Lessons from Rambus – Play by the Rules in Standards Setting

Total Page:16

File Type:pdf, Size:1020Kb

Lessons from Rambus – Play by the Rules in Standards Setting clarity, a duty of good faith underlies the stan- dard-setting process” and noted that Rambus Lessons from Rambus – Play and other JEDEC members understood that patent applications needed to be disclosed.5 by the Rules in Standards Conversely, the Federal Circuit opined that Rambus had no duty to disclose its intention to amend pending claims to cover the pro- Setting Organizations posed standards under consideration.6 Rambus was a member of the JEDEC sub- goal of such policies is to prevent an SSO BY DEAN DUNLAVEY, PARTNER, AND MICHAEL SCHALLOP, committee addressing standards for dynamic member from concealing its patents or pend- 7 OF COUNSEL, LATHAM & WATKINS LLP random access memory (DRAM) chips from ing patent applications relating to a proposed February 1992 until June 1996. During this standard under consideration, only to assert time period, Rambus had pending patent he recent Federal Trade Commission the patents later – after the standard has been 1 applications with disclosures broad enough to opinion concerning Rambus, Inc. pro- adopted and the market “locked in.” cover technologies for the standards under vides important lessons for companies Manipulation of standards setting activi- T consideration. Using information from the ties may harm competition and chill stan- that participate in standards setting organi- JEDEC meetings, Rambus repeatedly dards setting efforts. In contrast, accurate and zations (SSOs). The FTC found that amended pending patent claims and filed a timely patent disclosures along with ex ante Rambus’ misconduct in concealing its series of divisional applications in order to license disclosure obligations promote pending patent applications from an SSO build a patent portfolio that would cover the informed decision-making by SSO members had harmed competition. To remedy this standards. Rambus did not disclose this concerning the benefits of the patented tech- harm, the FTC imposed mandatory patent patent activity to JEDEC.8 nology and non-patented alternatives. This licensing terms on Rambus, with royalty In June 1996, several months after learn- can be an important factor in selecting among rates dropping to zero after three years. Two ing of an FTC consent order involving Dell competing standard proposals. Most SSO IPR dissenting commissioners expressed their Computer’s failure to disclose a patent to an policies require that members agree to license SSO,9 Rambus notified JEDEC that it was opinions that Rambus should have been essential patents on at least reasonable and 2 withdrawing from the organization. Rambus’ forced to license its patents for free. non-discriminatory (RAND) terms. This Client Alert discusses SSOs, reviews notification letter included a list of Rambus the FTC’s opinion, and presents high-level RAMBUS AND JEDEC patents. The list, however, did not include “the only then-issued patent that Rambus guidance for companies participating – or The Joint Electron Device Engineering believed covered technology under consider- contemplating participating – in SSOs. Council (JEDEC) is an SSO focused on stan- ation by JEDEC.” Even after terminating its dardizing technologies for the solid state JEDEC membership, Rambus actively sought STANDARDS SETTING ORGANIZATIONS industry. JEDEC has a patent policy that – A PRIMER requires participants and/or members to dis- information as to features of devices being Many industries have created SSOs to pro- close whether they have any issued (or pend- proposed for standardization. Rambus contin- mulgate technical standards, the objective ing) patents that may relate to, or cover, the ued to use this type of information in filing generally being to ensure that a company’s technology under consideration for adoption.3 and amending its patent applications. products can interface with products from For example, Section 8.3 of the JEDEC Internal Rambus communications advised the other suppliers. Standards facilitate and Manual 21-L, now states “The chairperson of company not to assert its patents “until ramp thereby promote compatibility and interoper- any JEDEC committee must call to the atten- reached a point of no return.” The FTC deter- ability among products offered by different tion of all those present the requirements con- mined that “after leaving JEDEC, Rambus suppliers and/or competitors. Standards set- tained in JEDEC Legal Guides and the strategically maintained its silence, thereby ting activities can have procompetitive effects prolonging the misimpression created by its obligation of all participants to inform the 10 if they increase the number of suppliers in the meeting of any knowledge they may have of prior conduct.” market and/or assure potential customers that any patents, or pending patents, that might be Rambus subsequently launched an standardized products will be generally avail- involved in the work they are undertaking.”4 aggressive patent