Extraordinarily Rapid Speciation in a Marine Fish
Extraordinarily rapid speciation in a marine fish Paolo Momiglianoa,1, Henri Jokinenb,2, Antoine Fraimoutc,2, Ann-Britt Florind, Alf Norkkob,e, and Juha Meriläa aEcological Genetics Research Unit, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland; bTvärminne Zoological Station, University of Helsinki, FI-10900 Hanko, Finland; cInstitut National de la Recherche Agronomique UMR, Centre de Biologie pour la Gestion des Populations (Institut National de la Recherche Agronomique/Institut de Recherche pour le Développement /Cirad/Montpellier SupAgro), FR-34988 Montferrier-sur-Lez, France; dDepartment of Aquatic Resources, Swedish University of Agricultural Sciences, SE-74242 Öregrund, Sweden; and eBaltic Sea Centre, Stockholm University, SE-10691 Stockholm, Sweden Edited by Dolph Schluter, University of British Columbia, Vancouver, BC, Canada, and accepted by Editorial Board Member Douglas Futuyma April 25, 2017 (received for review September 20, 2016) Divergent selection may initiate ecological speciation extremely enhances divergence at increasingly weakly selected loci, which in rapidly. How often and at what pace ecological speciation proceeds turn reduces gene flow (4). to yield strong reproductive isolation is more uncertain. Here, we In the marine environment, evidence for ecological speciation is document a case of extraordinarily rapid speciation associated with scarce (8). This is somehow surprising: barriers to gene flow are ecological selection in the postglacial Baltic Sea. European flounders rarely absolute in the sea, hence models of speciation that can (Platichthys flesus) in the Baltic exhibit two contrasting reproductive operate in the presence of gene flow, such as ecological speciation, behaviors: pelagic and demersal spawning. Demersal spawning en- are likely to be important in explaining marine biodiversity (8).
[Show full text]