anomalies are consistent with intruded dike swarms. 24 • An anomaly south of Aristarchus has a crater rim and possibly magmatic intrusions. 25 26 Key words: 27 Moon; gravity; impact cratering; volcanism 1 28 Abstract 29 30 Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter 31 (~90–190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central 32 Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of 33 Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic 34 complex (north and south). Each is characterized by distinct surface geologic features suggestive 35 of ancient impact craters and/or volcanic/plutonic activity. -
Grail-Identified Gravity Anomalies in Procellarum: Insight Into Subsurface Im- Pact and Volcanic/Magmatic Structures on the Moon
GRAIL-IDENTIFIED GRAVITY ANOMALIES IN PROCELLARUM: INSIGHT INTO SUBSURFACE IM- PACT AND VOLCANIC/MAGMATIC STRUCTURES ON THE MOON. Ariel N. Deutsch1, Gregory A. Neu- mann2, James W. Head1, and Lionel Wilson1,3, 1Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA, 2NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA, 3Lan- caster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK ([email protected]). Introduction: Oceanus Procellarum on the Moon model the crust as being occupied by ~25% volume of hosts four positive Bouguer gravity anomalies (PBGAs) dikes (density contrast of 150 kg/m3) to correspond to that are similar in diameter (~100–120 km), gravita- the GRAIL-derived signal. Given the volume (10,000 tional amplitude (>100 mGal contrast), and shape (ap- m3) of the Marius Hills complex, at least 10 large-vol- proximately circular in planform) (Fig. 1). However, ume dikes are required [4]. The presence of a deep man- these spatially associated PBGAs are characterized by tle reservoir is necessary in our forward model to corre- distinct surface geologies. These four PBGAs are im- late with the magnitude of the anomalies. A long-lived portant in understanding the impact and volcanic/plu- source in the mantle feeding multiple dikes is also con- tonic history of the Moon, in a region of elevated tem- sistent with the generation, ascent, and eruption of peratures due to the Procellarum KREEP Terrane [1]. magma on the Moon [4]. Mantle upwelling: Mare-filled craters are consistent with the circular shapes of the anomalies and the topo- graphic expression of Southern AP [8] and N. -
Science Concept 7: the Moon Is a Natural Laboratory for Regolith Processes and Weathering on Anhydrous Airless Bodies
Science Concept 7: The Moon is a Natural Laboratory for Regolith Processes and Weathering on Anhydrous Airless Bodies Science Concept 7: The Moon is a natural laboratory for regolith processes and weathering on anhydrous airless bodies Science Goals: a. Search for and characterize ancient regolith. b. Determine the physical properties of the regolith at diverse locations of expected human activity. c. Understand regolith modification processes (including space weathering), particularly deposition of volatile materials. d. Separate and study rare materials in the lunar regolith. INTRODUCTION The Moon is unmodified by processes that have changed other terrestrial planets, including Mars, and thus offers a pristine history of evolution of the terrestrial planets. Though Mars demonstrates the evolution of a warm, wet planet, water is an erosive substance that can erase a planet‘s geological history. The Moon, on the other hand, is anhydrous. It has never had liquid water on its surface. The Moon is also airless, as opposed to the Venus, the Earth, and Mars. An atmosphere, too, is a weathering component that can distort a planet‘s geologic history. Thus, the Moon offers a pristine history of the evolution of terrestrial planets that can increase our understanding of the formation of all rocky bodies, including the Earth. Additionally, the Moon offers many resources that can be exploited, from metals like iron and titanium to implanted volatiles like hydrogen and helium. There is evidence for water at the poles in permanently shadowed regions (PSRs) (Nozette et al., 1996). Such volatiles could not only support human exploration and habitation on the Moon, but they could also be the constituents for fuel or fuel cells to propel explorers to farther reaches of the Solar System (NRC, 2007).