licensing campaign against able and supported in the future. While com- JEDEC’s patent policy also requires that the the manufacturers of industry-standard petitors collaborate to achieve greater patent owner indicate its willingness to grant DRAM chips, backed by several lawsuits. compatibility and interoperability, they con- licenses on RAND or FRAND (free, reason- This campaign resulted in helping the com- tinue to compete on implementation and other able and non-discriminatory, also referred to pany increase its annual revenue to nearly differentiating features of product and service as royalty free, RF) terms. $200 million in 2006, most of this being 11 offerings. JEDEC’s written patent policy has been patent licensing revenue. Companies that develop products in com- revised over time to clarify that patent appli- pliance with a standard can confront patent cations as well as issued patents must be dis- THE FTC GETS INVOLVED infringement claims from holders of patents closed. Both the FTC and the Court of Rambus’ conduct, documented in various that may be essential to or necessary to prac- Appeals for the Federal Circuit have counterclaims brought by DRAM suppliers it tice the standard. Most SSOs have adopted addressed the various revisions and have had sued for patent infringement, attracted 12 policies to create IPR (intellectual property reached diametrically opposed conclusions as the FTC’s attention. In June 2002, FTC rights) safe harbors and reduce the risk of to the guidance they provided to JEDEC par- Complaint Counsel accused Rambus of patent hold-ups. Although the terms of SSO ticipants. The FTC stated that although the engaging in a pattern of anticompetitive acts IPR policies vary significantly, a common applicable JEDEC policy was “not a model of and alleged that such behavior caused or INTELLECTUAL PROPERTY TODAY JUNE, 2007 33 threatened to cause harm to competition and licensing terms. In a February 5, 2007 deci- GUIDANCE FOR COMPANIES consumers in violation of Section 5 of the FTC sion, however, the Commission disagreed, PARTICIPATING IN STANDARDS Act (prohibiting unfair or deceptive methods finding such remedies well within its author- 13 SETTING ACTIVITIES of competition) and Section 2 of the ity to balance competition and prevent con- The Rambus decision provides a clear 14 23 Sherman Act (prohibiting monopolization). sumer harm. warning that manipulation of standards set- On February 17, 2004, however, the ALJ over- The Commission found that compulsory ting processes can result in close antitrust seeing the proceeding entered an initial deci- licensing terms were justified, both to remedy 15 scrutiny. Potential remedies for such behavior sion in favor of Rambus. the effects of the unlawful monopoly Rambus include compulsory royalty-free licensing that Complaint Counsel successfully appealed obtained and “to inspire confidence in the can encumber patents covering next genera- the ALJ’s decision to the Commission, which standard-setting process.”24 It concluded that 16 tion technologies. overturned it in August 2006. In its opinion, to determine the appropriate royalty rate, it It is critically important that companies the Commission found that Rambus violated would have to consider the “but for” world – participating in SSOs understand the applica- the JEDEC patent policy through its deliber- in other words, what would have happened if ble patent policy and comply with it. The FTC ate decision not to disclose its patent rights. Rambus had properly disclosed its pending and European regulators, e.g., DG The Commission found that “Rambus was patent applications. The Commission Competition of the European Commission, able to distort the standard-setting process reviewed the evidence establishing that (1) emphasize the importance of an SSO’s written and engage in anticompetitive ‘hold up’ of the 17 Rambus’ technologies were superior to alter- patent disclosure policy as a means to mini- computer memory industry.” The natives, (2) nonetheless alternatives were mize the risk of the “patent ambush” perpe- 30 Commission opined that “when a firm available, (3) JEDEC had a stated preference trated by Rambus. Thus, the logical first engages in exclusionary conduct that subverts for open, patent-free standards, (4) JEDEC’s step is to review the written IPR policy. The the standard-setting process and leads to the members were highly cost-sensitive, and (5) Rambus case, however, demonstrates that fur- acquisition of monopoly power, the procom- Rambus had had a strong economic incentive ther investigation may be necessary. If the petitive benefits of standard setting cannot
Recommended publications
  • Modeling System Signal Integrity Uncertainty Considerations
