Measure-Compact Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
[Math.GN] 25 Dec 2003
Problems from Topology Proceedings Edited by Elliott Pearl arXiv:math/0312456v1 [math.GN] 25 Dec 2003 Topology Atlas, Toronto, 2003 Topology Atlas Toronto, Ontario, Canada http://at.yorku.ca/topology/ [email protected] Cataloguing in Publication Data Problems from topology proceedings / edited by Elliott Pearl. vi, 216 p. Includes bibliographical references. ISBN 0-9730867-1-8 1. Topology—Problems, exercises, etc. I. Pearl, Elliott. II. Title. Dewey 514 20 LC QA611 MSC (2000) 54-06 Copyright c 2003 Topology Atlas. All rights reserved. Users of this publication are permitted to make fair use of the material in teaching, research and reviewing. No part of this publication may be distributed for commercial purposes without the prior permission of the publisher. ISBN 0-9730867-1-8 Produced November 2003. Preliminary versions of this publication were distributed on the Topology Atlas website. This publication is available in several electronic formats on the Topology Atlas website. Produced in Canada Contents Preface ............................................ ............................v Contributed Problems in Topology Proceedings .................................1 Edited by Peter J. Nyikos and Elliott Pearl. Classic Problems ....................................... ......................69 By Peter J. Nyikos. New Classic Problems .................................... ....................91 Contributions by Z.T. Balogh, S.W. Davis, A. Dow, G. Gruenhage, P.J. Nyikos, M.E. Rudin, F.D. Tall, S. Watson. Problems from M.E. Rudin’s Lecture notes in set-theoretic topology ..........103 By Elliott Pearl. Problems from A.V. Arhangel′ski˘ı’s Structure and classification of topological spaces and cardinal invariants ................................................... ...123 By A.V. Arhangel′ski˘ıand Elliott Pearl. A note on P. Nyikos’s A survey of two problems in topology ..................135 By Elliott Pearl. -
Chapter 7 Separation Properties
Chapter VII Separation Properties 1. Introduction “Separation” refers here to whether objects such as points or disjoint closed sets can be enclosed in disjoint open sets. In spite of the similarity of terminology, “separation properties” have no direct connection to the idea of “separated sets” that appeared in Chapter 5 in the context of connected spaces. We have already met some simple separation properties of spaces: the XßX! "and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As hypotheses for “more separation” are added, spaces generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the original literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , ,and X % , each one stronger than its predecessor in the list. Once these had become common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: X" Þ It turns out that the $ # X " spaces (also called Tychonoff spaces) are an extremely well-behaved class of spaces with some $ # very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X!-space if, whenever BÁC−\, there either exists an open set YB−YCÂY with , or there exists an open set Zwith C−ZBÂZ, 2) X"-space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set Zwith BÂYßC−Z 3) X#-space (or, Hausdorff space) if, whenever BÁC−\, there exist disjoint open sets Y and Z in \ such that B−Y and C−Z . -
Topology I: Elementary Topology Yi Li
Topology I: Elementary Topology Yi Li SCHOOL OF MATHEMATICS AND SHING-TUNG YAU CENTER,SOUTHEAST UNIVERSITY,NANJING,CHINA 210096 E-mail address: [email protected]; [email protected]; [email protected] Contents Main References 1 Chapter 1. Basic topology 3 1.1. Metric spaces 3 1.2. Topological spaces 13 1.3. Constructions 38 1.4. Topological groups and matrix Lie groups 52 1.5. Connectedness and compactness 69 Chapter 2. Analysis on topological groups 83 2.1. Haar measures 83 2.2. Iwasawa’s decomposition 89 2.3. Harish, Mellin and spherical transforms 94 Chapter 3. Fundamental groups 111 3.1. Homotopy 111 3.2. H-spaces 122 1 3.3. p1(S ) 137 v Main References • Kelley, John L. General topology, Reprint of the 1955 edition [Van Nos- trand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27, Springer- Verlag, New York-Berlin, 1975. xiv+298 pp. MR0370454 (51# 6681) • Bredon, Glen E. Topology and geometry, Graduate Texts in Mathematics, No. 139, Springer-Verlag, New York, 1993. xiv+557 pp. • Lee, John M. Introduction to topological manifolds, Second edition, Graduate Texts in Mathematics, No. 202, Springer, New York, 2011. xviii+433 pp. ISBN: 978-1-4419-7939-1 • Munkres, James R. Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1975. xvi+413 pp. • Burago, Dmitri; Burago, Yuri; Ivanov, Sergei. A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001. xiv+415 pp. ISBN: 0-8218-2129-6 • Spanier, Edwin H. Algebraic topology, Corrected reprint of the 1966 origi- nal, Springer-Verlag, New York. -
Chapter 3: Topological Spaces
Chapter III Topological Spaces 1. Introduction In Chapter I we looked at properties of sets, and in Chapter II we added some additional structure to a set a distance function . to create a pseudometric space. We then saw some of the most basic fundamental definitions and properties of pseudometric spaces. There is much more, and some of the most useful and interesting properties of pseudometric spaces will be discussed in Chapter IV. But in Chapter III we look at an important generalization. We observed, early in Chapter II, that the idea of continuity (in calculus) depends on talking about “nearness,” so we used a distance function . to make the idea of “nearness” precise. In that way, we were able to extend the definition of continuity from ‘8 to pseudometric spaces. The distance function . also led us to the idea of open sets in a pseudometric space. From there we developed properties of closed sets, closures, interiors, frontiers, dense sets, continuity, and sequential convergence. An important observation in Chapter II was that open (or closed) sets are really all that we require to talk about many of these ideas. In other words, we can often do what's necessary using the open sets without knowing which specific . generated the open sets: the topology g. is what really matters. For example, intE is defined in Ð\ß.Ñin terms of the open sets ßE so int doesn't change if . is replaced with a different but equivalent metric .w one that generates the same open sets. Similarly, changing . to an equivalent metric . -
Topological Spaces
Chapter III Topological Spaces 1. Introduction In Chapter I we looked at properties of sets, and in Chapter II we added some additional structure to a set. a distance function to create a pseudometric space. We then looked at some of the most basic definitions and properties of pseudometric spaces. There is much more, and some of the most useful and interesting properties of pseudometric spaces will be discussed in Chapter IV. But in Chapter III we look at an important generalization. Early in Chapter II we observed that the idea of continuity (in calculus) depends on talking about “nearness,” so we used a distance function . to make the idea of “nearness” precise. The result was that we could carry over the definition of continuity from calculus to pseudometric spaces. The distance function . also led us to the idea of an open set in a pseudometric space. From there we developed properties of closed sets, closures, interiors, frontiers, dense sets, continuity, and sequential convergence. One important observation was that open (or closed) sets are all we need to work with many of these concepts; that is, we can often do what we need using the open sets without knowing what specific . that generated these open sets: the topology g. is what really matters. For example, clEÐ\ß.ÑßE. is defined in in terms of the closed sets so cl doesn't change if is replaced with a different but equivalent metric .w one that generates the same open sets. Changing . to an equivalent metric .w also doesn't affect interiors, continuity, or convergent sequences.