    WHITE PAPER Intel® FPGA Modeling System Signal Integrity Uncertainty Considerations Authors Abstract Ravindra Gali This white paper describes signal integrity (SI) mechanisms that cause system-level High-Speed I/O Applications timing uncertainty and how these mechanisms are modeled in the Intel® Quartus® Engineering, Intel® Corporation Prime software Timing Analyzer to achieve timing closure for external memory interface designs. Zhi Wong By using the Intel Quartus Prime software to achieve timing closure for external High-Speed I/O Applications memory interfaces, a designer does not need to allocate a separate SI timing Engineering, Intel Corporation budget to account for simultaneous switching output (SSO), simultaneous Navid Azizi switching input (SSI), intersymbol interference (ISI), and board-level crosstalk for Software Engineeringr flip-chip device families such as Stratix® IV and Arria® II FPGAs for typical user Intel Corporation implementation of external memory interfaces following good board design practices. John Oh High-Speed I/O Applications Introduction Engineering, Intel Corporation The widening performance gap between FPGAs, microprocessors, and memory Arun VR devices, along with the growth of memory-intensive applications, are driving the Memory I/O Applications Engineering, need for faster memory technologies. This push to higher bandwidths has been Intel Corporation accompanied by an increase in the signal count and the signaling rates of FPGAs and memory devices. In order to attain faster bandwidths, device makers continue to reduce the supply voltage. Initially, industry-standard DIMMs operated at 5 V. However, due to improvements in DRAM storage density, the operating voltage was decreased to 3.3 V (SDR), then to 2.5V (DDR), 1.8 V (DDR2), 1.5 V (DDR3), and 1.35 V (DDR3) to allow the memory to run faster and consume less power.
    [Show full text]
  • On Implementing MPEG-21 Intellectual Property Management and Protection
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Informatics - Papers (Archive) Sciences 29-10-2007 On implementing MPEG-21 intellectual property management and protection N. P. Sheppard University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/infopapers Part of the Physical Sciences and Mathematics Commons Recommended Citation Sheppard, N. P.: On implementing MPEG-21 intellectual property management and protection 2007. https://ro.uow.edu.au/infopapers/580 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] On implementing MPEG-21 intellectual property management and protection Abstract The MPEG-21 Intellectual Property Management and Protection (&lquot;IPMP&rquot;) Components specify a framework for inter-operable and renewable digital rights management based on IPMP tools that implement proprietary digital rights management features. MPEG-21 defines the mechanism by which protected multimedia objects are associated with proprietary IPMP tools, but does not specify the interface through which IPMP tools and MPEG-21 terminals communicate. This paper describes an implementation of the IPMP components including an interface to IPMP tools based on the MPEG Rights Expression Language; dynamic construction of authorisation proofs that permit a principal to carry out an action; and a cryptographic architecture bound to the existence of authorisation
    [Show full text]
  • PATENT PLEDGES Jorge L. Contreras*
    PATENT PLEDGES Jorge L. Contreras* ABSTRACT An increasing number of firms are making public pledges to limit the enforcement of their patents. In doing so, they are entering a little- understood middle ground between the public domain and exclusive property rights. The best-known of these patent pledges are FRAND commitments, in which patent holders commit to license their patents to manufacturers of standardized products on terms that are “fair, reasonable and non-discriminatory.” But patent pledges have been appearing in settings well beyond standard-setting, including open source software, green technology and the life sciences. As a result, this increasingly prevalent private ordering mechanism is beginning to reshape the role and function of patents in the economy. Despite their proliferation, little scholarship has explored the phenomenon of patent pledges beyond FRAND commitments and standard- setting. This article fills this gap by providing the first comprehensive descriptive account of patent pledges across the board. It offers a four-part taxonomy of patent pledges based on the factors that motivate patent holders to make them and the effect they are intended to have on other market actors. Using this classification system, it argues that pledges likely to induce reliance in other market actors should be treated as “actionable” * Associate Professor, S.J. Quinney College of Law, University of Utah and Senior Policy Fellow, American University Washington College of Law. The author thanks Jonas Anderson, Clark Asay, Marc Sandy Block, Mark Bohannon, Matthew Bye, Michael Carrier, Michael Carroll, Colleen Chien, Thomas Cotter, Carter Eltzroth, Carissa Hessick, Meredith Jacob, Jay Kesan, Anne Layne-Farrar, Irina Manta, Sean Pager, Gideon Parchomovsky, Arti Rai, Amelia Rinehart, Cliff Rosky, Daniel Sokol and Duane Valz for their helpful comments, suggestions and discussion of this article and contributions of data to the Patent Pledge Database at American University.
    [Show full text]
  • Access Order and Effective Bandwidth for Streams on a Direct Rambus Memory Sung I
    Access Order and Effective Bandwidth for Streams on a Direct Rambus Memory Sung I. Hong, Sally A. McKee†, Maximo H. Salinas, Robert H. Klenke, James H. Aylor, Wm. A. Wulf Dept. of Electrical and Computer Engineering †Dept. of Computer Science University of Virginia University of Utah Charlottesville, VA 22903 Salt Lake City, Utah 84112 Abstract current DRAM page forces a new page to be accessed. The Processor speeds are increasing rapidly, and memory speeds are overhead time required to do this makes servicing such a request not keeping up. Streaming computations (such as multi-media or significantly slower than one that hits the current page. The order of scientific applications) are among those whose performance is requests affects the performance of all such components. Access most limited by the memory bottleneck. Rambus hopes to bridge the order also affects bus utilization and how well the available processor/memory performance gap with a recently introduced parallelism can be exploited in memories with multiple banks. DRAM that can deliver up to 1.6Gbytes/sec. We analyze the These three observations — the inefficiency of traditional, performance of these interesting new memory devices on the inner dynamic caching for streaming computations; the high advertised loops of streaming computations, both for traditional memory bandwidth of Direct Rambus DRAMs; and the order-sensitive controllers that treat all DRAM transactions as random cacheline performance of modern DRAMs — motivated our investigation of accesses, and for controllers augmented with streaming hardware. a hardware streaming mechanism that dynamically reorders For our benchmarks, we find that accessing unit-stride streams in memory accesses in a Rambus-based memory system.
    [Show full text]
  • Big Data, AI, and the Future of Memory
    Big Data, AI, and the Future of Memory Steven Woo Fellow and Distinguished Inventor, Rambus Inc. May 15, 2019 Memory Advancements Through Time 1990’s 2000’s 2010’s 2020’s Synchronous Memory Graphics Memory Low Power Memory Ultra High Bandwidth for PCs for Gaming for Mobile Memory for AI Faster Compute + Big Data Enabling Explosive Growth in AI 1980s Annual Size of the Global Datasphere – 1990s Now 175 ZB More 180 Accuracy Compute Neural Networks 160 140 120 Other Approaches 100 Zettabytes 80 60 40 20 Scale (Data Size, Model Size) 2010 2015 2020 2025 Source: Adapted from Jeff Dean, “Recent Advances in Artificial Intelligence and the Source: Adapted from Data Age 2025, sponsored by Seagate Implications for Computer System Design,” HotChips 29 Keynote, August 2017 with data from IDC Global DataSphere, Nov 2018 Key challenges: Moore’s Law ending, energy efficiency growing in importance ©2019 Rambus Inc. 3 AI Accelerators Need Memory Bandwidth Google TPU v1 1000 TPU Roofline Inference on newer silicon (Google TPU K80 Roofline HSW Roofline v1) built for AI processing largely limited LSTM0 by memory bandwidth LSTM1 10 MLP1 MLP0 v nVidia K80 CNN0 Inference on older, general purpose Intel Haswell CNN1 hardware (Haswell, K80) limited by LSTM0 1 LSTM1 compute and memory bandwidth TeraOps/sec (log scale) (log TeraOps/sec MLP1 MLP0 CNN0 0.1 CNN1 LSTM0 1 10 100 1000 Memory bandwidth is a critical LSTM1 Ops/weight byte (log scale) resource for AI applications = Google TPU v1 = nVidia K80 = Intel Haswell N. Jouppi, et.al., “In-Datacenter Performance Analysis of a Tensor Processing Unit™,” https://arxiv.org/ftp/arxiv/papers/1704/1704.04760.pdf ©2019 Rambus Inc.
    [Show full text]
  • Download Attachment
    NON-CONFIDENTIAL 2010-1556 UNITED STATES COURT OF APPEALS FOR THE FEDERAL CIRCUIT ASUSTEK COMPUTER INC., ASUS COMPUTER INTERNATIONAL, INC., BFG TECHNOLOGIES, INC., BIOSTAR MICROTECH (U.S.A.) CORP., BIOSTAR MICROTECH INTERNATIONAL CORP., DIABLOTEK, INC., EVGA CORP., G.B.T., INC., GIGA-BYTE TECHNOLOGY CO., LTD., HEWLETT-PACKARD COMPANY, MSI COMPUTER CORP., MICRO-STAR INTERNATIONAL COMPANY, LTD., GRACOM TECHNOLOGIES LLC (FORMERLY KNOWN AS PALIT MULTIMEDIA, INC.), PALIT MICROSYSTEMS LTD., PINE TECHNOLOGY (MACAO COMMERCIAL OFFSHORE) LTD., AND SPARKLE COMPUTER COMPANY, LTD. Appellants, — v. — INTERNATIONAL TRADE COMMISSION, Appellee, and RAMBUS, INC., Intervenor, and NVIDIA CORPORATION, Intervenor. ______________ 2010-1557 ______________ NVIDIA CORPORATION, Appellant, — v. — INTERNATIONAL TRADE COMMISSION, Appellee, and RAMBUS, INC., Intervenor. ______________ ON APPEAL FROM THE UNITED STATES INTERNATIONAL TRADE COMMISSION IN INVESTIGATION NO. 337-TA-661 ______________ NON-CONFIDENTIAL REPLY BRIEF OF APPELLANTS NVIDIA CORPORATION ET AL. _______________ *Caption Continued on Next Page COMPANION CASES TO: 2010-1483 RAMBUS, INC., Appellant, — v. — INTERNATIONAL TRADE COMMISSION, Appellee, and NVIDIA CORPORATION ET AL., Intervenors. ______________ RUFFIN B. CORDELL I. NEEL CHATTERJEE MARK S. DAVIES ANDREW R. KOPSIDAS RICHARD S. SWOPE RACHEL M. MCKENZIE FISH & RICHARDSON P.C. NITIN GAMBHIR LAUREN J. PARKER 1425 K Street, NW, 11th Floor ORRICK, HERRINGTON ORRICK, HERRINGTON Washington, DC 20005 & SUTCLIFFE LLP & SUTCLIFFE LLP Tel. No. 202-626-6449
    [Show full text]
  • CUDA-Chill: a PROGRAMMING LANGUAGE INTERFACE for GPGPU OPTIMIZATIONS and CODE GENERATION
    CUDA-CHiLL: A PROGRAMMING LANGUAGE INTERFACE FOR GPGPU OPTIMIZATIONS AND CODE GENERATION by Gabe Rudy A thesis submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Master of Science in Computer Science School of Computing The University of Utah August 2010 Copyright c Gabe Rudy 2010 All Rights Reserved The University of Utah Graduate School STATEMENT OF THESIS APPROVAL The thesis of Gabe Rudy has been approved by the following supelVisory committee members: Mary Hall , Chair 5-28-2010 Date Approved Matthew Might , Member 6-16-2010 Date Approved Matthew Flatt , Member 5-28-2010 Date Approved and by _________ Ma _ ' --'= ::.-r::ti::n-.:B"' :::er.::z:: i.:::n s'-----_______ Chair of the Department of School of Computing and by Charles A. Wight, Dean of The Graduate School. ABSTRACT The advent of the era of cheap and pervasive many-core and multicore parallel sys- tems has highlighted the disparity of the performance achieved between novice and expert developers targeting parallel architectures. This disparity is most notifiable with software for running general purpose computations on grachics processing units (GPGPU programs). Current methods for implementing GPGPU programs require an expert level understanding of the memory hierarchy and execution model of the hardware to reach peak performance. Even for experts, rewriting a program to exploit these hardware features can be tedious and error prone. Compilers and their ability to make code transformations can assist in the implementation of GPGPU programs, handling many of the target specific details. This thesis presents CUDA-CHiLL, a source to source compiler transformation and code generation framework for the parallelization and optimization of computations expressed in sequential loop nests for running on many-core GPUs.
    [Show full text]
  • DDR400/333/266, Dual DDR, RDRAM 16 Bit and 32 Bit, SDRAM
    Ace’s Hardware Granite Bay: Memory Technology Shootout Granite Bay: Memory Technology Shootout By Johan De Gelas – December 2002 Dual-Channel DDR SDRAM Arrives for the Pentium 4 DDR400/333/266, Dual DDR, RDRAM 16 bit and 32 bit, SDRAM... almost every memory technology on the market is available for the Pentium 4 platform. One of our previous technical articles discussed the advantages and disadvantages of the different architectures of Rambus and SDRAM based memory technology such as DDR and DDR-II. In this article, we will investigate how the different memory technologies and their supporting chipsets compare on the test bench. The following motherboards were tested: • The ASUS P4T533 features the i850E chipset and 32 bit RDRAM • The ASUS P4T533-C comes with the same chipset but uses two channels of 16 bit RIMMs • The MSI 648 Max comes with SIS 648 chipset which unofficially supports DDR400 • The MSI i845PE comes with Intel's newest i845 chipset, which officially support DDR333 • The Tyan Trinity 7205 and MSI GNB Max feature the Dual DDR266 Granite Bay chipset We are well aware that there have already many tests with Pentium 4 chipsets, Granite Bay included. So why bother to publish another on Ace’s Hardware? The focus of this article is on the memory technology supported by these chipsets. This article will offer you a insight in how the different memory technologies compare in a wide variety of applications. We'll investigate in depth what the advantages and disadvantages are of each memory technology and try to find out what are the reasons behind this.
    [Show full text]
  • Appendix to Brief of Appellee and Cross-Appellant Rambus Inc
    PUBLIC UNITED STATES OF AMERICA BEFORE FEDERAL TRADE COMMISSION COMMISSIONERS: Deborah Platt Majoras, Chairman Orson Swindle Thomas B. Leary Pamela Jones Harbour Jon Leibowitz ) In the Matter of ) RAMBUS INCORPORATED, ) ) a corporation. ) Docket No. 9302 ) ) ) APPENDIX TO BRIEF OF APPELLEE AND CROSS-APPELLANT RAMBUS INC. Pursuant to the Commission’s October 4, 2004 Order granting Rambus leave to file an appendix, Rambus submits this appendix to its appeal brief containing a glossary of terms. -1- US1DOCS 4782131v1 Glossary of Terms Auto precharge: DRAMs store information as minute quantities of electrical charge in memory cells – no charge is interpreted as “0" and positive charge as a “1.” Sense amplifiers are circuits on the DRAM that sense the charge in a memory cell and amplify it when information is to be read from the DRAM. Before the sense amplifiers can perform this function, they must be “precharged” to an intermediate charged state. “Auto precharge” is a feature that was originally found in RDRAMs and later adopted by SDRAMs and DDR SDRAMs that allows the controller to determine whether the sense amplifiers are to be automatically precharged – that is, precharged without the need for a separate precharge command – at the end of a read or write operation. Bit/Byte: A bit or “binary digit” is the unit of information used by digital computers that takes on only two values – “0" or “1." Each memory cell in a DRAM stores a single bit. A “byte” usually refers to eight bits. Since each bit in a byte can take on two values, a byte can take on 28, or 256, possible values.
    [Show full text]
  • The Intel Random Number Generator
    ® THE INTEL RANDOM NUMBER GENERATOR CRYPTOGRAPHY RESEARCH, INC. WHITE PAPER PREPARED FOR INTEL CORPORATION Benjamin Jun and Paul Kocher April 22, 1999 Information in this white paper is provided without guarantee or warranty of any kind. This review represents the opinions of Cryptography Research and may or may not reflect opinions of Intel Corporation. Characteristics of the Intel RNG may vary with design or process changes. © 1999 by Cryptography Research, Inc. and Intel Corporation. 1. Introduction n = − H K∑ pi log pi , Good cryptography requires good random i=1 numbers. This paper evaluates the hardware- where pi is the probability of state i out of n based Intel Random Number Generator (RNG) possible states and K is an optional constant to for use in cryptographic applications. 1 provide units (e.g., log(2) bit). In the case of a Almost all cryptographic protocols require random number generator that produces a k-bit the generation and use of secret values that must binary result, pi is the probability that an output be unknown to attackers. For example, random will equal i, where 0 ≤ i < 2k . Thus, for a number generators are required to generate -k perfect random number generator, pi = 2 and public/private keypairs for asymmetric (public the entropy of the output is equal to k bits. This key) algorithms including RSA, DSA, and means that all possible outcomes are equally Diffie-Hellman. Keys for symmetric and hybrid (un)likely, and on average the information cryptosystems are also generated randomly. present in the output cannot be represented in a RNGs are also used to create challenges, nonces sequence shorter than k bits.
    [Show full text]
  • Chang-Hong Wu Distinguished Engineer, Juniper Networks the INTERNET EXPLOSION
    ASICS: THE HEART OF MODERN ROUTERS Chang-Hong Wu Distinguished Engineer, Juniper Networks THE INTERNET EXPLOSION # Web Sites 130EB/yr Internet Capacity 162M # Connected Devices 1B Total Digitized Information 420EB # Google Searches/Month 100M 31B/mo 12EB/yr 40M 110EB 4PB/yr 60PB/yr 9.5M 160M 25M 33K 1 1.7M 2.7B/mo 1988 1993 1998 2003 2008 Exponential growth, no matter how you measure it! The clearest indication of value delivered to end-users 2 Copyright © 2010 Juniper Networks, Inc. DRIVING FORCE BEHIND EXPONENTIAL GROWTH C S C S N C S Information N System N Digital Stored Pipelining Microprocessor Multi-core Computing Program Computing Digital Circuit Packet TCP/IP Transmission Switching Switching HPN Networking Flash Digital Core Disk DRAM Storage Memory Storage 3 Copyright © 2010 Juniper Networks, Inc. COMPUTER PERFORMANCE: 1988-2008 228 500,000 X over 20 years 226 224 222 220 218 System CAGR: 1.9x /year 216 214 12 2 Super Computers 210 28 26 Megahertz Megahertz / MFlops 24 Microprocessor CAGR: 1.3x /year 22 20 „88 „89 „90 „91 „92 „93 „94 „95 „96 „97 „98 „99 „00 „01 „02 „03 „04 „05 „06 „07 „08 4 Copyright © 2010 Juniper Networks, Inc. ROUTER PERFORMANCE 1988 – 2008 1000,000 X over 20 years (2x /year) 224 Post-ASIC era: 2.2x /year TX T1600 222 220 T640 M160 218 Pre-ASIC era: 1.6x /year M40 216 214 212 Interface CAGR: 1.7x /year 210 28 26 Megabits per second 24 22 20 „88 „89 „90 „91 „92 „93 „94 „95 „96 „97 „98 „99 „00 „01 „02 „03 „04 „05 „06 „07 „08 5 Copyright © 2010 Juniper Networks, Inc.
    [Show full text]
  • Complaint Counsel's Response to Rambus's Supplemental Brief In
    UNITED STATES OF AMERICA BEFORE FEDERAL TRADE COMMISSION COMMISSIONERS: Deborah Platt Majoras, Chairman Thomas B. Leary Pamela Jones Harbour Jon Leibowitz In the Matter of Docket No. 9302 RAMBUS INCORPORATED, PUBLIC a corporation. COMPLAINT COUNSEL’S RESPONSE TO RAMBUS’S SUPPLEMENTAL BRIEF IN SUPPORT OF MOTION TO REOPEN RECORD “[P]roof of price fixing by DRAM manufacturers . is immaterial to the issues in this case, including whether Rambus’ conduct alleged in the Complaint could tend to injure competition.” Judge Timony, Opinion Supporting Order Granting Motion of the United States Department of Justice to Limit Discovery Relating to the Grand Jury at 7 (January 15, 2003). In its Supplemental Brief, Rambus again fails to address the fundamental problem in its motion: the material it seeks to add to the record is irrelevant to this proceeding. Indeed, the information submitted by Rambus in its Supplemental Brief confirms this. The Samsung plea agreement attached to Rambus’s brief states, “The charged violation with respect to RDRAM occurred at times during the period from January 1, 2001 to June 15, 2002.” Samsung Plea Agreement, ¶ 4(d) (October 13, 2005). Thus, according to this description submitted by Rambus, the asserted RDRAM conspiracy did not begin until long after 1 Rambus’s conduct at issue in this case. Indeed, the RDRAM conspiracy apparently did not begin until: • after the industry had implemented use of the JEDEC SDRAM standard; • after JEDEC adopted the DDR SDRAM standard; • after JEDEC had completed substantial work on
    [Show full text]